1
|
Moore JA, Jerome-Majewska LA. Are vagal neural crest derived tissues impacted in spliceosomopathies? Differentiation 2025; 142:100846. [PMID: 40059017 DOI: 10.1016/j.diff.2025.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
Splicing factors required for mRNA maturation have emerged as important contributors to neural crest development in the craniofacial region. Less is known of the role of these proteins in vagal neural crest cells that contribute to the outflow tract and form the enteric nervous system. In this review, we discuss the current state of our understanding of splicing and potential contribution of mis-splicing to cardiac and ENS defects.
Collapse
Affiliation(s)
- Joshua A Moore
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A J1, Canada; Department of Paediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
2
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2025; 38:e13178. [PMID: 38849973 PMCID: PMC11681847 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular ImmunologyLebanese UniversityHadathLebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Hamid‐Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
3
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
4
|
Liang J, Ul Hassan I, Yee Cheung M, Feng L, Lin YJ, Long Q, Wang C, Ding Y, Wang Z, Zhang Y, Li Y, Guo D, Guo X, Chi Bun Wong T, Kaleem Samma M, Rong Z, Qi X, Cai D, Ngai SM, Zhao H. Mechanistic study of transcription factor Sox18 during heart development. Gen Comp Endocrinol 2024; 350:114472. [PMID: 38373462 DOI: 10.1016/j.ygcen.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/β-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and β-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/β-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/β-Catenin signaling.
Collapse
Affiliation(s)
- Jianxin Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Imtiaz Ul Hassan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Man Yee Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Jyun Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chengdong Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyue Ding
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziqing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yulong Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Donghao Guo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofang Guo
- School of Life Sciences, Jinan University, Guangzhou, China
| | - Thomas Chi Bun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Muhammad Kaleem Samma
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Zixin Rong
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | - Xufeng Qi
- School of Life Sciences, Jinan University, Guangzhou, China
| | - Dongqing Cai
- School of Life Sciences, Jinan University, Guangzhou, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Wu S, Qiu C, Ni J, Guo W, Song J, Yang X, Sun Y, Chen Y, Zhu Y, Chang X, Sun P, Wang C, Li K, Han X. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat Commun 2024; 15:1646. [PMID: 38388532 PMCID: PMC10883921 DOI: 10.1038/s41467-024-45899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.
Collapse
Affiliation(s)
- Suyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Ni
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenli Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiyuan Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingyin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yulin Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yanjun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunxia Wang
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Wang C, Liu Z, Zeng Y, Zhou L, Long Q, Hassan IU, Zhang Y, Qi X, Cai D, Mao B, Lu G, Sun J, Yao Y, Deng Y, Zhao Q, Feng B, Zhou Q, Chan WY, Zhao H. ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation. EMBO Rep 2024; 25:646-671. [PMID: 38177922 PMCID: PMC10897318 DOI: 10.1038/s44319-023-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, 266033, Qingdao, Shandong, China
| | - Yelin Zeng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Imtiaz Ul Hassan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Bingyu Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, 750004, Yinchuan, China
| | - Yonggang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, 150081, Harbin, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Long Q, Yan K, Wang C, Wen Y, Qi F, Wang H, Shi P, Liu X, Chan WY, Lu X, Zhao H. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids. SCIENCE ADVANCES 2023; 9:eadd8343. [PMID: 37027476 PMCID: PMC10081845 DOI: 10.1126/sciadv.add8343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Increasing evidence suggests that interspecific hybridization is crucial to speciation. However, chromatin incompatibility during interspecific hybridization often renders this process. Genomic imbalances such as chromosomal DNA loss and rearrangements leading to infertility have been commonly noted in hybrids. The mechanism underlying reproductive isolation of interspecific hybridization remains elusive. Here, we identified that modification of maternally defined H3K4me3 in Xenopus laevis and Xenopus tropicalis hybrids determines the different fates of the two types of hybrids as te×ls with developmental arrest and viable le×ts. Transcriptomics highlighted that the P53 pathway was overactivated, and the Wnt signaling pathway was suppressed in te×ls hybrids. Moreover, the lack of maternal H3K4me3 in te×ls disturbed the balance of gene expression between the L and S subgenomes in this hybrid. Attenuation of p53 can postpone the arrested development of te×ls. Our study suggests an additional model of reproductive isolation based on modifications of maternally defined H3K4me3.
