1
|
Özdemir M, Oeljeklaus S, Schendzielorz A, Morgenstern M, Valpadashi A, Yousefi R, Warscheid B, Dennerlein S. Definition of the human mitochondrial TOM interactome reveals TRABD as a new interacting protein. J Cell Sci 2025; 138:jcs263576. [PMID: 40105103 DOI: 10.1242/jcs.263576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
The mitochondrial proteome arises from dual genetic origins. Nuclear-encoded proteins need to be transported across or inserted into two distinguished membranes, and the translocase of the outer mitochondrial membrane (TOM) complex represents the main translocase in the outer mitochondrial membrane. Its composition and regulation have been extensively investigated within yeast cells. However, we have little knowledge of the TOM complex composition within human cells. Here, we have defined the TOM interactome in a comprehensive manner using biochemical approaches to isolate the TOM complex in combination with quantitative mass spectrometry analyses. With these studies, we defined the pleiotropic nature of the human TOM complex, including new interactors, such as TRABD. Our studies provide a framework to understand the various biogenesis pathways that merge at the TOM complex within human cells.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
| | - Alexander Schendzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Marcel Morgenstern
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Roya Yousefi
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, D-97074 Wuerzburg, Germany
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, D-37073 Goettingen, Germany
| |
Collapse
|
2
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Campo ML. Analysis of mitochondrial translocases TOM and TIM by the patch-clamping technique. Methods Enzymol 2024; 707:329-366. [PMID: 39488381 DOI: 10.1016/bs.mie.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial protein import and sorting relies on sophisticated molecular machineries or translocases, of which channels are integral. Channels are built upon membrane proteins whose functions are driven by conformational changes. This implies that structural and functional information need to be integrated to gain a deep understanding of their dynamic behavior. Patch-clamp approaches are well suited for this purpose. This chapter provides a detailed description and practical guidance for applying the patch-clamp methodology to the electrophysiological characterization of mitochondrial protein import. Implementing the technique to intact mitochondria, mitoplasts, and reconstituted proteoliposomes, combined with genetically modified yeast strains, expands the scope of these studies. Focused on the TOM, TIM23, and TIM22 translocases, an analysis of the patch-clamp contribution to the field is outlined.
Collapse
Affiliation(s)
- María Luisa Campo
- Department of Biochemistry and Molecular Biology, and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
4
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
5
|
Baek S, Jang J, Jung HJ, Lee H, Choe Y. Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer's Disease Mouse Brain. Mol Neurobiol 2024; 61:3976-3999. [PMID: 38049707 PMCID: PMC11236860 DOI: 10.1007/s12035-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Optical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer's disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Soonbong Baek
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jaemyung Jang
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busanjin-gu, Busan, 47340, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.
| |
Collapse
|
6
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Spatiotemporal stop-and-go dynamics of the mitochondrial TOM core complex correlates with channel activity. Commun Biol 2022; 5:471. [PMID: 35581327 PMCID: PMC9114391 DOI: 10.1038/s42003-022-03419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. While freely diffusing TOM-CC molecules are predominantly in a high permeability state, non-mobile molecules are mostly in an intermediate or low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two β-barrel pores of TOM-CC. TOM-CC could thus represent a β-barrel membrane protein complex to exhibit membrane state-dependent mechanosensitive properties, mediated by its two Tom22 subunits.
