1
|
Adamus JP, Ruszczyńska A, Wyczałkowska-Tomasik A. Molybdenum's Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review. Biomolecules 2024; 14:869. [PMID: 39062583 PMCID: PMC11275037 DOI: 10.3390/biom14070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism, generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs' inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins. Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research highlights SOX's potential as a diagnostic marker for HCC, offering promising sensitivity and specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles of molybdenum-containing enzymes in human physiology and disease pathology is essential for advancing diagnostic and therapeutic strategies for various health conditions, particularly those related to liver dysfunction. Further research into the molecular mechanisms underlying these enzymes' functions could lead to novel treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Jakub Piotr Adamus
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | | |
Collapse
|
2
|
Hou W, Watson C, Cecconie T, Bolaki MN, Brady JJ, Lu Q, Gatto GJ, Day TA. Biochemical and functional characterization of the p.A165T missense variant of mitochondrial amidoxime-reducing component 1. J Biol Chem 2024; 300:107353. [PMID: 38723751 PMCID: PMC11190489 DOI: 10.1016/j.jbc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.
Collapse
Affiliation(s)
- Wangfang Hou
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christian Watson
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ted Cecconie
- MEDDesign-NCE-MD SPMB US, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | - Quinn Lu
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Gregory J Gatto
- Respiratory and Immunology Biology Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Smagris E, Shihanian LM, Mintah IJ, Bigdelou P, Livson Y, Brown H, Verweij N, Hunt C, Johnson RO, Greer TJ, Hartford SA, Hindy G, Sun L, Nielsen JB, Halasz G, Lotta LA, Murphy AJ, Sleeman MW, Gusarova V. Divergent role of Mitochondrial Amidoxime Reducing Component 1 (MARC1) in human and mouse. PLoS Genet 2024; 20:e1011179. [PMID: 38437227 PMCID: PMC10939284 DOI: 10.1371/journal.pgen.1011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Recent human genome-wide association studies have identified common missense variants in MARC1, p.Ala165Thr and p.Met187Lys, associated with lower hepatic fat, reduction in liver enzymes and protection from most causes of cirrhosis. Using an exome-wide association study we recapitulated earlier MARC1 p.Ala165Thr and p.Met187Lys findings in 540,000 individuals from five ancestry groups. We also discovered novel rare putative loss of function variants in MARC1 with a phenotype similar to MARC1 p.Ala165Thr/p.Met187Lys variants. In vitro studies of recombinant human MARC1 protein revealed Ala165Thr substitution causes protein instability and aberrant localization in hepatic cells, suggesting MARC1 inhibition or deletion may lead to hepatoprotection. Following this hypothesis, we generated Marc1 knockout mice and evaluated the effect of Marc1 deletion on liver phenotype. Unexpectedly, our study found that whole-body Marc1 deficiency in mouse is not protective against hepatic triglyceride accumulation, liver inflammation or fibrosis. In attempts to explain the lack of the observed phenotype, we discovered that Marc1 plays only a minor role in mouse liver while its paralogue Marc2 is the main Marc family enzyme in mice. Our findings highlight the major difference in MARC1 physiological function between human and mouse.
Collapse
Affiliation(s)
- Eriks Smagris
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Lisa M. Shihanian
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Ivory J. Mintah
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Parnian Bigdelou
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Yuliya Livson
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Heather Brown
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Niek Verweij
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Charleen Hunt
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - Tyler J. Greer
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | | | - George Hindy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luanluan Sun
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Jonas B. Nielsen
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Luca A. Lotta
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Mark W. Sleeman
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| | - Viktoria Gusarova
- Regeneron Pharmaceuticals, Tarrytown, New York, Unites States of America
| |
Collapse
|
4
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
5
|
Clement B, Struwe MA. The History of mARC. Molecules 2023; 28:4713. [PMID: 37375270 DOI: 10.3390/molecules28124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.