Collapse
Affiliation(s)
- Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Kai Yan
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Chendong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Yanling Wen
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Furong Qi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Xingguo Liu
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
9
|
Elf3 deficiency during zebrafish development alters extracellular matrix organization and disrupts tissue morphogenesis. PLoS One 2022; 17:e0276255. [DOI: 10.1371/journal.pone.0276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.
Collapse
|
10
|
Schuster J, Klar J, Khalfallah A, Laan L, Hoeber J, Fatima A, Sequeira VM, Jin Z, Korol SV, Huss M, Nordgren A, Anderlid BM, Gallant C, Birnir B, Dahl N. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front Mol Neurosci 2022; 15:988993. [PMID: 36353360 PMCID: PMC9637781 DOI: 10.3389/fnmol.2022.988993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Velin Marita Sequeira
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V. Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Huss
- Wallenberg Long-Term Bioinformatics Support, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
11
|
Hongo I, Okamoto H. FGF/MAPK/Ets signaling in Xenopus ectoderm contributes to neural induction and patterning in an autonomous and paracrine manner, respectively. Cells Dev 2022; 170:203769. [DOI: 10.1016/j.cdev.2022.203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
12
|
Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H, Li S, Li X, Lin B. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 2021; 12:6835-6850. [PMID: 34659572 PMCID: PMC8517993 DOI: 10.7150/jca.64031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
13
|
Wang J, Yao R, Luo Q, Tan L, Jia B, Ouyang N, Li Y, Tong J, Li J. miR‑200b upregulation promotes migration of BEAS‑2B cells following long‑term exposure to cigarette smoke by targeting ETS1. Mol Med Rep 2021; 24:562. [PMID: 34109431 PMCID: PMC8201442 DOI: 10.3892/mmr.2021.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking is the leading cause of all histological types of lung cancer, and the role that microRNAs (miRNAs) serve in its pathogenesis is being increasingly recognized. The aim of the present study was to investigate the role of miR‑200b on migration in cigarette smoke‑induced malignant transformed cells. In the present study, miR‑200b expression was found to be increased in cigarette smoke (CS)‑exposed BEAS‑2B cells, lung cancer cell lines and tumor tissue samples. Using wound healing and Transwell migration assays, the migratory ability was shown to be increased in miR‑200b‑overexpressing cells, whereas miR‑200b knockdown resulted in reduced migration. Additionally, the expression of E‑Cadherin was downregulated, whereas that of N‑Cadherin was upregulated in miR‑200b mimic‑transfected cells, suggesting an increase in epithelial‑mesenchymal transition. Downstream, using four target gene prediction tools, six target genes of miR‑200b were predicted, amongst which, ETS proto‑oncogene 1 transcription factor (ETS1) was shown to be significantly associated with tumor invasion depth and negatively associated with miR‑200b expression. The interaction between miR‑200b and ETS1 was confirmed using a dual‑luciferase reporter assay. Using rescue experiments, the increased migratory ability of the miR‑200b‑overexpressing cells was reversed by ETS1 overexpression. In summary, this study showed that miR‑200b overexpression serves a carcinogenic role and promotes the migration of BEAS‑2B cells following long‑term exposure to CS by targeting ETS1.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ruixin Yao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Nan Ouyang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yezhou Li
- School of Medicine, University of Manchester, M13 9PL Manchester, UK
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Wang H, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. Development 2021; 148:264926. [PMID: 33999995 DOI: 10.1242/dev.199441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meiling Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yong-Gang Yao
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,Shenzhen Key Laboratory of Cell Microenvironment, Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
15
|
Wang C, Qi X, Zhou X, Sun J, Cai D, Lu G, Chen X, Jiang Z, Yao YG, Chan WY, Zhao H. RNA-Seq analysis on ets1 mutant embryos of Xenopus tropicalis identifies microseminoprotein beta gene 3 as an essential regulator of neural crest migration. FASEB J 2020; 34:12726-12738. [PMID: 32713114 DOI: 10.1096/fj.202000603r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
