1
|
Yang C, Sun ZP, Jiang J, Cai XL, Wang Y, Wang H, Che C, Tu E, Pan AH, Zhang Y, Wang XP, Cui MZ, Xu XM, Yan XX, Zhang QL. Increased expression of the proapoptotic presenilin associated protein is involved in neuronal tangle formation in human brain. Sci Rep 2024; 14:25274. [PMID: 39455681 PMCID: PMC11512019 DOI: 10.1038/s41598-024-77026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Presenilin-associated protein (PSAP) is a mitochondrial proapoptotic protein as established in cell biology studies. It remains unknown whether it involves in neurodegenerative diseases. Here, we explored PASP expression in adult and aged human brains and its alteration relative to Alzheimer-disease (AD)-type neuropathology. In pathology-free brains, light PASP immunoreactivity (IR) occurred among largely principal neurons in the cerebrum and subcortical structures. In the brains with AD pathology, enhanced PSAP IR occurred in neuronal and neuritic profiles with a tangle-like appearance, with PSAP and pTau protein levels elevated in neocortical lysates relative to control. Neuronal/neuritic profiles with enhanced PSAP IR partially colocalized with pTau, but invariably with Amylo-Glo labelled tangles. The neuronal somata with enhanced PASP IR also showed diminished IR for casein kinase 1 delta (Ck1δ), a marker of granulovacuolar degeneration; and diminished IR for sortilin, which is normally expressed in membrane and intracellular protein sorting/trafficking organelles. In old 3xTg-AD mice with β-amyloid and pTau pathologies developed in the brain, PSAP IR in the cerebral sections exhibited no difference relative to wildtype mice. These findings indicate that PSAP upregulation is involved in the course of tangle formation especially in the human brain during aging and in AD pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhong-Ping Sun
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Yan Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd, Changchun High-Tech Development Zone, Changchun, Jilin Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Ai-Hua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Mei-Zhen Cui
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xue-Min Xu
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
González C, Martínez‐Sánchez L, Clemente P, Toivonen JM, Arredondo JJ, Fernández‐Moreno MÁ, Carrodeguas JA. Dysfunction of Drosophila mitochondrial carrier homolog (Mtch) alters apoptosis and disturbs development. FEBS Open Bio 2024; 14:276-289. [PMID: 38013241 PMCID: PMC10839352 DOI: 10.1002/2211-5463.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
Collapse
Affiliation(s)
- Cristina González
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Lidia Martínez‐Sánchez
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Paula Clemente
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Janne Markus Toivonen
- LAGENBIO, Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2)Universidad de ZaragozaSpain
- IIS AragónZaragozaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan José Arredondo
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Miguel Ángel Fernández‐Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)Facultad de Medicina, UAMMadridSpain
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas Sols‐MorrealeThe Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Alberto Carrodeguas
- IIS AragónZaragozaSpain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSpain
- Department of Biochemistry and Molecular and Cellular Biology, School of SciencesUniversity of ZaragozaSpain
| |
Collapse
|
3
|
Wang X, Ji Y, Qi J, Zhou S, Wan S, Fan C, Gu Z, An P, Luo Y, Luo J. Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells. Cell Death Dis 2023; 14:508. [PMID: 37550282 PMCID: PMC10406804 DOI: 10.1038/s41419-023-06033-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Cervical cancer is one of the leading causes of cancer death in women. Mitochondrial-mediated ferroptosis (MMF) is a recently discovered form of cancer cell death. However, the role and the underlying mechanism of MMF in cervical cancer remain elusive. Here, using an unbiased screening for mitochondrial transmembrane candidates, we identified mitochondrial carrier 1 (MTCH1) as a central mediator of MMF in cervical cancers. MTCH1-deficiency disrupted mitochondrial oxidative phosphorylation while elevated mitochondrial reactive oxygen species (ROS) by decreasing NAD+ levels. This mitochondrial autonomous event initiated a mitochondria-to-nucleus retrograde signaling involving reduced FoxO1 nuclear translocation and subsequently downregulation of the transcription and activity of a key anti-ferroptosis enzyme glutathione peroxidase 4 (GPX4), thereby elevating ROS and ultimately triggering ferroptosis. Strikingly, targeting MTCH1 in combination with Sorafenib effectively and synergistically inhibited the growth of cervical cancer in a nude mouse xenograft model by actively inducing ferroptosis. In conclusion, these findings enriched our understanding of the mechanisms of MMF in which MTCH1 governed ferroptosis though retrograde signaling to FoxO1-GPX4 axis, and provided a potential therapeutic target for treating cervical cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Yuting Ji
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, 511400, Guangzhou, China
- Institute of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jingyi Qi
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Sitong Wan
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Chang Fan
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China
| | - Zhenglong Gu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, 511400, Guangzhou, China
- Institute of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.
