1
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Ghahremani PT, BaniArdalan S, Alehossein P, Parveen A, Jorjani M, Brown CM, Geldenhuys WJ, Huber JD, Ishrat T, Nasoohi S. Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells. Life Sci 2025; 361:123336. [PMID: 39719167 DOI: 10.1016/j.lfs.2024.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke. METHODS Rat primary cortical neurons (PCNs) were exposed to oxygen glucose deprivation (OGD) followed by increasing glucose concentration (0, 5, 10, 25 mM) at reoxygenation. In vivo, adult rats were subjected to two hours transient distal middle cerebral artery occlusion (t-dMCAO) and hyperglycemic reperfusion. KEY FINDINGS In PCN cultures, high glucose levels impaired normal neurite growth at 24 h I/R where it drastically depressed S6 ribosomal protein phosphorylation at serine 235/236 residues in 40S ribosomal subunit. This concurred with substantial hypoxia inducible factor-1α (HIF-1α) destabilization and sustained vascular endothelial growth factor (VEGF). Our immunoblotting findings indicated HIF-1α stabilization and AMPK activation rely on glucose availability. Incremental glucose concentrations above the physiological levels, induced a shift towards 4E-BP1, eIF-4E hypo-phosphorylated forms leading to reduced eIF-4E availability and efficacy, as the key to recruit the 40S ribosomal subunit to the 5' end of mRNA. In vivo, immunostaining of t-dMCAO rat brains showed remarkable decrease in phosphorylated 4E-BP1 and particularly s6 ribosomal protein in the marginal cortical tissue of hyperglycemic compared to normoglycemic animals. SIGNIFICANCE These findings suggest a remarkable association between hyperglycemic I/R injury with dysregulated cap-dependent translation poststroke. Further loss/gain of function experiment may elucidate the potential therapeutic targets in regulation of HIF-1α/translation in hyperglycemic I/R injury.
Collapse
Affiliation(s)
| | - Soha BaniArdalan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshi Parveen
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
3
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
4
|
Lim D, Tapella L, Dematteis G, Talmon M, Genazzani AA. Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions. Neurochem Res 2023; 48:1077-1090. [PMID: 36083398 PMCID: PMC10030417 DOI: 10.1007/s11064-022-03744-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
5
|
Soto-Verdugo J, Siva-Parra J, Hernández-Kelly LC, Ortega A. Acute Manganese Exposure Modifies the Translation Machinery via PI3K/Akt Signaling in Glial Cells. ASN Neuro 2022; 14:17590914221131452. [PMID: 36203371 PMCID: PMC9551334 DOI: 10.1177/17590914221131452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARY STATEMENT We demonstrate herein that short-term exposure of radial glia cells to Manganese, a neurotoxic metal, induces an effect on protein synthesis, altering the protein repertoire of these cells.
Collapse
Affiliation(s)
| | | | | | - Arturo Ortega
- Arturo Ortega, Departamento de Toxicología,
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Nacional, México City, México, 07360.
| |
Collapse
|
6
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
7
|
Liu CY, Chen JB, Liu YY, Zhou XM, Zhang M, Jiang YM, Ma QY, Xue Z, Zhao ZY, Li XJ, Chen JX. Saikosaponin D exerts antidepressant effect by regulating Homer1-mGluR5 and mTOR signaling in a rat model of chronic unpredictable mild stress. Chin Med 2022; 17:60. [PMID: 35610650 PMCID: PMC9128259 DOI: 10.1186/s13020-022-00621-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Many studies about depression have focused on the dysfunctional synaptic signaling in the hippocampus that drives the pathophysiology of depression. Radix Bupleuri has been used in China for over 2000 years to regulate liver-qi. Extracted from Radix Bupleuri, Saikosaponin D (SSD) is a pharmacologically active substance that has antidepressant effects. However, its underlying mechanism remains unknown. MATERIALS AND METHODS A chronic unpredictable mild stress (CUMS) paradigm was used as a rat model of depression. SD rats were randomly assigned to a normal control (NC) group or one exposed to a CUMS paradigm. Of the latter group, rats were assigned to four subgroups: no treatment (CUMS), fluoxetine-treated (FLU), high-dose and low-dose SSD-treated (SSDH and SSDL). SSD was orally administrated of 1.50 mg/kg and 0.75 mg/kg/days for three weeks in the SSDH and SSDL groups, respectively. Fluoxetine was administrated at a dose of 2.0 mg/kg/days. SSD's antidepressant effects were assessed using the open field test, forced swim test, and sucrose preference test. Glutamate levels were quantified by ELISA. Western blot and immunochemical analyses were conducted to quantify proteins in the Homer protein homolog 1 (Homer1)-metabotropic glutamate receptor 5 (mGluR5) and mammalian target of rapamycin (mTOR) pathways in the hippocampal CA1 region. To measure related gene expression, RT-qPCR was employed. RESULTS CUMS-exposed rats treated with SSD exhibited increases in food intake, body weight, and improvements in the time spent in the central