The proto-oncogene ets1 is highly expressed in the pre-migratory and migratory neural crest (NC), and has been implicated in the delamination and migration of the NC cells. To identify the downstream target genes of Ets1 in this process, we did RNA sequencing (RNA-Seq) on wild-type and ets1 mutant X. tropicalis embryos. A list of genes with significantly differential expression was obtained by analyzing the RNA-Seq data. We validated the RNA-Seq data by quantitative PCR, and examined the expression pattern of the genes identified from this assay with whole mount in situ hybridization. A majority of the identified genes showed expression in migrating NC. Among them, the expression of microseminoprotein beta gene 3 (msmb3) was positively regulated by Ets1 in both X. laevis and X. tropicalis. Knockdown of msmb3 with antisense morpholino oligonucleotides or disruption of msmb3 by CRISPR/Cas9 both impaired the migratory streams of NC. Our study identified msmb3 as an Ets1 target gene and uncovered its function in maintaining neural crest migration pattern.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiongfong Chen
- Advanced Biomedical Computing Center, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Nazir SU, Kumar R, Dil-Afroze, Rasool I, Bondhopadhyay B, Singh A, Tripathi R, Singh N, Khan A, Tanwar P, Agrawal U, Mehrotra R, Hussain S. Differential expression of Ets-1 in breast cancer among North Indian population. J Cell Biochem 2019; 120:14552-14561. [PMID: 31016780 DOI: 10.1002/jcb.28716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly aggressive disease contributing to high mortality rate among females across the globe owing to wide geographical variations, change in lifestyle along with rapid tumor growth, drug resistance, and high metastasis rate. To understand the molecular and genetic basis of breast cancer progression; we studied the role of E26 transformation-specific-1 (Ets-1) transcription factor which is implicated to have a role in carcinogenesis like invasion, metastasis, angiogenesis, etc. Our findings revealed an overexpression of Ets-1 gene in 75 breast cancer tumors as compared with their normal adjacent tissues. The findings significantly established a co-relation between Ets-1 expression in breast cancer tissue with hormonal receptor profiles and ductal-lobular histological subtypes in Indian population. In addition, a differential expression pattern of Ets-1 was observed between high, moderate, and low grades of breast cancer patients. The present study demonstrates a crucial role of Ets-1 transcription factor which may serve as a potential biomarker for breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Dil-Afroze
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Ishrat Rasool
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Banashree Bondhopadhyay
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ankita Singh
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Richa Tripathi
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Neha Singh
- Institute of Clinical Sciences, Sahlgrenska University Hospital, Gothenberg University, Gothenberg, Sweden
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Ravi Mehrotra
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| |
Collapse
|
17
|
Hamada H, Yamamura M, Ohi H, Kobayashi Y, Niwa K, Oyama T, Mano Y, Asai M, Tanuma SI, Uchiumi F. Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells. Int J Oncol 2019; 55:896-904. [PMID: 31432148 DOI: 10.3892/ijo.2019.4860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 11/06/2022] Open
Abstract
Human promyelocytic HL‑60 cells can be differentiated into macrophage‑like cells by treatment with 12‑O‑tetra decanoylphorbol‑13‑acetate (TPA). Certain 5' upstream regions of the zinc finger protein (ZNF)‑encoding genes contain duplicated GGAA motifs, which are frequently found in the TPA‑responding gene promoter regions. To examine transcriptional responses to TPA, 5'flanking regions of human zinc finger CCCH‑type containing, antiviral, ZNF252, ZNF343, ZNF555, ZNF782 and zinc finger nfx‑1‑type containing 1 (ZNFX1) genes were isolated by polymerase chain reaction (PCR) and ligated into a multiple‑cloning site of the pGL4.10[luc2] vector. Transient transfection and a luciferase assay revealed that the ZNFX1 promoter most prominently responded to the TPA treatment. Deletion and point mutation experiments indicated that the duplicated GGAA motif in the 100‑bp region positively responded to TPA. In addition, reverse transcription‑quantitative PCR and western blotting showed that the mRNA and protein of ZNFX1 accumulate during the differentiation of HL‑60 cells. These results indicated that expression of the TPA‑inducible ZNFX1 gene, which belongs to the group of interferon‑responsive genes, is regulated by the cis‑action of the duplicated GGAA motif.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Mayu Yamamura