Collapse
|
8
|
The Diversity of the Mitochondrial Outer Membrane Protein Import Channels: Emerging Targets for Modulation. Molecules 2021; 26:molecules26134087. [PMID: 34279427 PMCID: PMC8272145 DOI: 10.3390/molecules26134087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
Collapse
|
9
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
10
|
Queralt-Martín M, Bergdoll L, Teijido O, Munshi N, Jacobs D, Kuszak AJ, Protchenko O, Reina S, Magrì A, De Pinto V, Bezrukov SM, Abramson J, Rostovtseva TK. A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. J Gen Physiol 2021; 152:133600. [PMID: 31935282 PMCID: PMC7062508 DOI: 10.1085/jgp.201912501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023] Open
Abstract
Voltage-dependent anion channel (VDAC) is the major pathway for the transport of ions and metabolites across the mitochondrial outer membrane. Among the three known mammalian VDAC isoforms, VDAC3 is the least characterized, but unique functional roles have been proposed in cellular and animal models. Yet, a high-sequence similarity between VDAC1 and VDAC3 is indicative of a similar pore-forming structure. Here, we conclusively show that VDAC3 forms stable, highly conductive voltage-gated channels that, much like VDAC1, are weakly anion selective and facilitate metabolite exchange, but exhibit unique properties when interacting with the cytosolic proteins α-synuclein and tubulin. These two proteins are known to be potent regulators of VDAC1 and induce similar characteristic blockages (on the millisecond time scale) of VDAC3, but with 10- to 100-fold reduced on-rates and altered α-synuclein blocking times, indicative of an isoform-specific function. Through cysteine scanning mutagenesis, we found that VDAC3's cysteine residues regulate its interaction with α-synuclein, demonstrating VDAC3-unique functional properties and further highlighting a general molecular mechanism for VDAC isoform-specific regulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Oscar Teijido
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Nabill Munshi
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Daniel Jacobs
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Adam J Kuszak
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Olga Protchenko
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Simona Reina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Farouk SM, Abdellatif AM, Metwally E. Outer and inner mitochondrial membrane proteins TOMM40 and TIMM50 are intensively concentrated and localized at Purkinje and pyramidal neurons in the New Zealand white rabbit brain. Anat Rec (Hoboken) 2021; 305:209-221. [PMID: 34041863 DOI: 10.1002/ar.24689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/05/2022]
Abstract
Mitochondria are involved in a variety of developmental processes and neurodegenerative diseases. The translocase complexes of the outer and inner mitochondrial membranes (TOM and TIM) are protein complexes involved in transporting protein precursors across mitochondrial membranes. Although rabbits are important animal models for neurodegenerative diseases, the expression of TOM and TIM complexes has yet to be examined in the rabbit brain. In the present study, we quantitatively evaluated the protein expression of the translocase of outer mitochondrial membrane 40 (TOMM40) and inner mitochondrial membrane 50 (TIMM50) complexes, two of the TOM/TIM complexes, in the cerebral, cerebellar, and hippocampal cortices of the New Zealand white rabbit brain, using immunohistochemistry. Sections from brain specimens were initially stained for cytochrome c oxidase (COX), a well-known mitochondrial marker, which was found to be homogeneously expressed in the cerebrum, but localized to the Purkinje and pyramidal neurons of the cerebellum and hippocampus, respectively. TOMM40 and TIMM50 proteins consistently revealed a similar expression pattern, although at different ratios. In the cerebrum, TOMM40 and TIMM50 immunoreactions were homogeneously distributed within the cytoplasm of various neurons. Meanwhile, Purkinje cells in the cerebellum and pyramidal neurons in the hippocampus displayed higher intensities in their cytoplasm. The specific cellular localization of TOMM40 and TIMM50 proteins in various regions of the rabbit brain suggests a distinct function of each protein in these regions. Further analysis will be required to evaluate the molecular functions of these proteins.
Collapse
Affiliation(s)
- Sameh M Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Rosencrans WM, Rajendran M, Bezrukov SM, Rostovtseva TK. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium 2021; 94:102356. [PMID: 33529977 PMCID: PMC7914209 DOI: 10.1016/j.ceca.2021.102356] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.
Collapse
Affiliation(s)
- William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Megha Rajendran
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
13
|
Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol 2020; 18:156. [PMID: 33121519 PMCID: PMC7596997 DOI: 10.1186/s12915-020-00888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The uptake of newly synthesized nuclear-encoded mitochondrial proteins from the cytosol is mediated by a complex of mitochondrial outer membrane proteins comprising a central pore-forming component and associated receptor proteins. Distinct fractions of proteins initially bind to the receptor proteins and are subsequently transferred to the pore-forming component for import. The aim of this study was the identification of the decisive elements of this machinery that determine the specific selection of the proteins that should be imported. Results We identified the essential internal targeting signal of the members of the mitochondrial metabolite carrier proteins, the largest protein family of the mitochondria, and we investigated the specific recognition of this signal by the protein import machinery at the mitochondrial outer surface. We found that the outer membrane import receptors facilitated the uptake of these proteins, and we identified the corresponding binding site, marked by cysteine C141 in the receptor protein Tom70. However, in tests both in vivo and in vitro, the import receptors were neither necessary nor sufficient for specific recognition of the targeting signals. Although these signals are unrelated to the amino-terminal presequences that mediate the targeting of other mitochondrial preproteins, they were found to resemble presequences in their strict dependence on a content of positively charged residues as a prerequisite of interactions with the import pore. Conclusions The general import pore of the mitochondrial outer membrane appears to represent not only the central channel of protein translocation but also to form the decisive general selectivity filter in the uptake of the newly synthesized mitochondrial proteins.