are and total distance traveled in the OFT, and less pronounced pleasure-deprivation behaviors. SSD also decreased glutamate levels in CA1. In CA1 region of CUMS-exposed rats, SSD treatment increased mGluR5 expression while decreasing Homer1 expression. SSD also increased expressions of postsynaptic density protein 95 (PSD95) and synapsin I (SYP), and the ratios of p-mTOR/mTOR, p-p70S6k/p70S6k, and p-4E-BP1/4E-BP1 in the CA1 region in CUMS-exposed rats. CONCLUSIONS SSD treatment reduces glutamate levels in the CA1 region and promotes the expression of the synaptic proteins PSD-95 and SYP via the regulation of the Homer1-mGluR5 and downstream mTOR signaling pathways. These findings suggest that SSD could act as a natural neuroprotective agent in the prevention of depression.
Collapse
Affiliation(s)
- Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Haerbin, 150040, China
| | - Man Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zong-Yao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Zhong Y, Peng P, Zhang M, Han D, Yang H, Yan X, Hu S. Effect of S-Nitrosylation of RIP3 Induced by Cerebral Ischemia on its Downstream Signaling Pathway. J Stroke Cerebrovasc Dis 2022; 31:106516. [PMID: 35490467 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Our preliminary experiments indicate that receptor-interacting protein 3 (RIP3) is S-nitrosylated and contributes to its autophosphorylation (activation) after 3 h of rat brain ischemia/reperfusion mediated by activation of the N-methyl-D-aspartate receptor (NMDAR)-dependent neuronal NO synthase (nNOS) and is involved in the process of neuronal injury. Here, we will to demonstrate whether S-nitrosylation of RIP3 facilitates the activation of the downstream signaling pathway and finally exacerbates ischemic neuron death. MATERIALS AND METHODS Adult male Sprague-Dawley rat transient brain ischemia/reperfusion and cortical neurons oxygen and glucose deprivation (OGD)/reoxygenation models were performed. The hippocampal CA1 regions or cultured cells were homogenized and the cytosolic fraction were collected as tissue samples. Coimmunoprecipitation and western blot analysis were carried out for detecting phosphorylation of RIP1 and mixed lineage kinase-like domains (MLKL) and the Cleaved-Caspase8 (Cl-Caspase8). The activities of Glycogen phosphorylase (PYGL), Glutamate-ammonia ligase (GLUL) and Glutamate dehydrogenase (GLUD1) were detected with ultraviolet absorption method. RESULTS This study showed that active RIP3 could phosphorylate RIP1 and MLKL through its kinase activity, promote the conversion of Caspase8 to active Cl-Caspase8, enhance the activities of PYGL, GLUL and GLUD1, and finally aggravate neuronal injury in cerebral ischemia/reperfusion. The inhibition of RIP3 S-nitrosylation inhibited the phosphorylation of RIP1 and MLKL, inhibited the activities of Caspase8, PYGL, GLUL, and GLUD1, and alleviated neuronal damage in cerebral ischemia/reperfusion. CONCLUSIONS S-nitrosylation of RIP3 increased RIP1 and MLKL phosphorylation levels, Cl-Caspase8 content and PYGL, GLUL and GLUD1 activities and aggravated neuronal damage during cerebral ischemia/reperfusion and regulating the S-nitrosylation of RIP3 and its downstream signaling pathway might be a therapeutic target for stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Intensive Care Unit of the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, China
| | - Peng Peng
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China
| | - Mengmeng Zhang
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China
| | - Dong Han
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongning Yang
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xianliang Yan
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China; Emergency Medicine Department of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221004, China; Emergency Medicine Department of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
9
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
10
|
Yu XD, Mo YX, He Z, Reilly J, Tian SW, Shu X. Urocanic acid enhances memory consolidation and reconsolidation in novel object recognition task. Biochem Biophys Res Commun 2021; 579:62-68. [PMID: 34587556 DOI: 10.1016/j.bbrc.2021.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Urocanic acid (UCA) is an endogenous small molecule that is elevated in skin, blood and brain after sunlight exposure, mainly playing roles in the periphery systems. Few studies have investigated the role of UCA in the central nervous system. In particular, its role in memory consolidation and reconsolidation is still unclear. In the present study, we investigated the effect of intraperitoneal injection of UCA on memory consolidation and reconsolidation in a novel object recognition memory (ORM) task. In the consolidation version of the ORM task, the protocol involved three phases: habituation, sampling and test. UCA injection immediately after the sampling period enhanced ORM memory performance; UCA injection 6 h after sampling did not affect ORM memory performance. In the reconsolidation version of the ORM task, the protocol involved three phases: sampling, reactivation and test. UCA injection immediately after reactivation enhanced ORM memory performance; UCA injection 6 h after reactivation did not affect ORM memory performance; UCA injection 24 h after sampling without reactivation did not affect ORM memory performance. This UCA-enhanced memory performance was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The results suggest that UCA injection enhances consolidation and reconsolidation of an ORM task, which further extends previous research on UCA effects on learning and memory.