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Hiroto Ohi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Yota Kobayashi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Kuniyoshi Niwa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Takahiro Oyama
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Yasunari Mano
- Department of Clinical Drug Informatics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Masashi Asai
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda‑shi, Chiba‑ken 278‑8510, Japan
| |
Collapse
|
18
|
Huang K, Xhani S, Albrecht AV, Ha VLT, Esaki S, Poon GMK. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1. J Biol Chem 2019; 294:9666-9678. [PMID: 31048376 DOI: 10.1074/jbc.ra119.007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M K Poon
- From the Department of Chemistry and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
19
|
Han K, Ren R, Cao J, Zhao S, Yu M. Genome-Wide Identification of Histone Modifications Involved in Placental Development in Pigs. Front Genet 2019; 10:277. [PMID: 30984246 PMCID: PMC6449610 DOI: 10.3389/fgene.2019.00277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Development of placental folds is a critical event affecting placental function in pigs because it can increase surface area for improvement in capillary density as gestation advances. However, the molecular mechanisms of the event are not well defined. Histone modifications have important roles in gene regulation. To investigate their effects on regulation of genes controlling porcine placental development, RNA-seq and ChIP-seq of porcine placental tissues from gestational days 50 (establishment stage of placental folds) and 95 (expanding stage of placental folds) were carried out in this study. The differentially expressed genes were identified and of which the down- and up-regulated genes are related to endoplasmic reticulum (ER) stress and angiogenesis, respectively. In addition, we mapped the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), which are associated with transcriptional activation. A number of differential modification regions between the 2 gestational stages were identified and majority of them are those with increased signals of H3K4me3 (14,576 out of 16,931). Furthermore, we observed that the increase of H3K4me3 is significantly correlated with the elevated expression levels of the neighboring genes, and notably, these genes were enriched in pathways related to blood vessel formation and microvascular permeability. Taken together, the findings suggest important roles of histone modifications on placental remolding in response to developmental changes.
Collapse
Affiliation(s)
- Kun Han
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruimin Ren
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Transcriptome analysis of Xenopus orofacial tissues deficient in retinoic acid receptor function. BMC Genomics 2018; 19:795. [PMID: 30390632 PMCID: PMC6215681 DOI: 10.1186/s12864-018-5186-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Development of the face and mouth is orchestrated by a large number of transcription factors, signaling pathways and epigenetic regulators. While we know many of these regulators, our understanding of how they interact with each other and implement changes in gene expression during orofacial development is still in its infancy. Therefore, this study focuses on uncovering potential cooperation between transcriptional regulators and one important signaling pathway, retinoic acid, during development of the midface. RESULTS Transcriptome analyses was performed on facial tissues deficient for retinoic acid receptor function at two time points in development; early (35 hpf) just after the neural crest migrates and facial tissues are specified and later (60 hpf) when the mouth has formed and facial structures begin to differentiate. Functional and network analyses revealed that retinoic acid signaling could cooperate with novel epigenetic factors and calcium-NFAT signaling during early orofacial development. At the later stage, retinoic acid may work with WNT and BMP and regulate homeobox containing transcription factors. Finally, there is an overlap in genes dysregulated in Xenopus embryos with median clefts with human genes associated with similar orofacial defects. CONCLUSIONS This study uncovers novel signaling pathways required for orofacial development as well as pathways that could interact with retinoic acid signaling during the formation of the face. We show that frog faces are an important tool for studying orofacial development and birth defects.
