1
|
Karaaslan H, Walker AR, Gil-Bona A, Depalle B, Bidlack FB. Posteruptive Loss of Proteins in Porcine Enamel. J Dent Res 2025; 104:290-298. [PMID: 39725879 DOI: 10.1177/00220345241299382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Tooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in the faster-developing pigs. Pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption. Proteins that bind to enamel crystals and prevent crystal growth and enamel hardening (e.g., albumin) have been suggested as a cause for hypomineralized human enamel. It is unclear whether fast posteruptive enamel hardening in pigs occurs despite the high protein content or requires facilitated protein loss for crystal growth. This study asked how the protein content in porcine enamel changes after eruption in relation to saliva. Given previous evidence of high albumin content in erupted porcine enamel, we hypothesized that enamel- and saliva-derived enzymes facilitate protein removal from porcine enamel after eruption. To test this, we analyzed the enamel of fourth primary premolars and the saliva proteome at 3 critical time points: at the time of tooth eruption and 2 and 6 weeks after eruption. We found a decrease in the number of proteins and their abundancy in enamel with posteruptive time, including a decrease in serum albumin within enamel. The rapid decrease within 2 weeks posteruption is consistent with the previously reported rapid increase in mineral density of porcine enamel after eruption. In addition to enamel proteases KLK-4 and MMP-20, we identified other serine-, cysteine-, aspartic-, and metalloproteases in enamel that are found in the porcine saliva. Our findings suggest that the fast posteruptive enamel maturation in the porcine model coincides with saliva exchange and influx of saliva enzymes into porous enamel.
Collapse
Affiliation(s)
- H Karaaslan
- The ADA Forsyth Institute Inc., Cambridge, MA, USA
| | - A R Walker
- The ADA Forsyth Institute Inc., Cambridge, MA, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - A Gil-Bona
- The ADA Forsyth Institute Inc., Cambridge, MA, USA
| | - B Depalle
- The ADA Forsyth Institute Inc., Cambridge, MA, USA
| | - F B Bidlack
- The ADA Forsyth Institute Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Karaaslan H, Walker AR, Gil-Bona A, Depalle B, Bidlack FB. Posteruptive Loss of Enamel Proteins Concurs with Gain in Enamel Hardness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595034. [PMID: 38979313 PMCID: PMC11230172 DOI: 10.1101/2024.05.23.595034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in in the faster developing pig. As a result, pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption.Proteins, such as albumin, that bind to enamel crystals and prevent crystal growth and enamel hardening have been suggested as cause for hypomineralized human enamel that does not naturally harden after eruption. However, albumin is abundant in pig enamel. It is unclear whether fast posteruptive enamel hardening in pigs occurs despite the high protein content or requires a facilitated protein loss to allow for crystal growth. This study asked how the protein content in porcine enamel changes after eruption in relation to saliva. Based on previous data demonstrating the high albumin content in erupted porcine enamel, we hypothesize that following pre-eruptive maturation, enamel and saliva derived enzymes facilitate protein removal from porcine enamel after eruption. We analyzed enamel and the saliva proteome at three critical timepoints: at the time of tooth eruption, 2 weeks after eruption, and enamel 6 weeks after eruption. We used only fourth deciduous premolars and saliva samples from animals sacrificed at the respective time points to determine the organic content in tooth enamel, saliva, and saliva proteins within enamel. We found a decrease in the number of proteins and their abundancy in enamel with posteruptive time, including a decrease in serum albumin within enamel. The rapid decrease in the first two weeks is in line with previously reported rapid increase in mineral density of porcine enamel after eruption. In addition to the enamel proteases KLK-4 and MMP-20, we identified serine-, cysteine-, aspartic-, and metalloproteases. Some of these were only identified in enamel, while almost half of the enzymes are in common with saliva at all timepoints. Our findings suggest that the fast posteruptive enamel maturation in the porcine model coincides with saliva exchange and influx of saliva enzymes into porous enamel.
Collapse
|
3
|
Wilmers J, Bargmann S. Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater 2020; 107:1-24. [PMID: 32087326 DOI: 10.1016/j.actbio.2020.02.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The most important demand of today's high-performance materials is to unite high strength with extreme fracture toughness. The combination of withstanding large forces (strength) and resistance to fracture (toughness), especially preventing catastrophic material failure by cracking, is of utmost importance when it comes to structural applications of these materials. However, these two properties are commonly found to be mutually exclusive: strong materials are brittle and tough materials are soft. In dental enamel, nature has combined both properties with outstanding success - despite a limited number of available constituents. Made up of brittle mineral crystals arranged in a sophisticated hierarchical microstructure, enamel exhibits high stiffness and excellent toughness. Different species exhibit a variety of structural adaptations on varying scales in their dental enamel which optimise not only fracture toughness, but also hardness and abrasion behaviour. Nature's materials still outperform their synthetic counterparts due to these complex structure-property relationships that are not yet fully understood. By analysing structure variations and the underlying mechanical mechanisms systematically, design principles which are the key for the development of advanced synthetic materials uniting high strength and toughness can be formulated. STATEMENT OF SIGNIFICANCE: Dental enamel is a hard protective tissue that combines high strength with an exceptional resistance to catastrophic fracture, properties that in classical materials are commonly found to be mutually exclusive. The biological material is able to outperform its synthetic counterparts due to a sophisticated hierarchical microstructure. Between different species, microstructural adaptations can vary significantly. In this contribution, the different types of dental enamel present in different species are reviewed and connections between microstructure and (mechanical) properties are drawn. By consolidating available information for various species and reviewing it from a materials science point of view, design principles for the development of advanced biomimetic materials uniting high strength and toughness can be formulated.
Collapse
|
4
|
Mechanics of amelogenin TRAP protein in the proximity of hydroxyapatite mineral is altered by interfacial water. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Stakkestad Ø, Heyward C, Lyngstadaas SP, Medin T, Vondrasek J, Lian AM, Pezeshki G, Reseland JE. An ameloblastin C-terminus variant is present in human adipose tissue. Heliyon 2018; 4:e01075. [PMID: 30603708 PMCID: PMC6307104 DOI: 10.1016/j.heliyon.2018.e01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Catherine Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Tirill Medin
- Department of Nursing and Health Promotion, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Norway
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aina-Mari Lian
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Gita Pezeshki
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| |
Collapse
|
6
|
Stakkestad Ø, Lyngstadaas SP, Thiede B, Vondrasek J, Skålhegg BS, Reseland JE. Phosphorylation Modulates Ameloblastin Self-assembly and Ca 2+ Binding. Front Physiol 2017; 8:531. [PMID: 28798693 PMCID: PMC5529409 DOI: 10.3389/fphys.2017.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Ameloblastin (AMBN), an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2) and protein kinase A (PKA) and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| | - Ståle P Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| | - Bernd Thiede
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOslo, Norway
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry, Czech Academy of SciencesPrague, Czechia
| | - Bjørn S Skålhegg
- Division of Molecular Nutrition, Department of Nutrition, University of OsloOslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| |
Collapse
|
7
|
Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc Natl Acad Sci U S A 2017; 114:E1641-E1650. [PMID: 28196895 DOI: 10.1073/pnas.1615334114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.
Collapse
|
8
|
Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep 2016; 6:27873. [PMID: 27302526 PMCID: PMC4908598 DOI: 10.1038/srep27873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations.
Collapse
|