Collapse
Affiliation(s)
- Xu-Dong Yu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China; Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yan-Xin Mo
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shao-Wen Tian
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi, 541199, PR China.
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| |
Collapse
|
11
|
Chadha R, Alganem K, Mccullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain. Mol Psychiatry 2021; 26:6868-6879. [PMID: 33990769 DOI: 10.1038/s41380-021-01135-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Gladulich LFH, Xie J, Jensen KB, Kamei M, Paes-de-Carvalho R, Cossenza M, Proud CG. Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1-dependent phosphorylation. J Neurochem 2020; 157:1086-1101. [PMID: 32892352 DOI: 10.1111/jnc.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.
Collapse
Affiliation(s)
- Luis F H Gladulich
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Jianling Xie
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Kirk B Jensen
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Makoto Kamei
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia.,Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marcelo Cossenza
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Christopher G Proud
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| |
Collapse
|
13
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
14
|
Chadha R, Meador-Woodruff JH. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology 2020; 45:1059-1067. [PMID: 31952070 PMCID: PMC7162985 DOI: 10.1038/s41386-020-0614-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/09/2022]
Abstract
Abnormal neurotransmission is central to schizophrenia (SZ). Alterations across multiple neurotransmitter systems in SZ suggest that this illness may be associated with dysregulation of core intracellular processes such as signaling pathways that underlie the regulation and integration of these systems. The AKT-mTOR signaling cascade has been implicated in SZ by gene association, postmortem brain and animal studies. AKT and mTOR are serine/threonine kinases which play important roles in cell growth, proliferation, survival, and differentiation. Both AKT and mTOR require phosphorylation at specific sites for their complete activation. mTOR forms two functionally distinct multiprotein complexes, mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2). mTORC1 mediates ribosome biogenesis, protein translation, and autophagy, whereas mTORC2 contributes to actin dynamics. Altered protein synthesis and actin dynamics can lead to an abnormal neuronal morphology resulting in deficits in learning and memory. Currently, there is a lack of direct evidence to support the hypothesis of disrupted mTOR signaling in SZ, and we have addressed this by characterizing this signaling pathway in SZ brain. We found a reduction in AKT and mTOR protein expression and/or phosphorylation state in dorsolateral prefrontal cortex (DLPFC) from 22 pairs of SZ and matched comparison subjects. We also found reduced protein expression of GβL, a subunit protein common to both mTOR complexes. We further investigated mTOR complex-specific subunit composition and phosphorylation state, and found abnormal mTOR expression in both complexes in SZ DLPFC. These findings provide evidence that proteins associated with the AKT-mTOR signaling cascade are downregulated in SZ DLPFC.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
15
|
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21:183-203. [PMID: 31937935 PMCID: PMC7102936 DOI: 10.1038/s41580-019-0199-y] [Citation(s) in RCA: 1618] [Impact Index Per Article: 323.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The mTOR pathway integrates a diverse set of environmental cues, such as growth factor signals and nutritional status, to direct eukaryotic cell growth. Over the past two and a half decades, mapping of the mTOR signalling landscape has revealed that mTOR controls biomass accumulation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Given the pathway's central role in maintaining cellular and physiological homeostasis, dysregulation of mTOR signalling has been implicated in metabolic disorders, neurodegeneration, cancer and ageing. In this Review, we highlight recent advances in our understanding of the complex regulation of the mTOR pathway and discuss its function in the context of physiology, human disease and pharmacological intervention.