Collapse
Affiliation(s)
- Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Ahire D, Basit A, Christopher LJ, Iyer R, Leeder JS, Prasad B. Interindividual Variability and Differential Tissue Abundance of Mitochondrial Amidoxime Reducing Component Enzymes in Humans. Drug Metab Dispos 2022; 50:191-196. [PMID: 34949674 PMCID: PMC8969132 DOI: 10.1124/dmd.121.000805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial amidoxime-reducing component (mARC) enzymes are molybdenum-containing proteins that metabolize a number of endobiotics and xenobiotics. The interindividual variability and differential tissue abundance of mARC1 and mARC2 were quantified using targeted proteomics in three types of tissue fractions: 1) pediatric liver tissue homogenates, 2) total membrane fraction of the paired liver and kidney samples from pediatric and adult donors, and 3) pooled S9 fractions of the liver, intestine, kidney, lung, and heart. The absolute levels of mARC1 and mARC2 in the pediatric liver homogenate were 40.08 ± 4.26 and 24.58 ± 4.02 pmol/mg homogenate protein, respectively, and were independent of age and sex. In the total membrane fraction of the paired liver and kidney samples, the abundance of hepatic mARC1 and mARC2 was comparable, whereas mARC2 abundance in the kidney was approximately 9-fold higher in comparison with mARC1. The analysis of the third set of samples (i.e., S9 fraction) revealed that mARC1 abundance in the kidney, intestine, and lung was 5- to 13-fold lower than the liver S9 abundance, whereas mARC2 abundance was approximately 3- and 16-fold lower in the intestine and lung than the liver S9, respectively. In contrast, the kidney mARC2 abundance in the S9 fraction was approximately 2.5-fold higher as compared with the hepatic mARC2 abundance. The abundance of mARC enzymes in the heart was below the limit of quantification (∼0.6 pmol/mg protein). The mARC enzyme abundance data presented here can be used to develop physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates. SIGNIFICANCE STATEMENT: A precise targeted quantitative proteomics method was developed and applied to quantify newly discovered drug-metabolizing enzymes, mARC1 and mARC2, in pediatric and adult tissue samples. The data suggest that mARC enzymes are ubiquitously expressed in an isoform-specific manner in the human liver, kidney, intestine, and lung, and the enzyme abundance is not associated with age and sex. These data are important for developing physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Lisa J Christopher
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Ramaswamy Iyer
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - J Steven Leeder
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| |
Collapse
|
7
|
Flörkemeier I, Steinhauer TN, Hedemann N, Weimer JP, Rogmans C, van Mackelenbergh MT, Maass N, Clement B, Bauerschlag DO. High Antitumor Activity of the Dual Topoisomerase Inhibitor P8-D6 in Breast Cancer. Cancers (Basel) 2021; 14:2. [PMID: 35008166 PMCID: PMC8750241 DOI: 10.3390/cancers14010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer constitutes the leading cause of cancer deaths among females. However, numerous shortcomings, including low bioavailability, resistance and significant side effects, are responsible for insufficient treatment. The ultimate goal, therefore, is to improve the success rates and, thus, the range available treatment options for breast cancer. Consequently, the identification, development and evaluation of potential novel drugs such as P8-D6 with seminal antitumor capacities have a high clinical need. P8-D6 effectively induces apoptosis by acting as a dual topoisomerase I/II inhibitor. This study provides an overview of the effectiveness of P8-D6 in breast cancer with both 2D monolayers and 3D spheroids compared to standard therapeutic agents. For this drug effectiveness review, cell lines and ex vivo primary cells were used and cytotoxicity, apoptosis rates and membrane integrity were examined. This study provides evidence for a significant P8-D6-induced increase in apoptosis and cytotoxicity in breast cancer cells compared to the efficacy of standard therapeutic drugs. To sum up, P8-D6 is a fast and powerful inductor of apoptosis and might become a new and suitable therapeutic option for breast cancer in the future.
Collapse
Affiliation(s)
- Inken Flörkemeier
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany; (T.N.S.); (B.C.)
| | - Tamara N. Steinhauer
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany; (T.N.S.); (B.C.)