| | - Yongting Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
Qian X, Chen K, Chen L, Song H, Zhang Z. Presenilin is involved in larval-pupal metamorphosis development of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21855. [PMID: 34811799 DOI: 10.1002/arch.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Disruption of the presenilin (ps) genes are the major genetic cause of familial Alzheimer's disease. The silkworm, Bombyx mori (B. mori), is an important model insect. The ps homologue gene in B. mori was identified and characterized. However, the role of ps in B. mori was poorly understood. Here, we found that Bmps was ubiquitously expressed in all the tested tissues during metamorphosis. In the current study, loss-of-function analysis of Bmps was performed by the binary transgenic CRISPR/cas9 system. Compared with the wild type, the developmental time of ∆Bmps animals were significantly delayed. In addition, ∆Bmps showed abnormal appendage including antenna, leg, wing and eye during pupal and adult stages. RNA-seq analysis indicated that apoptosis and proliferation related pathways were affected in ∆Bmps. Moreover, the Hippo pathway was affected by Bmps depletion in brain and wing disc. Our results suggest that PS is essential for maintaining the dynamic balance of apoptosis and proliferation during metamorphosis.
Collapse
Affiliation(s)
- Xiaoran Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Lijuan Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongsheng Song
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Hu J, Bibli SI, Wittig J, Zukunft S, Lin J, Hammes HP, Popp R, Fleming I. Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. J Clin Invest 2020; 129:5204-5218. [PMID: 31479425 DOI: 10.1172/jci123835] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Polyunsaturated fatty acids such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability, we investigated the role of sEH in a mouse model of ROP. In WT mice, hyperoxia elicited tyrosine nitration and inhibition of sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP). Correspondingly, in a murine model of ROP, sEH-/- mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than did their WT littermates. Astrocytes were the cells most affected by sEH deletion, and hyperoxia increased astrocyte apoptosis. In rescue experiments, 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 and presenilin-1-associated protein to attenuate poly ADP-ribose polymerase activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss, but also reduced pathological vascular tuft formation in sEH-/- mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement for preventing retinopathy in preterm infants.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jihong Lin
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Rojas-Charry L, Calero-Martinez S, Morganti C, Morciano G, Park K, Hagel C, Marciniak SJ, Glatzel M, Pinton P, Sepulveda-Falla D. Susceptibility to cellular stress in PS1 mutant N2a cells is associated with mitochondrial defects and altered calcium homeostasis. Sci Rep 2020; 10:6455. [PMID: 32296078 PMCID: PMC7160112 DOI: 10.1038/s41598-020-63254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Presenilin 1 (PS1) mutations are the most common cause of familial Alzheimer's disease (FAD). PS1 also plays a role in cellular processes such as calcium homeostasis and autophagy. We hypothesized that mutant presenilins increase cellular vulnerability to stress. We stably expressed human PS1, mutant PS1E280A and mutant PS1Δ9 in mouse neuroblastoma N2a cells. We examined early signs of stress in different conditions: endoplasmic reticulum (ER) stress, calcium overload, oxidative stress, and Aβ 1-42 oligomers toxicity. Additionally, we induced autophagy via serum starvation. PS1 mutations did not have an effect in ER stress but PS1E280A mutation affected autophagy. PS1 overexpression influenced calcium homeostasis and generated mitochondrial calcium overload modifying mitochondrial function. However, the opening of the mitochondrial permeability transition pore (MPTP) was affected in PS1 mutants, being accelerated in PS1E280A and inhibited in PS1Δ9 cells. Altered autophagy in PS1E280A cells was neither modified by inhibition of γ-secretase, nor by ER calcium retention. MPTP opening was directly regulated by γ-secretase inhibitors independent on organelle calcium modulation, suggesting a novel direct role for PS1 and γ-secretase in mitochondrial stress. We identified intrinsic cellular vulnerability to stress in PS1 mutants associated simultaneously with both, autophagic and mitochondrial function, independent of Aβ pathology.