Collapse
Affiliation(s)
- Grace Y Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| |
Collapse
|
16
|
Shepard KA, Korsak LIT, DeBartolo D, Akins MR. Axonal localization of the fragile X family of RNA binding proteins is conserved across mammals. J Comp Neurol 2019; 528:502-519. [PMID: 31502255 DOI: 10.1002/cne.24772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Spatial segregation of proteins to neuronal axons arises in part from local translation of mRNAs that are first transported into axons in ribonucleoprotein particles (RNPs), complexes containing mRNAs and RNA binding proteins. Understanding the importance of local translation for a particular circuit requires not only identifying axonal RNPs and their mRNA cargoes, but also whether these RNPs are broadly conserved or restricted to only a few species. Fragile X granules (FXGs) are axonal RNPs containing the fragile X related family of RNA binding proteins along with ribosomes and specific mRNAs. FXGs were previously identified in mouse, rat, and human brains in a conserved subset of neuronal circuits but with species-dependent developmental profiles. Here, we asked whether FXGs are a broadly conserved feature of the mammalian brain and sought to better understand the species-dependent developmental expression pattern. We found FXGs in a conserved subset of neurons and circuits in the brains of every examined species that together include mammalian taxa separated by up to 160 million years of divergent evolution. A developmental analysis of rodents revealed that FXG expression in frontal cortex and olfactory bulb followed consistent patterns in all species examined. In contrast, FXGs in hippocampal mossy fibers increased in abundance across development for most species but decreased across development in guinea pigs and members of the Mus genus, animals that navigate particularly small home ranges in the wild. The widespread conservation of FXGs suggests that axonal translation is an ancient, conserved mechanism for regulating the proteome of mammalian axons.
Collapse
Affiliation(s)
| | - Lulu I T Korsak
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Doležal R, Houdková I, Kalász H, Andrýs R, Novák M, Maltsevskaya NV, Karásková N, Kolář K, Novotná E, Kuča K, Žďárová Karasová J. Determination of Hypericin in Hypericum perforatum (St. John’s Wort) Using Classical C18 and Pentafluorophenyl Stationary Phases: Contribution of Pi–Pi Interactions to High-Performance Liquid Chromatography (HPLC). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1571076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rafael Doležal
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Iva Houdková
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Rudolf Andrýs
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Novák
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Natálie Karásková
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Karel Kolář
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Chemistry Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Žďárová Karasová
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy Faculty of Military Health Sciences, Hradec Kralove, University of Defense, Brno, Czech Republic
| |
Collapse
|
19
|
Chung HW, Weng JC, King CE, Chuang CF, Chow WY, Chang YC. BDNF elevates the axonal levels of hnRNPs Q and R in cultured rat cortical neurons. Mol Cell Neurosci 2019; 98:97-108. [PMID: 31202892 DOI: 10.1016/j.mcn.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases. Among those identified in axons are highly related hnRNPs Q and R. RT-PCR analysis indicated that axons also contained low levels of hnRNPs Q and R mRNAs. We further found that BDNF treatments raised the levels of hnRNPs Q and R proteins in whole neurons and axons. BDNF also increased the level of poly(A) RNA as well as the proportion of poly(A) RNA granules containing hnRNPs Q and R in the axon. However, following severing the connection between the cell bodies and axons, BDNF did not affect the levels of hnRNPs Q and R, the content of poly(A) RNA, or the colocalization of poly(A) RNA and hnRNPs Q and R in the axon any more, although BDNF still stimulated the local translation in severed axons as it did in intact axons. The results are consistent with that BDNF enhances the axonal transport of RNA granules. The results further suggest that hnRNPs Q and R play a role in the mechanism underlying the enhancement of axonal RNA transport by BDNF.