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| | - Jörg Paul Weimer
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| | - Christoph Rogmans
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| | - Marion T. van Mackelenbergh
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| | - Bernd Clement
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany; (T.N.S.); (B.C.)
| | - Dirk O. Bauerschlag
- Department of Gynaecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany; (I.F.); (N.H.); (J.P.W.); (C.R.); (M.T.v.M.); (N.M.)
| |
Collapse
|
8
|
Flörkemeier I, Steinhauer TN, Hedemann N, Ölander M, Artursson P, Clement B, Bauerschlag DO. Newly developed dual topoisomerase inhibitor P8-D6 is highly active in ovarian cancer. Ther Adv Med Oncol 2021; 13:17588359211059896. [PMID: 34887943 PMCID: PMC8649464 DOI: 10.1177/17588359211059896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Ovarian cancer (OvCa) constitutes a rare and highly
aggressive malignancy and is one of the most lethal of all gynaecologic
neoplasms. Due to chemotherapy resistance and treatment limitations because
of side effects, OvCa is still not sufficiently treatable. Hence, new drugs
for OvCa therapy such as P8-D6 with promising antitumour properties have a
high clinical need. The benzo[c]phenanthridine P8-D6 is an
effective inductor of apoptosis by acting as a dual topoisomerase I/II
inhibitor. Methods: In the present study, the effectiveness of P8-D6 on OvCa
was investigated in vitro. In various OvCa cell lines and
ex vivo primary cells, the apoptosis induction compared
with standard therapeutic agents was determined in two-dimensional
monolayers. Expanded by three-dimensional and co-culture, the P8-D6 treated
cells were examined for changes in cytotoxicity, apoptosis rate and membrane
integrity via scanning electron microscopy (SEM). Likewise, the effects of
P8-D6 on non-cancer human ovarian surface epithelial cells and primary human
hepatocytes were determined. Results: This study shows a significant P8-D6-induced increase in
apoptosis and cytotoxicity in OvCa cells which surpasses the efficacy of
well-established drugs like cisplatin or the topoisomerase inhibitors
etoposide and topotecan. Non-cancer cells were affected only slightly by
P8-D6. Moreover, no hepatotoxic effect in in vitro studies
was detected. Conclusion: P8-D6 is a strong and rapid inductor of apoptosis and
might be a novel treatment option for OvCa therapy.
Collapse
Affiliation(s)
- Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Tamara N Steinhauer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University Kiel, Pharmaceutical Institute, Kiel, Germany
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University Kiel, Pharmaceutical Institute, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| |
Collapse
|
9
|
Rixen S, Havemeyer A, Tyl-Bielicka A, Pysniak K, Gajewska M, Kulecka M, Ostrowski J, Mikula M, Clement B. Mitochondrial amidoxime-reducing component 2 (MARC2) has a significant role in N-reductive activity and energy metabolism. J Biol Chem 2019; 294:17593-17602. [PMID: 31554661 DOI: 10.1074/jbc.ra119.007606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (MARC) is a mammalian molybdenum-containing enzyme. All annotated mammalian genomes harbor two MARC genes, MARC1 and MARC2, which share a high degree of sequence similarity. Both molybdoenzymes reduce a variety of N-hydroxylated compounds. Besides their role in N-reductive drug metabolism, only little is known about their physiological functions. In this study, we characterized an existing KO mouse model lacking the functional MARC2 gene and fed a high-fat diet and also performed in vivo and in vitro experiments to characterize reductase activity toward known MARC substrates. MARC2 KO significantly decreased reductase activity toward several N-oxygenated substrates, and for typical MARC substrates, only small residual reductive activity was still detectable in MARC2 KO mice. The residual detected reductase activity in MARC2 KO mice could be explained by MARC1 expression that was hardly unaffected by KO, and we found no evidence of significant activity of other reductase enzymes. These results clearly indicate that MARC2 is mainly responsible for N-reductive biotransformation in mice. Striking phenotypical features of MARC2 KO mice were lower body weight, increased body temperature, decreased levels of total cholesterol, and increased glucose levels, supporting previous findings that MARC2 affects energy pathways. Of note, the MARC2 KO mice were resistant to high-fat diet-induced obesity. We propose that the MARC2 KO mouse model could be a powerful tool for predicting MARC-mediated drug metabolism and further investigating MARC's roles in energy homeostasis.
Collapse
Affiliation(s)
- Sophia Rixen
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| | - Antje Havemeyer
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| | - Anita Tyl-Bielicka
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Kazimiera Pysniak
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Marta Gajewska
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology, and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland.,Department of Gastroenterology, Hepatology, and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Institute, Cancer Center, 02-781 Warsaw, Poland
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian Albrechts University, 24118 Kiel, Germany
| |
Collapse
|
10
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
11
|
Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes. Proc Natl Acad Sci U S A 2018; 115:11958-11963. [PMID: 30397129 DOI: 10.1073/pnas.1808576115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.
