1
|
Buzuk A, Marquez MD, Ho JV, Liu Y, Wang B, Qi CC, Perlstein DL. The Cia1 and Cia2 subunits of the CTC mediate recognition of apo-FeS proteins with a C-terminal targeting complex recognition motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645274. [PMID: 40196589 PMCID: PMC11974842 DOI: 10.1101/2025.03.25.645274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) targeting complex is responsible for maturation of cytosolic and nuclear iron-sulfur enzymes, numbering >30 proteins critical for fundamental processes such as DNA replication and repair. Up to 25% of these client proteins terminate in a targeting complex recognition (TCR) motif. This carboxy-terminal tripeptide motif recruits the CIA targeting complex (CTC) to the client so that the metallocluster can be inserted. Herein, we use a combination of computational, biochemical and biophysical approaches to determine that the clients bearing a TCR motif docks at the interface of the Cia1 and Cia2 subunits of the CTC. Thus, mutations destabilizing the Cia1-Cia2 complex also disrupt TCR-based client identification by the CTC. Our study also reveals that the understudied human Cia2 paralog CIAO2A, which is proposed to be a specific targeting factor for iron regulatory protein 1, can recruit clients terminating in the TCR peptide. These data signal that CIAO2A plays a more general role in iron-sulfur protein maturation than previously appreciated. Taken together, our findings deepen our understanding of the molecular basis for client recognition by the CTC that is critical to understand the impact of CIA function in human health and disease.
Collapse
Affiliation(s)
| | | | - JV Ho
- Department of Chemistry, Boston University, Boston, MA USA
| | - Y Liu
- Department of Chemistry, Boston University, Boston, MA USA
| | - B Wang
- Department of Chemistry, Boston University, Boston, MA USA
| | - CC Qi
- Department of Chemistry, Boston University, Boston, MA USA
| | - DL Perlstein
- Department of Chemistry, Boston University, Boston, MA USA
| |
Collapse
|
2
|
Metformin inhibits oral squamous cell carcinoma progression through regulating RNA alternative splicing. Life Sci 2023; 315:121274. [PMID: 36509195 DOI: 10.1016/j.lfs.2022.121274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
AIMS Oral squamous cell carcinoma (OSCC) is considered as the sixth most common cancer worldwide characterized by high invasiveness, high metastasis rate and high mortality. It is urgent to explore novel therapeutic strategies to overcome this feature. Metformin is currently a strong candidate anti-tumor drug in multiple cancers. However, whether metformin could inhibit cancer progression by regulating RNA alternative splicing remains largely unknown. MAIN METHODS Cell proliferation and growth ability of CAL-27 and UM-SCC6 were analyzed by CCK8 and colony formation assays. Cell migration was judged by wound healing assay. Mechanistically, RNA-seq was applied to systematically identify genes that are regulated by metformin. The expression of metformin-regulated genes was determined by real-time quantitative PCR (RT-qPCR). Metformin-regulated alternative splicing events were confirmed by RT-PCR. KEY FINDINGS We demonstrated that metformin could significantly inhibit the proliferation and migration of oral squamous cell carcinoma cells. Mechanistically, in addition to transcriptional regulation, metformin induces a wide range of alternative splicing alteration, including genes involved in centrosome, cellular response to DNA damage stimulus, GTPase binding, histone modification, catalytic activity, regulation of cell cycle process and ATPase complex. Notably, metformin specifically modulates the splicing of NUBP2, a component of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA). Briefly, metformin favors the production of NUBP2-L, the long splicing isoform of NUBP2, thereby inhibiting cancer cell proliferation. SIGNIFICANCE Our findings provide mechanistic insights of metformin on RNA alternative splicing regulation, thus to offer a potential novel route for metformin to inhibit cancer progression.