Collapse
|
21
|
Shang Z, Chen D, Wang Q, Wang S, Deng Q, Wu L, Liu C, Ding X, Wang S, Zhong J, Zhang D, Cai X, Zhu S, Yang H, Liu L, Fink JL, Chen F, Liu X, Gao Z, Xu X. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation. Gigascience 2018; 7:5099469. [PMID: 30239706 PMCID: PMC6420650 DOI: 10.1093/gigascience/giy117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Investigating cell fate decision and subpopulation specification in the context of the neural lineage is fundamental to understanding neurogenesis and neurodegenerative diseases. The differentiation process of neural-tube-like rosettes in vitro is representative of neural tube structures, which are composed of radially organized, columnar epithelial cells and give rise to functional neural cells. However, the underlying regulatory network of cell fate commitment during early neural differentiation remains elusive. Results In this study, we investigated the genome-wide transcriptome profile of single cells from six consecutive reprogramming and neural differentiation time points and identified cellular subpopulations present at each differentiation stage. Based on the inferred reconstructed trajectory and the characteristics of subpopulations contributing the most toward commitment to the central nervous system lineage at each stage during differentiation, we identified putative novel transcription factors in regulating neural differentiation. In addition, we dissected the dynamics of chromatin accessibility at the neural differentiation stages and revealed active cis-regulatory elements for transcription factors known to have a key role in neural differentiation as well as for those that we suggest are also involved. Further, communication network analysis demonstrated that cellular interactions most frequently occurred in the embryoid body stage and that each cell subpopulation possessed a distinctive spectrum of ligands and receptors associated with neural differentiation that could reflect the identity of each subpopulation. Conclusions Our study provides a comprehensive and integrative study of the transcriptomics and epigenetics of human early neural differentiation, which paves the way for a deeper understanding of the regulatory mechanisms driving the differentiation of the neural lineage.
Collapse
Affiliation(s)
- Zhouchun Shang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Shengpeng Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jixing Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - J Lynn Fink
- BGI-Shenzhen, Shenzhen 518083, China.,BGI Australia, L6, CBCRC, 300 Herston Rd, Herston, QLD 4006, Australia.,The University of Queensland, Diamantina Institute (UQDI), Brisbane, QLD 4102, Australia
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Xiaoqing Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
22
|
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e322. [PMID: 29722151 PMCID: PMC6215528 DOI: 10.1002/wdev.322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer," these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Crystal D. Rogers
- Department of Biology, College of Science and Mathematics, California State University Northridge, Northridge, California
| | - Shuyi Nie
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
23
|
Rao A, LaBonne C. Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development 2018; 145:dev.163386. [PMID: 30002130 DOI: 10.1242/dev.163386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
The neural crest, a progenitor population that drove vertebrate evolution, retains the broad developmental potential of the blastula cells it is derived from, even as neighboring cells undergo lineage restriction. The mechanisms that enable these cells to preserve their developmental potential remain poorly understood. Here, we explore the role of histone deacetylase (HDAC) activity in this process in Xenopus We show that HDAC activity is essential for the formation of neural crest, as well as for proper patterning of the early ectoderm. The requirement for HDAC activity initiates in naïve blastula cells; HDAC inhibition causes loss of pluripotency gene expression and blocks the ability of blastula stem cells to contribute to lineages of the three embryonic germ layers. We find that pluripotent naïve blastula cells and neural crest cells are both characterized by low levels of histone acetylation, and show that increasing HDAC1 levels enhance the ability of blastula cells to be reprogrammed to a neural crest state. Together, these findings elucidate a previously uncharacterized role for HDAC activity in establishing the neural crest stem cell state.