Collapse
Affiliation(s)
- Hui-Wen Chung
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ju-Chen Weng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-En King
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Fan Chuang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wei-Yuan Chow
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yen-Chung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Parvin S, Takeda R, Sugiura Y, Neyazaki M, Nogi T, Sasaki Y. Fragile X mental retardation protein regulates accumulation of the active zone protein Munc18-1 in presynapses via local translation in axons during synaptogenesis. Neurosci Res 2018; 146:36-47. [PMID: 30240639 DOI: 10.1016/j.neures.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 11/26/2022]
Abstract
Fragile X mental retardation protein (FMRP), a causative gene (FMR1) product of Fragile X syndrome (FXS), is an RNA-binding protein to regulate local protein synthesis in dendrites for postsynaptic functions. However, involvement of FMRP in local protein synthesis in axons for presynaptic functions remains unclear. Here we investigated role of FMRP in local translation of the active zone protein Munc18-1 during presynapse formation. We found that leucine-rich repeat transmembrane neuronal 2 (LRRTM2)-conjugated beads, which promotes synchronized presynapse formation, induced simultaneous accumulation of FMRP and Munc18-1 in presynapses of axons of mouse cortical neurons in neuronal cell aggregate culture. The LRRTM2-induced accumulation of Munc18-1 in presynapses was observed in axons protein-synthesis-dependently, even physically separated from cell bodies. The accumulation of Munc18-1 was enhanced in Fmr1-knockout (KO) axons as compared to wild type (WT), suggesting FMRP-regulated suppression for local translation of Munc18-1 in axons during presynapse formation. Using naturally formed synapses of dissociated culture, structured illumination microscope revealed that accumulation of Munc18-1 puncta in Fmr1-KO neurons increased significantly at 19 days in vitro, as compared to WT. Our findings lead the possibility that excessive accumulation of Munc18-1 in presynapses at early stage of synaptic development in Fmr1-KO neurons may have a critical role in impaired presynaptic functions in FXS.
Collapse
Affiliation(s)
- Shumaia Parvin
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Renoma Takeda
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Yu Sugiura
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Makiko Neyazaki
- Structural Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Terukazu Nogi
- Structural Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan.
| |
Collapse
|
21
|
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 2018; 1693:75-91. [PMID: 29462608 PMCID: PMC5997521 DOI: 10.1016/j.brainres.2018.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Phillip L Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Department of Cell Biology, Emory University, Atlanta, GA 30322 USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA.
| |
Collapse
|
22
|
Stefanik MT, Sakas C, Lee D, Wolf ME. Ionotropic and metabotropic glutamate receptors regulate protein translation in co-cultured nucleus accumbens and prefrontal cortex neurons. Neuropharmacology 2018; 140:62-75. [PMID: 30077883 DOI: 10.1016/j.neuropharm.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
Abstract
The regulation of protein translation by glutamate receptors and its role in plasticity have been extensively studied in the hippocampus. In contrast, very little is known about glutamatergic regulation of translation in nucleus accumbens (NAc) medium spiny neurons (MSN), despite their critical role in addiction-related plasticity and recent evidence that protein translation contributes to this plasticity. We used a co-culture system, containing NAc MSNs and prefrontal cortex (PFC) neurons, and fluorescent non-canonical amino acid tagging (FUNCAT) to visualize newly synthesized proteins in neuronal processes of NAc MSNs and PFC pyramidal neurons. First, we verified that the FUNCAT signal reflects new protein translation. Next, we examined the regulation of translation by group I metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors by incubating co-cultures with agonists or antagonists during the 2-h period of non-canonical amino acid labeling. In NAc MSNs, basal translation was modestly reduced by blocking Ca2+-permeable AMPARs whereas blocking all AMPARs or suppressing constitutive mGluR5 signaling enhanced translation. Activating group I mGluRs with dihydroxyphenylglycine increased translation in an mGluR1-dependent manner in NAc MSNs and PFC pyramidal neurons. Disinhibiting excitatory transmission with bicuculline also increased translation. In MSNs, this was reversed by antagonists of mGluR1, mGluR5, AMPARs or NMDARs. In PFC neurons, AMPAR or NMDAR antagonists blocked bicuculline-stimulated translation. Our study, the first to examine glutamatergic regulation of translation in MSNs, demonstrates regulatory mechanisms specific to MSNs that depend on the level of neuronal activation. This sets the stage for understanding how translation may be altered in addiction.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Courtney Sakas