Collapse
|
3
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
4
|
Compe E, Pangou E, Le May N, Elly C, Braun C, Hwang JH, Coin F, Sumara I, Choi KW, Egly JM. Phosphorylation of XPD drives its mitotic role independently of its DNA repair and transcription functions. SCIENCE ADVANCES 2022; 8:eabp9457. [PMID: 35977011 PMCID: PMC9385140 DOI: 10.1126/sciadv.abp9457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The helicase XPD is known as a key subunit of the DNA repair/transcription factor TFIIH. However, here, we report that XPD, independently to other TFIIH subunits, can localize with the motor kinesin Eg5 to mitotic spindles and the midbodies of human cells. The XPD/Eg5 partnership is promoted upon phosphorylation of Eg5/T926 by the kinase CDK1, and conversely, it is reduced once Eg5/S1033 is phosphorylated by NEK6, a mitotic kinase that also targets XPD at T425. The phosphorylation of XPD does not affect its DNA repair and transcription functions, but it is required for Eg5 localization, checkpoint activation, and chromosome segregation in mitosis. In XPD-mutated cells derived from a patient with xeroderma pigmentosum, the phosphomimetic form XPD/T425D or even the nonphosphorylatable form Eg5/S1033A specifically restores mitotic chromosome segregation errors. These results thus highlight the phospho-dependent mitotic function of XPD and reveal how mitotic defects might contribute to XPD-related disorders.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Nicolas Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Clémence Elly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Ji-Hyun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
- College of Medicine, National Taiwan Institute, Taipei 10051, Taiwan
| |
Collapse
|
5
|
Fan X, Barshop WD, Vashisht AA, Pandey V, Leal S, Rayatpisheh S, Jami-Alahmadi Y, Sha J, Wohlschlegel JA. Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery. J Biol Chem 2022; 298:102094. [PMID: 35654137 PMCID: PMC9243173 DOI: 10.1016/j.jbc.2022.102094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
The cytosolic iron–sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron–sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.
Collapse
Affiliation(s)
- Xiaorui Fan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Stephanie Leal
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shima Rayatpisheh
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
6
|
Shen JZ, Qiu Z, Wu Q, Zhang G, Harris R, Sun D, Rantala J, Barshop WD, Zhao L, Lv D, Won KA, Wohlschlegel J, Sangfelt O, Laman H, Rich JN, Spruck C. A FBXO7/EYA2-SCF FBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Mol Cell 2022; 82:1123-1139.e8. [PMID: 35182481 PMCID: PMC8934274 DOI: 10.1016/j.molcel.2022.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.
Collapse
Affiliation(s)
- Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | - Rebecca Harris
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dahui Sun
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deguan Lv
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
8
|
FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 2020; 184:352-369.e23. [PMID: 33357448 DOI: 10.1016/j.cell.2020.11.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.
Collapse
|
9
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
10
|
Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nat Struct Mol Biol 2020; 27:735-742. [DOI: 10.1038/s41594-020-0454-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
|
11
|
Ciao1 interacts with Crumbs and Xpd to regulate organ growth in Drosophila. Cell Death Dis 2020; 11:365. [PMID: 32404863 PMCID: PMC7220951 DOI: 10.1038/s41419-020-2564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022]
Abstract
Ciao1 is a component of the cytosolic iron-sulfur cluster assembly (CIA) complex along with MMS19 and MIP18. Xeroderma pigmentosum group D (XPD), a DNA helicase involved in regulation of cell cycle and transcription, is a CIA target for iron-sulfur (Fe/S) modification. In vivo function of Ciao1 and Xpd in developing animals has been rarely studied. Here, we reveal that Ciao1 interacts with Crumbs (Crb), Galla, and Xpd to regulate organ growth in Drosophila. Abnormal growth of eye by overexpressing Crb intracellular domain (Crbintra) is suppressed by reducing the Ciao1 level. Loss of Ciao1 or Xpd causes similar impairment in organ growth. RNAi knockdown of both Ciao1 and Xpd show similar phenotypes as Ciao1 or Xpd RNAi alone, suggesting their function in a pathway. Growth defects caused by Ciao1 RNAi are suppressed by overexpression of Xpd. Ciao1 physically interacts with Crbintra, Galla, and Xpd, supporting their genetic interactions. Remarkably, Xpd RNAi defects can also be suppressed by Ciao1 overexpression, implying a mutual regulation between the two genes. Ciao1 mutant clones in imaginal discs show decreased levels of Cyclin E (CycE) and death-associated inhibitor of apoptosis 1 (Diap1). Xpd mutant clones share the similar reduction of CycE and Diap1. Consequently, knockdown of Ciao1 and Xpd by RNAi show increased apoptotic cell death. Further, CycE overexpression is sufficient to restore the growth defects from Ciao1 RNAi or Xpd RNAi. Interestingly, Diap1 overexpression in Ciao1 mutant clones induces CycE expression, suggesting that reduced CycE in Ciao1 mutant cells is secondary to loss of Diap1. Taken together, this study reveals new roles of Ciao1 and Xpd in cell survival and growth through regulating Diap1 level during organ development.