Collapse
Affiliation(s)
- Sebastian Kreimendahl
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Schwichtenberg
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kathrin Günnewig
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lukas Brandherm
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Rovini A, Gurnev PA, Beilina A, Queralt-Martín M, Rosencrans W, Cookson MR, Bezrukov SM, Rostovtseva TK. Molecular mechanism of olesoxime-mediated neuroprotection through targeting α-synuclein interaction with mitochondrial VDAC. Cell Mol Life Sci 2020; 77:3611-3626. [PMID: 31760463 PMCID: PMC7244372 DOI: 10.1007/s00018-019-03386-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
An intrinsically disordered neuronal protein α-synuclein (αSyn) is known to cause mitochondrial dysfunction, contributing to loss of dopaminergic neurons in Parkinson's disease. Through yet poorly defined mechanisms, αSyn crosses mitochondrial outer membrane and targets respiratory complexes leading to bioenergetics defects. Here, using neuronally differentiated human cells overexpressing wild-type αSyn, we show that the major metabolite channel of the outer membrane, the voltage-dependent anion channel (VDAC), is a pathway for αSyn translocation into the mitochondria. Importantly, the neuroprotective cholesterol-like synthetic compound olesoxime inhibits this translocation. By applying complementary electrophysiological and biophysical approaches, we provide mechanistic insights into the interplay between αSyn, VDAC, and olesoxime. Our data suggest that olesoxime interacts with VDAC β-barrel at the lipid-protein interface thus hindering αSyn translocation through the VDAC pore and affecting VDAC voltage gating. We propose that targeting αSyn translocation through VDAC could represent a key mechanism for the development of new neuroprotective strategies.
Collapse
Affiliation(s)
- Amandine Rovini
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Philip A Gurnev
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA
| | - William Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA
- Colgate University, Hamilton, NY, 13346, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 29B, Room 1G09, Bethesda, MD, 20892-0924, USA.
| |
Collapse
|
15
|
Yang W, Shin HY, Cho H, Chung JY, Lee EJ, Kim JH, Kang ES. TOM40 Inhibits Ovarian Cancer Cell Growth by Modulating Mitochondrial Function Including Intracellular ATP and ROS Levels. Cancers (Basel) 2020; 12:cancers12051329. [PMID: 32456076 PMCID: PMC7281007 DOI: 10.3390/cancers12051329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
TOM40 is a channel-forming subunit of translocase, which is essential for the movement of proteins into the mitochondria. We found that TOM40 was highly expressed in epithelial ovarian cancer (EOC) cells at both the transcriptional and translational levels; its expression increased significantly during the transformation from normal ovarian epithelial cells to EOC (p < 0.001), and TOM40 expression negatively correlated with disease-free survival (Hazard ratio = 1.79, 95% Confidence inerval 1.16–2.78, p = 0.009). TOM40 knockdown decreased proliferation in several EOC cell lines and reduced tumor burden in an in vivo xenograft mouse model. TOM40 expression positively correlated with intracellular adenosine triphosphate (ATP) levels. The low ATP and high reactive oxygen species (ROS) levels increased the activity of AMP-activated protein kinase (AMPK) in TOM40 knockdown EOC cells. However, AMPK activity did not correlate with declined cell growth in TOM40 knockdown EOC cells. We found that metformin, first-line therapy for type 2 diabetes, effectively inhibited the growth of EOC cell lines in an AMPK-independent manner by inhibiting mitochondria complex I. In conclusion, TOM40 positively correlated with mitochondrial activities, and its association enhances the proliferation of ovarian cancer. Also, metformin is an effective therapeutic option in TOM40 overexpressed ovarian cancer than normal ovarian epithelium.