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Dennis Lee
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
23
|
Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL. Axonal mRNA transport and translation at a glance. J Cell Sci 2018; 131:jcs196808. [PMID: 29654160 PMCID: PMC6518334 DOI: 10.1242/jcs.196808] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Localization and translation of mRNAs within different subcellular domains provides an important mechanism to spatially and temporally introduce new proteins in polarized cells. Neurons make use of this localized protein synthesis during initial growth, regeneration and functional maintenance of their axons. Although the first evidence for protein synthesis in axons dates back to 1960s, improved methodologies, including the ability to isolate axons to purity, highly sensitive RNA detection methods and imaging approaches, have shed new light on the complexity of the transcriptome of the axon and how it is regulated. Moreover, these efforts are now uncovering new roles for locally synthesized proteins in neurological diseases and injury responses. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of how axonal mRNA transport and translation are regulated, and discuss their emerging links to neurological disorders and neural repair.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4740, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| |
Collapse
|
24
|
Tréfier A, Pellissier LP, Musnier A, Reiter E, Guillou F, Crépieux P. G Protein-Coupled Receptors As Regulators of Localized Translation: The Forgotten Pathway? Front Endocrinol (Lausanne) 2018; 9:17. [PMID: 29456523 PMCID: PMC5801404 DOI: 10.3389/fendo.2018.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) exert their physiological function by transducing a complex signaling network that coordinates gene expression and dictates the phenotype of highly differentiated cells. Much is known about the gene networks they transcriptionally regulate upon ligand exposure in a process that takes hours before a new protein is synthesized. However, far less is known about GPCR impact on the translational machinery and subsequent mRNA translation, although this gene regulation level alters the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an early response kinetically connected to signaling events, hence it leads to the synthesis of a new protein within minutes following receptor activation. By these means, mRNA translation is responsive to subtle variations of the extracellular environment. In addition, when restricted to cell subcellular compartments, local mRNA translation contributes to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The mechanisms that control where in the cell an mRNA is translated are starting to be deciphered. But how an extracellular signal triggers such local translation still deserves extensive investigations. With the advent of high-throughput data acquisition, it now becomes possible to review the current knowledge on the translatome that some GPCRs regulate, and how this information can be used to explore GPCR-controlled local translation of mRNAs.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Lucie P. Pellissier
- Déficit de Récompense, GPCR et sociabilité, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Astrid Musnier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Eric Reiter
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Florian Guillou
- Plasticité Génomique et Expression Phénotypique, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Pascale Crépieux
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
- *Correspondence: Pascale Crépieux,
| |
Collapse
|
25
|
Kar AN, Lee SJ, Twiss JL. Expanding Axonal Transcriptome Brings New Functions for Axonally Synthesized Proteins in Health and Disease. Neuroscientist 2017; 24:111-129. [PMID: 28593814 DOI: 10.1177/1073858417712668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intra-axonal protein synthesis has been shown to play critical roles in both development and repair of axons. Axons provide long-range connectivity in the nervous system, and disruption of their function and/or structure is seen in several neurological diseases and disorders. Axonally synthesized proteins or losses in axonally synthesized proteins contribute to neurodegenerative diseases, neuropathic pain, viral transport, and survival of axons. Increasing sensitivity of RNA detection and quantitation coupled with methods to isolate axons to purity has shown that a surprisingly complex transcriptome exists in axons. This extends across different species, neuronal populations, and physiological conditions. These studies have helped define the repertoire of neuronal mRNAs that can localize into axons and imply previously unrecognized functions for local translation in neurons. Here, we review the current state of transcriptomics studies of isolated axons, contrast axonal mRNA profiles between different neuronal types and growth states, and discuss how mRNA transport into and translation within axons contribute to neurological disorders.