Collapse
|
12
|
Simon AK, Kummer S, Wild S, Lezaja A, Teloni F, Jozwiakowski SK, Altmeyer M, Gari K. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Sci Alliance 2020; 3:3/3/e201900547. [PMID: 32071282 PMCID: PMC7032568 DOI: 10.26508/lsa.201900547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The iron–sulfur cluster helicase DDX11 promotes the generation of ssDNA and the phosphorylation of CHK1 at serine-345, possibly by unwinding replication-dependent DNA secondary structures. The iron–sulfur (FeS) cluster helicase DDX11 is associated with a human disorder termed Warsaw Breakage Syndrome. Interestingly, one disease-associated mutation affects the highly conserved arginine-263 in the FeS cluster-binding motif. Here, we demonstrate that the FeS cluster in DDX11 is required for DNA binding, ATP hydrolysis, and DNA helicase activity, and that arginine-263 affects FeS cluster binding, most likely because of its positive charge. We further show that DDX11 interacts with the replication factors DNA polymerase delta and WDHD1. In vitro, DDX11 can remove DNA obstacles ahead of Pol δ in an ATPase- and FeS domain-dependent manner, and hence generate single-stranded DNA. Accordingly, depletion of DDX11 causes reduced levels of single-stranded DNA, a reduction of chromatin-bound replication protein A, and impaired CHK1 phosphorylation at serine-345. Taken together, we propose that DDX11 plays a role in dismantling secondary structures during DNA replication, thereby promoting CHK1 activation.
Collapse
Affiliation(s)
- Anna K Simon
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Barshop WD, Kim HJ, Fan X, Sha J, Rayatpisheh S, Wohlschlegel JA. Chemical Derivatization of Affinity Matrices Provides Protection from Tryptic Proteolysis. J Proteome Res 2019; 18:3586-3596. [PMID: 31498634 DOI: 10.1021/acs.jproteome.9b00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enrichment of biotinylated proteins using immobilized streptavidin has become a staple methodology for affinity purification-based proteomics. Many of these workflows rely upon tryptic digestion to elute streptavidin-captured moieties from the beads. The concurrent release of high amounts of streptavidin-derived peptides into the digested sample, however, can significantly hamper the effectiveness of downstream proteomic analyses by increasing the complexity and dynamic range of the mixture. Here, we describe a strategy for the chemical derivatization of streptavidin that renders it largely resistant to proteolysis by trypsin and thereby dramatically reduces the amount of streptavidin contamination in the sample. This rapid and robust approach improves the effectiveness of mass spectrometry-based characterization of streptavidin-purified samples making it broadly useful for a wide variety of applications. In addition, we show that this chemical protection strategy can also be applied to other affinity matrices including immobilized antibodies against HA epitopes.