Collapse
Affiliation(s)
- Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Joon-Yong Chung
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (W.Y.); (H.-Y.S.); (H.C.); (E.-j.L.)
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.-H.K.); (E.-S.K.); Tel.:+82-2-2019-3430 (J.-H.K.); +82-2-3410-2703 (E.-S.K.); Fax: +82-2-3462-8209 (J.-H.K.); +82-2-3410-2719 (E.-S.K.)
| |
Collapse
|
16
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 646] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Hu Y, Zou W, Wang Z, Zhang Y, Hu Y, Qian J, Wu X, Ren Y, Zhao J. Translocase of the Outer Mitochondrial Membrane 40 Is Required for Mitochondrial Biogenesis and Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:389. [PMID: 31001303 PMCID: PMC6455079 DOI: 10.3389/fpls.2019.00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/08/2023]
Abstract
In eukaryotes, mitochondrion is an essential organelle which is surrounded by a double membrane system, including the outer membrane, intermembrane space and the inner membrane. The translocase of the outer mitochondrial membrane (TOM) complex has attracted enormous interest for its role in importing the preprotein from the cytoplasm into the mitochondrion. However, little is understood about the potential biological function of the TOM complex in Arabidopsis. The aim of the present study was to investigate how AtTOM40, a gene encoding the core subunit of the TOM complex, works in Arabidopsis. As a result, we found that lack of AtTOM40 disturbed embryo development and its pattern formation after the globular embryo stage, and finally caused albino ovules and seed abortion at the ratio of a quarter in the homozygous tom40 plants. Further investigation demonstrated that AtTOM40 is wildly expressed in different tissues, especially in cotyledons primordium during Arabidopsis embryogenesis. Moreover, we confirmed that the encoded protein AtTOM40 is localized in mitochondrion, and the observation of the ultrastructure revealed that mitochondrion biogenesis was impaired in tom40-1 embryo cells. Quantitative real-time PCR was utilized to determine the expression of genes encoding outer mitochondrial membrane proteins in the homozygous tom40-1 mutant embryos, including the genes known to be involved in import, assembly and transport of mitochondrial proteins, and the results demonstrated that most of the gene expressions were abnormal. Similarly, the expression of genes relevant to embryo development and pattern formation, such as SAM (shoot apical meristem), cotyledon, vascular primordium and hypophysis, was also affected in homozygous tom40-1 mutant embryos. Taken together, we draw the conclusion that the AtTOM40 gene is essential for the normal structure of the mitochondrion, and participates in early embryo development and pattern formation through maintaining the biogenesis of mitochondria. The findings of this study may provide new insight into the biological function of the TOM40 subunit in higher plants.
Collapse
|
18
|
Structural characterisation of a full-length mitochondrial outer membrane TOM40 preprotein translocase: implications for its interaction with presequence peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:35-43. [PMID: 30121780 DOI: 10.1007/s00249-018-1329-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
Tom40, the central component of the preprotein translocase of the mitochondrial outer membrane (TOM complex), forms the import pore that facilitates the translocation of preproteins across the outer membrane. Though the function of Tom40 has been intensively studied, the details of the interactions between presequence peptides and Tom40 remain unclear. In this study, we expressed rat Tom40 in Escherichia coli and purified it from inclusion bodies before investigating the refolded protein by fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The far-UV CD spectra of the refolded Tom40 in various concentrations of urea revealed that the refolded protein has a well-defined structure consisting mainly of β-sheet. Moreover, the specific binding of presequence peptides to Tom40, which was demonstrated by fluorescence quenching, showed that the refolded purified protein is functional and that the interaction between Tom40 and presequence peptides is mainly electrostatic in nature.