Collapse
|
12
|
Ginsel C, Plitzko B, Froriep D, Stolfa DA, Jung M, Kubitza C, Scheidig AJ, Havemeyer A, Clement B. The Involvement of the Mitochondrial Amidoxime Reducing Component (mARC) in the Reductive Metabolism of Hydroxamic Acids. Drug Metab Dispos 2018; 46:1396-1402. [PMID: 30045842 DOI: 10.1124/dmd.118.082453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 02/13/2025] Open
Abstract
The mitochondrial amidoxime reducing component is a recently discovered molybdenum enzyme in mammals which, in concert with the electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase, catalyzes the reduction of N-oxygenated structures. This three component enzyme system plays a major role in N-reductive drug metabolism. Belonging to the group of N-hydroxylated structures, hydroxamic acids are also potential substrates of the mARC-system. Hydroxamic acids show a variety of pharmacological activities and are therefore often found in drug candidates. They can also exhibit toxic properties as is the case for many aryl hydroxamic acids formed during the metabolism of arylamides. Biotransformation assays using recombinant human proteins, subcellular porcine tissue fractions as well as human cell culture were performed. Here the mARC-dependent reduction of the model compound benzhydroxamic acid is reported in addition to the reduction of three drugs. In comparison with other known substrates of the molybdenum depending enzyme system (e.g., amidoxime prodrugs) the conversion rates measured here are slower, thereby reflecting the mediocre metabolic stability and oral bioavailability of distinct hydroxamic acids. Moreover, the toxic N-hydroxylated metabolite of the analgesic phenacetin, N-hydroxyphenacetin, is not reduced by the mARC-system under the chosen conditions. This confirms the high toxicity of this component, as it needs to be detoxified by other pathways. This work highlights the need to monitor the N-reductive metabolism of new drug candidates by the mARC-system when evaluating the metabolic stability of hydroxamic acid-containing structures or the potential risks of toxic metabolites.
Collapse
Affiliation(s)
- Carsten Ginsel
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Birte Plitzko
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Danilo Froriep
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Diana A Stolfa
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Manfred Jung
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Christian Kubitza
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Axel J Scheidig
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Antje Havemeyer
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| | - Bernd Clement
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freiburg, Freiburg, Germany (D.A.S., M.J.)
| |
Collapse
|
13
|
Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, Zhou W, Oh J, Otto M, Fenical W, Gallo RL. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. SCIENCE ADVANCES 2018; 4:eaao4502. [PMID: 29507878 PMCID: PMC5834004 DOI: 10.1126/sciadv.aao4502] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/24/2018] [Indexed: 05/04/2023]
Abstract
We report the discovery that strains of Staphylococcus epidermidis produce 6-N-hydroxyaminopurine (6-HAP), a molecule that inhibits DNA polymerase activity. In culture, 6-HAP selectively inhibited proliferation of tumor lines but did not inhibit primary keratinocytes. Resistance to 6-HAP was associated with the expression of mitochondrial amidoxime reducing components, enzymes that were not observed in cells sensitive to this compound. Intravenous injection of 6-HAP in mice suppressed the growth of B16F10 melanoma without evidence of systemic toxicity. Colonization of mice with an S. epidermidis strain producing 6-HAP reduced the incidence of ultraviolet-induced tumors compared to mice colonized by a control strain that did not produce 6-HAP. S. epidermidis strains producing 6-HAP were found in the metagenome from multiple healthy human subjects, suggesting that the microbiome of some individuals may confer protection against skin cancer. These findings show a new role for skin commensal bacteria in host defense.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany H. Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna M. Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lynnie L. Trzoss
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sang-Jip Nam
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karina T. Shirakawa
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Fenical
- Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Llamas A, Chamizo-Ampudia A, Tejada-Jimenez M, Galvan A, Fernandez E. The molybdenum cofactor enzyme mARC: Moonlighting or promiscuous enzyme? Biofactors 2017; 43:486-494. [PMID: 28497908 DOI: 10.1002/biof.1362] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Molybdenum (Mo) is present in the active center of eukaryotic enzymes as a tricyclic pyranopterin chelate compound forming the Mo Cofactor (Moco). Four Moco containing enzymes are known in eukaryotes, nitrate reductase (NR), sulfite oxidase (SO), xanthine oxidoreductase (XOR), and aldehyde oxidase (AO). A fifth Moco enzyme has been recently identified. Because of the ability of this enzyme to convert by reduction several amidoximes prodrugs into their active amino forms, it was named mARC (mitochondrial Amidoxime Reducing Component). This enzyme is also able to catalyze the reduction of a broad range of N-hydroxylated compounds (NHC) as the base analogue 6-hydroxylaminopurine (HAP), as well as nitrite to nitric oxide (NO). All the mARC proteins need reducing power that is supplied by other proteins. The human and plants mARC proteins require a Cytochrome b5 (Cytb5) and a Cytochrome b5 reductase (Cytb5-R) to form an electron transfer chain from NADH to the NHC. Recently, plant mARC proteins were shown to be implicated in the reduction of nitrite to NO, and it was proposed that the electrons required for the reaction were supplied by NR instead of Cytochrome b5 components. This newly characterized mARC activity was termed NO Forming Nitrite Reductase (NOFNiR). Moonlighting proteins form a special class of multifunctional enzymes that can perform more than one function; if the extra function is not physiologically relevant, they are called promiscuous enzymes. In this review, we summarize the current knowledge on the mARC protein, and we propose that mARC is a new moonlighting enzyme. © 2017 BioFactors, 43(4):486-494, 2017.