Collapse
Affiliation(s)
- William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| | - Hee Jong Kim
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| | - Xiaorui Fan
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| | - Shima Rayatpisheh
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine , University of California-Los Angeles , Los Angeles , California 951737 , United States
| |
Collapse
|
14
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
15
|
Ding H, Wen Z, Sun G. Silencing of Xeroderma Pigmentosum Group D Gene Promotes Hepatoma Cell Growth by Reducing P53 Expression. Med Sci Monit 2018; 24:8015-8021. [PMID: 30409962 PMCID: PMC6238547 DOI: 10.12659/msm.910944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study investigated the effect of xeroderma pigmentosum group D (XPD) silencing on the growth of hepatoma cells and assessed the mechanisms. MATERIAL AND METHODS XPD gene was silenced by siRNA in hepatoma cells. The experiments were randomly divided into a control group, a liposome control group, a negative control (NC) group, an XPD siRNA group, and an XPD siRNA + P53 inhibitor group. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) was used to detect cell viability 24 h after gene silencing and treatments. Terminal deoxynucleotidyl transferases (TdT)-mediated dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect apoptosis. Invasive ability was detected by Transwell assay. Additionally, the expression of mouse double-minute 2 homolog (Mdm2), mouse double-minute 4 homolog (Mdm4), CyclinD1, P21, Bax, P53, C-sis, and Bcl-2 was detected by real-time polymerase chain reaction and Western blotting. RESULTS Compared with the NC group, XPD siRNA significantly reduced XPD expression at both mRNA and protein levels. XPD siRNA significantly promoted cell proliferation, reduced apoptosis, and promoted cell invasive ability. Expression of CyclinD1, Bcl-2, and C-sis increased significantly after XPD silencing, while the expression of P21, Mdm2, Mdm4, Bax, and P53 significantly decreased (vs. NC, P<0.05). Importantly, P53 inhibitor (1 μM bpV) further enhanced the effect of XPD silencing (vs. XPD silencing, P<0.05). CONCLUSIONS Our data revealed that XPD silencing promoted growth of hepatoma cells by reducing P53 expression.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Guofang Sun
- Department of Electrocardiogram Diagnosis, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
16
|
Tonini ML, Peña-Diaz P, Haindrich AC, Basu S, Kriegová E, Pierik AJ, Lill R, MacNeill SA, Smith TK, Lukeš J. Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathog 2018; 14:e1007326. [PMID: 30346997 PMCID: PMC6211773 DOI: 10.1371/journal.ppat.1007326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 11/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1. Cytosolic and nuclear proteins containing iron-sulphur clusters (Fe-S) are essential for the survival of every extant eukaryotic cell. The biogenesis of Fe-S clusters and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. Recently, the CIA factors that generate cytosolic Fe-S clusters were characterised in T. brucei, a unicellular parasite that causes diseases in humans and animals. However, an outstanding question in this organism is the way by which the CIA machinery directs and inserts newly formed Fe-S clusters into proteins. We found that the T. brucei proteins TbCIA2B and TbCIA1 assemble at a region of the C-terminal domain of a third protein, TbMMS19, to form a complex labelled the CIA targeting complex (CTC). The CTC interacts with TbNAR1 and with Fe-S proteins, meaning that the complex assists in the transfer of Fe-S clusters from the upstream members of the pathway into target Fe-S proteins. T. brucei cells depleted of CTC had decreased levels of protein-bound cytosolic iron, and lower activities of cytosolic aconitase, an enzyme that depends upon Fe-S clusters to function.
Collapse
Affiliation(s)
- Maiko Luis Tonini
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
| | - Priscila Peña-Diaz
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexander C. Haindrich
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eva Kriegová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Antonio J. Pierik
- Faculty of Chemistry–Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Zentrum für synthetische Mikrobiologie, Marburg, Germany
| | - Stuart A. MacNeill
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- * E-mail: (SAM); (TKS); (JL)
| |
Collapse
|
17
|
Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proc Natl Acad Sci U S A 2018; 115:E9085-E9094. [PMID: 30201724 DOI: 10.1073/pnas.1807762115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.
Collapse
|
18
|
Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics 2018; 9:1483-1500. [PMID: 28879348 DOI: 10.1039/c7mt00116a] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.