Collapse
Affiliation(s)
- Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
24
|
Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene 2018; 37:6180-6194. [PMID: 30013190 DOI: 10.1038/s41388-018-0397-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) can cause sporadic and familial neuroblastoma. Using a proteomics approach, we identified Bruton's tyrosine kinase (BTK) as a novel ALK interaction partner, and the physical interaction was confirmed by co-immunoprecipitation. BTK is expressed in neuroblastoma cell lines and tumor tissues. Its high expression correlates with poor relapse-free survival probability of neuroblastoma patients. Mechanistically, we demonstrated that BTK potentiates ALK-mediated signaling in neuroblastoma, and increases ALK stability by reducing ALK ubiquitination. Both ALKWT and ALKF1174L can induce BTK phosphorylation and higher capacity of ALKF1174L is observed. Furthermore, the BTK inhibitor ibrutinib can effectively inhibit the growth of neuroblastoma xenograft in nude mice, and the combination of ibrutinib and the ALK inhibitor crizotinib further enhances the inhibition. Our study provides strong rationale for clinical trial of ALK-positive neuroblastoma using ibrutinib or the combination of ibrutinib and ALK inhibitors.
Collapse
|
25
|
Valensisi C, Andrus C, Buckberry S, Doni Jayavelu N, Lund RJ, Lister R, Hawkins RD. Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases. Cell Rep 2018; 20:1448-1462. [PMID: 28793267 DOI: 10.1016/j.celrep.2017.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.
Collapse
Affiliation(s)
- Cristina Valensisi
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia; Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Riikka J Lund
- Turku Centre for Biotechnology, University of Turku, Turku, Finland; Åbo Akademi University, Turku, Finland
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia; Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Turku Centre for Biotechnology, University of Turku, Turku, Finland.
| |
Collapse
|
26
|
Roberto VP, Gavaia P, Nunes MJ, Rodrigues E, Cancela ML, Tiago DM. Evidences for a New Role of miR-214 in Chondrogenesis. Sci Rep 2018; 8:3704. [PMID: 29487295 PMCID: PMC5829070 DOI: 10.1038/s41598-018-21735-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
miR-214 is known to play a role in mammalian skeletal development through inhibition of osteogenesis and stimulation of osteoclastogenesis, but data regarding other vertebrates, as well as a possible role in chondrogenesis, remain unknown. Here, we show that miR-214 expression is detected in bone and cartilage of zebrafish skeleton, and is downregulated during murine ATDC5 chondrocyte differentiation. Additionally, we observed a conservation of the transcriptional regulation of miR-214 primary transcript Dnm3os in vertebrates, being regulated by Ets1 in ATDC5 chondrogenic cells. Moreover, overexpression of miR-214 in vitro and in vivo mitigated chondrocyte differentiation probably by targeting activating transcription factor 4 (Atf4). Indeed, miR-214 overexpression in vivo hampered cranial cartilage formation of zebrafish and coincided with downregulation of atf4 and of the key chondrogenic players sox9 and col2a1. We show that miR-214 overexpression exerts a negative role in chondrogenesis by impacting on chondrocyte differentiation possibly through conserved mechanisms.
Collapse
Affiliation(s)
- Vânia Palma Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,PhD Program in Biomedical Sciences, DCBM, University of Algarve, 8005-139, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Paulo Gavaia
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Maria João Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal. .,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Daniel Martins Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
27
|
Wong TCB, Rebbert M, Wang C, Chen X, Heffer A, Zarelli VE, Dawid IB, Zhao H. Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:159-66. [PMID: 27389986 DOI: 10.1387/ijdb.160058id] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.