Collapse
Affiliation(s)
- Angel Llamas
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Alejandro Chamizo-Ampudia
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Manuel Tejada-Jimenez
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Aurora Galvan
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emilio Fernandez
- Dpto. de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| |
Collapse
|
15
|
Plitzko B, Havemeyer A, Bork B, Bittner F, Mendel R, Clement B. Defining the Role of the NADH-Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System. Drug Metab Dispos 2016; 44:1617-21. [PMID: 27469001 DOI: 10.1124/dmd.116.071845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.
Collapse
Affiliation(s)
- Birte Plitzko
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Antje Havemeyer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Bettina Bork
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Florian Bittner
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Ralf Mendel
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts University of Kiel, Kiel, Germany (B.P., A.H., B.C.); and Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany (B.B., F.B., R.M.)
| |
Collapse
|
16
|
Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation. Infect Immun 2016; 84:2791-801. [PMID: 27430273 DOI: 10.1128/iai.00356-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells.
Collapse
|
17
|
Neve EPA, Köfeler H, Hendriks DFG, Nordling Å, Gogvadze V, Mkrtchian S, Näslund E, Ingelman-Sundberg M. Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran. PLoS One 2015; 10:e0138487. [PMID: 26378779 PMCID: PMC4574727 DOI: 10.1371/journal.pone.0138487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/30/2015] [Indexed: 12/17/2022] Open
Abstract
Recently two novel enzymes were identified in the outer mitochondrial membrane, mARC1 and mARC2. These molybdenum containing enzymes can reduce a variety of N-hydroxylated compounds, such as N-hydroxy-guanidines and sulfohydroxamic acids, as well as convert nitrite into nitric oxide (NO). However, their endogenous functions remain unknown. Here we demonstrate a specific developmental pattern of expression of these enzymes. mARC1, but not mARC2, was found to be expressed in fetal human liver, whereas both, in particular mARC2, are abundant in adult liver and also expressed in omental and subcutaneous fat. Caloric diet restriction of obese patients caused a decreased expression of mARC2 in liver, similar to that seen in the livers of starved rats. Knock down of mARC2 expression by siRNA in murine adipocytes had statistically significant effect on the level of diglycerides and on the fatty acid composition of some triglycerides, concomitantly a clear trend toward the reduced formation of most of triglyceride and phospholipid species was observed. The involvement of mARC2 in the metabolism of the hepatotoxic drug ximelagatran was evaluated in hepatocytes and adipocytes. Ximelagatran was shown to cause oxidative stress and knock down of mARC2 in adipocytes prevented ximelagatran induced inhibition of mitochondrial respiration. In conclusion, our data indicate that mARC1 and mARC2 have different developmental expression profiles, and that mARC2 is involved in lipogenesis, is regulated by nutritional status and responsible for activation of ximelagatran into a mitotoxic metabolite(s).
Collapse
Affiliation(s)
- Etienne P. A. Neve
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Harald Köfeler
- Medical University Graz, Center for Medical Research (ZMF), Graz, Austria
| | - Delilah F. G. Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Section of Toxicology, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|