Collapse
|
19
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
20
|
Jin D, Gu B, Xiong D, Huang G, Huang X, Liu L, Xiao J. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol. Curr Microbiol 2018; 75:1068-1076. [PMID: 29666939 DOI: 10.1007/s00284-018-1488-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
2-Phenylethanol (2-PE) is a kind of advanced aromatic alcohol with rose fragrance, which is wildly used for the deployment of flavors and fragrances. Microbial transformation is the most feasible method for the production of natural 2-PE. But a bottleneck problem is the toxicity of 2-PE on the cells. The molecular mechanisms of the toxic effect of 2-PE to Saccharomyces cerevisiae are not well studied. In this study, we analyzed the transcriptomes of S. cerevisiae in the media with and without 2-PE, respectively, using Illumina RNA-Seq technology. We identified 580 differentially expressed genes between S. cerevisiae in two different treatments. GO and KEGG enrichment analyses of these genes suggested that most genes encoding mitochondrial proteins, cytoplasmic, and plasma membrane proteins were significantly up-regulated, whereas the enzymes related to amino acid metabolism were down-regulated. These results indicated that 2-PE suppressed the synthesis of plasma membrane proteins, which suppressed the transport of nutrients required for growth. The findings in this study will provide insight into the inhibitory mechanism of 2-PE to yeast and other microbes.
Collapse
Affiliation(s)
- Danfeng Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China.
| | - Bintao Gu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Dawei Xiong
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Guochang Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Xiaoping Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Lan Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Jun Xiao
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
21
|
Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 2018; 26:93-111. [PMID: 29460123 PMCID: PMC5857278 DOI: 10.1007/s10577-018-9573-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA.
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC, 27708, USA.
| | | | - Roxanne J Larsen
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA
| | - Ann M Saunders
- Zinfandel Pharmaceuticals Inc, Chapel Hill, NC, 27709, USA
| |
Collapse
|
22
|
Jo A, Hoi H, Zhou H, Gupta M, Montemagno CD. Single-molecule study of full-length NaChBac by planar lipid bilayer recording. PLoS One 2017; 12:e0188861. [PMID: 29190805 PMCID: PMC5708646 DOI: 10.1371/journal.pone.0188861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023] Open
Abstract
Planar lipid bilayer device, alternatively known as BLM, is a powerful tool to study functional properties of conducting membrane proteins such as ion channels and porins. In this work, we used BLM to study the prokaryotic voltage-gated sodium channel (Nav) NaChBac in a well-defined membrane environment. Navs are an essential component for the generation and propagation of electric signals in excitable cells. The successes in the biochemical, biophysical and crystallographic studies on prokaryotic Navs in recent years has greatly promoted the understanding of the molecular mechanism that underlies these proteins and their eukaryotic counterparts. In this work, we investigated the single-molecule conductance and ionic selectivity behavior of NaChBac. Purified NaChBac protein was first reconstituted into lipid vesicles, which is subsequently incorporated into planar lipid bilayer by fusion. At single-molecule level, we were able to observe three distinct long-lived conductance sub-states of NaChBac. Change in the membrane potential switches on the channel mainly by increasing its opening probability. In addition, we found that individual NaChBac has similar permeability for Na+, K+, and Ca2+. The single-molecule behavior of the full-length protein is essentially highly stochastic. Our results show that planar lipid bilayer device can be used to study purified ion channels at single-molecule level in an artificial environment, and such studies can reveal new protein properties that are otherwise not observable in in vivo ensemble studies.
Collapse
Affiliation(s)
- Andrew Jo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Ingenuity Lab, Edmonton, Alberta, Canada
| | - Hiofan Hoi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Ingenuity Lab, Edmonton, Alberta, Canada
- * E-mail: (HH); (CDM)
| | - Hang Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Ingenuity Lab, Edmonton, Alberta, Canada
| | - Manisha Gupta
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Carlo D. Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Ingenuity Lab, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, Edmonton, Alberta, Canada
- * E-mail: (HH); (CDM)
| |
Collapse
|
23
|
The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2973-2986. [PMID: 28768149 DOI: 10.1016/j.bbadis.2017.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023]
Abstract
A variable-length poly-T variant in intron 6 of the TOMM40 gene, rs10524523, is associated with risk and age-of-onset of sporadic (late-onset) Alzheimer's disease. In Caucasians, the three predominant alleles at this locus are Short (S), Long (L) or Very long (VL). On an APOE ε3/3 background, the S/VL and VL/VL genotypes are more protective than S/S. The '523 poly-T has regulatory properties, in that the VL poly-T results in higher expression than the S poly-T in luciferase expression systems. The aim of the current work was to identify effects on cellular bioenergetics of increased TOM40 protein expression. MitoTracker Green fluorescence and autophagic vesicle staining was the same in control and over-expressing cells, but TOM40 over-expression was associated with increased expression of TOM20, a preprotein receptor of the TOM complex, the mitochondrial chaperone HSPA9, and PDHE1a, and increased activities of the oxidative phosphorylation complexes I and IV and of the TCA member α-ketoglutaric acid dehydrogenase. Consistent with the complex I findings, respiration was more sensitive to inhibition by rotenone in control cells than in the TOM40 over-expressing cells. In the absence of inhibitors, total cellular ATP, the mitochondrial membrane potential, and respiration were elevated in the over-expressing cells. Spare respiratory capacity was greater in the TOM40 over-expressing cells than in the controls. TOM40 over-expression blocked Ab-elicited decreases in the mitochondrial membrane potential, cellular ATP levels, and cellular viability in the control cells. These data suggest elevated expression of TOM40 may be protective of mitochondrial function.