Collapse
Affiliation(s)
- Liliana Rojas-Charry
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Calero-Martinez
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Kyungeun Park
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
9
|
Naranjo R, González P, Lopez-Hurtado A, Dopazo XM, Mellström B, Naranjo JR. Inhibition of the Neuronal Calcium Sensor DREAM Modulates Presenilin-2 Endoproteolysis. Front Mol Neurosci 2018; 11:449. [PMID: 30559648 PMCID: PMC6287014 DOI: 10.3389/fnmol.2018.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 11/14/2022] Open
Abstract
Deregulated intracellular Ca2+ and protein homeostasis underlie synaptic dysfunction and are common features in neurodegenerative diseases. DREAM, also known as calsenilin or KChIP-3, is a multifunctional Ca2+ binding protein of the neuronal calcium sensor superfamily with specific functions through protein-DNA and protein-protein interactions. Small-molecules able to bind DREAM, like the anti-diabetic drug repaglinide, disrupt some of the interactions with other proteins and modulate DREAM activity on Kv4 channels or on the processing of activating transcription factor 6 (ATF6). Here, we show the interaction of endogenous DREAM and presenilin-2 (PS2) in mouse brain and, using DREAM deficient mice or transgenic mice overexpressing a dominant active DREAM (daDREAM) mutant in the brain, we provide genetic evidence of the role of DREAM in the endoproteolysis of endogenous PS2. We show that repaglinide disrupts the interaction between DREAM and the C-terminal PS2 fragment (Ct-PS2) by coimmunoprecipitation assays. Exposure to sub-micromolar concentrations of repaglinide reduces the levels of Ct-PS2 fragment in N2a neuroblastoma cells. These results suggest that the interaction between DREAM and PS2 may represent a new target for modulation of PS2 processing, which could have therapeutic potential in Alzheimer’s disease (AD) treatment.
Collapse
Affiliation(s)
- Rocío Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Alejandro Lopez-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Xosé M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - José R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| |
Collapse
|
10
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Wojsiat J, Laskowska-Kaszub K, Alquézar C, Białopiotrowicz E, Esteras N, Zdioruk M, Martin-Requero A, Wojda U. Familial Alzheimer's Disease Lymphocytes Respond Differently Than Sporadic Cells to Oxidative Stress: Upregulated p53-p21 Signaling Linked with Presenilin 1 Mutants. Mol Neurobiol 2016; 54:5683-5698. [PMID: 27644130 PMCID: PMC5533859 DOI: 10.1007/s12035-016-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.
Collapse
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Emilia Białopiotrowicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Noemi Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Nelo-Bazán MA, Latorre P, Bolado-Carrancio A, Pérez-Campo FM, Echenique-Robba P, Rodríguez-Rey JC, Carrodeguas JA. Early growth response 1 (EGR-1) is a transcriptional regulator of mitochondrial carrier homolog 1 (MTCH 1)/presenilin 1-associated protein (PSAP). Gene 2016; 578:52-62. [PMID: 26692143 DOI: 10.1016/j.gene.2015.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023]
Abstract
Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate.
Collapse
Affiliation(s)
- María Alejandra Nelo-Bazán
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain.
| | - Pedro Latorre
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Animal Production and Food Science and Technology, University of Zaragoza, Spain.
| | | | - Flor M Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL University of Cantabria, 39008 Santander, Cantabria, Spain.
| | - Pablo Echenique-Robba
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; Zaragoza Scientific Center for Advanced Modeling (ZCAM), Universidad de Zaragoza, Spain; Departamento de Física Teórica, Universidad de Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| | | | - José Alberto Carrodeguas
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| |
Collapse
|
13
|
Hu C, Zeng L, Li T, Meyer MA, Cui MZ, Xu X. Nicastrin is required for amyloid precursor protein (APP) but not Notch processing, while anterior pharynx-defective 1 is dispensable for processing of both APP and Notch. J Neurochem 2016; 136:1246-1258. [PMID: 26717550 DOI: 10.1111/jnc.13518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
The γ-secretase complex is composed of at least four components: presenilin 1 or presenilin-2, nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2. In this study, using knockout cell lines, our data demonstrated that knockout of NCT, as well as knockout of presenilin enhancer 2, completely blocked γ-secretase-catalyzed processing of C-terminal fragment (CTF)α and CTFβ, the C-terminal fragments of β-amyloid precursor protein (APP) produced by α-secretase and β-secretase cleavages, respectively. Interestingly, in Aph-1-knockout cells, CTFα and CTFβ were still processed by γ-secretase, indicating Aph-1 is dispensable for APP processing. Furthermore, our results indicate that Aph-1 as well as NCT is not absolutely required for Notch processing, suggesting that NCT is differentially required for APP and Notch processing. In addition, our data revealed that components of the γ-secretase complex are also important for proteasome- and lysosome-dependent degradation of APP and that endogenous APP is mostly degraded by lysosome while exogenous APP is mainly degraded by proteasome. There are unanswered questions regarding the roles of each component of the γ-secretase complex in amyloid precursor protein (APP) and Notch processing. The most relevant, novel finding of this study is that nicastrin (NCT) is required for APP but not Notch processing, while Aph-1 is not essential for processing of both APP and Notch, suggesting NCT as a therapeutic target to restrict Aβ formation without impairing Notch signaling.
Collapse
Affiliation(s)
- Chen Hu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Linlin Zeng
- School of Life Sciences, Jilin University, Changchun, China
| | - Ting Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | | | - Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Xuemin Xu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|