Collapse
Affiliation(s)
- Amar N Kar
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Seung Joon Lee
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Messenger RNAs localized to distal projections of human stem cell derived neurons. Sci Rep 2017; 7:611. [PMID: 28377585 PMCID: PMC5428799 DOI: 10.1038/s41598-017-00676-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
The identification of mRNAs in distal projections of model organisms has led to the discovery of multiple proteins that are locally synthesized for functional roles such as axon guidance, injury signaling and regeneration. The extent to which local protein synthesis is conserved in human neurons is unknown. Here we used compartmentalized microfluidic chambers to characterize the transcriptome of distal projections of human embryonic stem cells differentiated using a protocol which enriched for glutamatergic neurons (hESC-neurons). Using gene expression analysis, we identified mRNAs proportionally enriched in these projections, representing a functionally unique local transcriptome as compared to the human neuronal transcriptome inclusive of somata. Further, we found that the most abundant mRNAs within these hESC-neuron projections were functionally similar to the axonal transcriptome of rat cortical neurons. We confirmed the presence of two well characterized axonal mRNAs in model organisms, β-actin and GAP43, within hESC-neuron projections using multiplexed single molecule RNA-FISH. Additionally, we report the novel finding that oxytocin mRNA localized to these human projections and confirmed its localization using RNA-FISH. This new evaluation of mRNA within human projections provides an important resource for studying local mRNA translation and has the potential to reveal both conserved and unique translation dependent mechanisms.
Collapse
|
27
|
AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 2017; 114:3939-3944. [PMID: 28348228 DOI: 10.1073/pnas.1612943114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca2+-permeable GluAs (Ca-P GluAs) and Ca2+-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA KD phenotypes could also be reproduced by expressing a GluA mutant that dominantly inhibits glutamate-evoked currents. These results suggest that, in addition to their role in synaptic communication in mature animals, GluAs also have critical developmental functions.
Collapse
|
28
|
Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons. eNeuro 2017; 4:eN-NWR-0171-16. [PMID: 28197547 PMCID: PMC5291088 DOI: 10.1523/eneuro.0171-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 01/16/2023] Open
Abstract
The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons.
Collapse
|
29
|
Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, Mennenga SE, Belser A, Kalliontzi K, Babb J, Su Z, Corby P, Schmidt BL. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol 2016; 30:1165-1180. [PMID: 27909164 PMCID: PMC5367551 DOI: 10.1177/0269881116675512] [Citation(s) in RCA: 910] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinically significant anxiety and depression are common in patients with cancer, and are associated with poor psychiatric and medical outcomes. Historical and recent research suggests a role for psilocybin to treat cancer-related anxiety and depression. METHODS In this double-blind, placebo-controlled, crossover trial, 29 patients with cancer-related anxiety and depression were randomly assigned and received treatment with single-dose psilocybin (0.3 mg/kg) or niacin, both in conjunction with psychotherapy. The primary outcomes were anxiety and depression assessed between groups prior to the crossover at 7 weeks. RESULTS Prior to the crossover, psilocybin produced immediate, substantial, and sustained improvements in anxiety and depression and led to decreases in cancer-related demoralization and hopelessness, improved spiritual wellbeing, and increased quality of life. At the 6.5-month follow-up, psilocybin was associated with enduring anxiolytic and anti-depressant effects (approximately 60-80% of participants continued with clinically significant reductions in depression or anxiety), sustained benefits in existential distress and quality of life, as well as improved attitudes towards death. The psilocybin-induced mystical experience mediated the therapeutic effect of psilocybin on anxiety and depression. CONCLUSIONS In conjunction with psychotherapy, single moderate-dose psilocybin produced rapid, robust and enduring anxiolytic and anti-depressant effects in patients with cancer-related psychological distress. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00957359.
Collapse
Affiliation(s)
- Stephen Ross
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA .,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA.,Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA.,Department of Psychiatry, Bellevue Hospital Center, New York, USA.,NYU Langone Medical Center, New York, NY, USA.,New York University-Health and Hospitals Corporation (NYU-HHC) Clinical and Translational Science Institute, New York, NY, USA
| | - Anthony Bossis
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA,Department of Psychiatry, Bellevue Hospital Center, New York, USA
| | - Jeffrey Guss
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA,Department of Psychiatry, Bellevue Hospital Center, New York, USA
| | | | - Tara Malone
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Barry Cohen
- Department of Psychology, New York University, New York, NY, USA
| | - Sarah E Mennenga
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Alexander Belser
- Department of Applied Psychology, New York University Steinhardt School of Culture, Education, and Human Development, New York, NY, USA
| | - Krystallia Kalliontzi
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| | - James Babb
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Zhe Su
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Patricia Corby
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| | - Brian L Schmidt
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| |
Collapse
|
30
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|