Collapse
|
24
|
Rostovtseva TK, Hoogerheide DP, Rovini A, Bezrukov SM. Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55539-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Larsen PA, Lutz MW, Hunnicutt KE, Mihovilovic M, Saunders AM, Yoder AD, Roses AD. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement 2017; 13:828-838. [PMID: 28242298 PMCID: PMC6647845 DOI: 10.1016/j.jalz.2017.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
Abstract
It is hypothesized that retrotransposons have played a fundamental role in primate evolution and that enhanced neurologic retrotransposon activity in humans may underlie the origin of higher cognitive function. As a potential consequence of this enhanced activity, it is likely that neurons are susceptible to deleterious retrotransposon pathways that can disrupt mitochondrial function. An example is observed in the TOMM40 gene, encoding a β-barrel protein critical for mitochondrial preprotein transport. Primate-specific Alu retrotransposons have repeatedly inserted into TOMM40 introns, and at least one variant associated with late-onset Alzheimer’s disease originated from an Alu insertion event. We provide evidence of enriched Alu content in mitochondrial genes and postulate that Alus can disrupt mitochondrial populations in neurons, thereby setting the stage for progressive neurologic dysfunction. This Alu neurodegeneration hypothesis is compatible with decades of research and offers a plausible mechanism for the disruption of neuronal mitochondrial homeostasis, ultimately cascading into neurodegenerative disease.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, USA.
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | | | - Mirta Mihovilovic
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Ann M Saunders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA; Duke Lemur Center, Duke University, Durham, NC, USA
| | - Allen D Roses
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Zinfandel Pharmaceuticals, Inc, Durham, NC, USA
| |
Collapse
|
26
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
27
|
Roses A, Sundseth S, Saunders A, Gottschalk W, Burns D, Lutz M. Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer's disease. Alzheimers Dement 2016; 12:687-94. [PMID: 27154058 DOI: 10.1016/j.jalz.2016.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/08/2023]
Abstract
The methodology of Genome-Wide Association Screening (GWAS) has been applied for more than a decade. Translation to clinical utility has been limited, especially in Alzheimer's Disease (AD). It has become standard practice in the analyses of more than two dozen AD GWAS studies to exclude the apolipoprotein E (APOE) region because of its extraordinary statistical support, unique thus far in complex human diseases. New genes associated with AD are proposed frequently based on SNPs associated with odds ratio (OR) < 1.2. Most of these SNPs are not located within the associated gene exons or introns but are located variable distances away. Often pathologic hypotheses for these genes are presented, with little or no experimental support. By eliminating the analyses of the APOE-TOMM40 linkage disequilibrium region, the relationship and data of several genes that are co-located in that LD region have been largely ignored. Early negative interpretations limited the interest of understanding the genetic data derived from GWAS, particularly regarding the TOMM40 gene. This commentary describes the history and problem(s) in interpretation of the genetic interrogation of the "APOE" region and provides insight into a metabolic mitochondrial basis for the etiology of AD using both APOE and TOMM40 genetics.
Collapse
Affiliation(s)
- Allen Roses
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA.
| | - Scott Sundseth
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Ann Saunders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - William Gottschalk
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Dan Burns
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Michael Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| |
Collapse
|