Collapse
Affiliation(s)
- Thomas C B Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene 2018; 37:1624-1636. [PMID: 29335523 DOI: 10.1038/s41388-017-0057-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Cancer cells have metabolic features that allow them to preferentially metabolize glucose through aerobic glycolysis, providing them with a progression advantage. However, microRNA (miRNA) regulation of aerobic glycolysis in cancer cells has not been extensively investigated. We addressed this in the present study by examining the regulation of miR-139-5p on aerobic glycolysis of hepatocellular carcinoma (HCC) using clinical specimens, HCC cells, and a mouse xenograft model. We found that overexpressing miR-139-5p restrained aerobic glycolysis, suppressing proliferation, migration, and invasion in HCC cells. miR-139-5p regulated hexokinase 1 (HK1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression by directly targeting the transcription factor ETS1, which bound to the promoters of the HK1 and PFKFB3 genes. miR-139-5p-induced aerobic glycolysis, proliferation, migration, and invasion were reversed by ETS1 overexpression, while ETS1 silencing induced the expression of miR-139-5p via a post-transcriptional regulation mode involving Drosha. miR-139-5p expression was reduced in HCC compared to para-carcinoma tissue, which was confirmed in The Cancer Genome Atlas and GSE54751 HCC cohorts. Notably, the lower expression of mir-139 was correlated with worse prognosis. These outcomes indicate that reciprocal regulatory interactions between miR-139-5p and ETS1 modulate aerobic glycolysis, proliferation, and metastasis in HCC cells, suggesting new targets for HCC treatment.
Collapse
|
29
|
MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother 2017; 96:634-641. [DOI: 10.1016/j.biopha.2017.10.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
|
30
|
Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C. Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration. Biol Open 2017; 6:1528-1540. [PMID: 28870996 PMCID: PMC5665465 DOI: 10.1242/bio.026153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Vestigial is the founding member of a protein family containing a highly conserved domain, called Tondu, which mediates their interaction with members of the TEAD family of transcription factors (Scalloped in Drosophila). In Drosophila, the Vestigial/Scalloped complex controls wing development by regulating the expression of target genes through binding to MCAT sequences. In vertebrates, there are four Vestigial-like genes, the functions of which are still not well understood. Here, we describe the regulation and function of vestigial-like 3 (vgll3) during Xenopus early development. A combination of signals, including FGF8, Wnt8a, Hoxa2, Hoxb2 and retinoic acid, limits vgll3 expression to hindbrain rhombomere 2. We show that vgll3 regulates trigeminal placode and nerve formation and is required for normal neural crest development by affecting their migration and adhesion properties. At the molecular level, vgll3 is a potent activator of pax3, zic1, Wnt and FGF, which are important for brain patterning and neural crest cell formation. Vgll3 interacts in the embryo with Tead proteins but unexpectedly with Ets1, with which it is able to stimulate a MCAT driven luciferase reporter gene. Our findings highlight a critical function for vgll3 in vertebrate early development.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, INSERM U1035, F-33076 Bordeaux, France
| | - Nadine Thézé
- Univ. Bordeaux, INSERM U1035, F-33076 Bordeaux, France
| | | | | | | |
Collapse
|
31
|
Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis. Gene Expr Patterns 2016; 23-24:1-6. [PMID: 28034797 DOI: 10.1016/j.gep.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19-39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.
Collapse
|
32
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Torroglosa A, Alves MM, Fernández RM, Antiñolo G, Hofstra RM, Borrego S. Epigenetics in ENS development and Hirschsprung disease. Dev Biol 2016; 417:209-16. [PMID: 27321561 DOI: 10.1016/j.ydbio.2016.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differentiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. The formation of the ENS is a complex process, which is regulated by a large range of molecules and signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of these genes can have dramatic consequences. Several mechanisms that control the expression of genes have been described, such as DNA modification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors and silencers), post-transcriptional regulation (3'UTR and miRNAs) and regulation of translation. In this review, we focus on the epigenetic DNA modifications that have been described so far in the context of the ENS development. Moreover we describe the changes that are found in relation to the onset of HSCR.
Collapse
Affiliation(s)
- A Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - M M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - G Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - R M Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - S Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
34
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|