Collapse
Affiliation(s)
- Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Ave. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
19
|
Vo AT, Fleischman NM, Marquez MD, Camire EJ, Esonwune SU, Grossman JD, Gay KA, Cosman JA, Perlstein DL. Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics 2018; 9:1645-1654. [PMID: 29057997 DOI: 10.1039/c7mt00181a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.
Collapse
Affiliation(s)
- Amanda T Vo
- Department of Chemistry, Boston University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Analysis of the conserved NER helicases (XPB and XPD) and UV-induced DNA damage in Hydra. Biochim Biophys Acta Gen Subj 2018; 1862:2031-2042. [PMID: 29959982 DOI: 10.1016/j.bbagen.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleotide excision repair (NER) pathway is an evolutionarily conserved mechanism of genome maintenance. It detects and repairs distortions in DNA double helix. Xeroderma Pigmentosum group B (XPB) and group D (XPD) are important helicases in NER and are also critical subunits of TFIIH complex. We have studied XPB and XPD for the first time from the basal metazoan Hydra which exhibits lack of organismal senescence. METHODS In silico analysis of proteins was performed using MEGA 6.0, Clustal Omega, Swiss Model, etc. Gene expression was studied by in situ hybridization and qRT-PCR. Repair of CPDs was studied by DNA blot assay. Interactions between proteins were determined by co- immunoprecipitation. HyXPB and HyXPD were cloned in pET28b, overexpressed and helicase activity of purified proteins was checked. RESULTS In silico analysis revealed presence of seven classical helicase motifs in HyXPB and HyXPD. Both proteins revealed polarity-dependent helicase activity. Hydra repairs most of the thymine dimers induced by UVC (500 J/m2) by 72 h post-UV exposure. HyXPB and HyXPD transcripts, localized all over the body column, remained unaltered post-UV exposure indicating their constitutive expression. In spite of high levels of sequence conservation, XPB and XPD failed to rescue defects in human XPB- and XPD-deficient cell lines. This was due to their inability to get incorporated into the TFIIH multiprotein complex. CONCLUSIONS Present results along with our earlier work on DNA repair proteins in Hydra bring out the utility of Hydra as model system to study evolution of DNA repair mechanisms in metazoans.
Collapse
|
21
|
Nag RN, Niggli S, Sousa-Guimarães S, Vazquez-Pianzola P, Suter B. Mms19 is a mitotic gene that permits Cdk7 to be fully active as a Cdk-activating kinase. Development 2018; 145:dev.156802. [PMID: 29361561 PMCID: PMC5825849 DOI: 10.1242/dev.156802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
Abstract
Mms19 encodes a cytosolic iron-sulphur assembly component. We found that Drosophila Mms19 is also essential for mitotic divisions and for the proliferation of diploid cells. Reduced Mms19 activity causes severe mitotic defects in spindle dynamics and chromosome segregation, and loss of zygotic Mms19 prevents the formation of imaginal discs. The lack of mitotic tissue in Mms19P/P larvae can be rescued by overexpression of the Cdk-activating kinase (CAK) complex, an activator of mitotic Cdk1, suggesting that Mms19 functions in mitosis to allow CAK (Cdk7/Cyclin H/Mat1) to become fully active as a Cdk1-activating kinase. When bound to Xpd and TFIIH, the CAK subunit Cdk7 phosphorylates transcriptional targets and not cell cycle Cdks. In contrast, free CAK phosphorylates and activates Cdk1. Physical and genetic interaction studies between Mms19 and Xpd suggest that their interaction prevents Xpd from binding to the CAK complex. Xpd bound to Mms19 therefore frees CAK complexes, allowing them to phosphorylate Cdk1 and facilitating progression to metaphase. The structural basis for the competitive interaction with Xpd seems to be the binding of Mms19, core TFIIH and CAK to neighbouring or overlapping regions of Xpd. Summary: Interaction studies demonstrate that Mms19 forms complexes with Xpd, thereby preventing Xpd-mediated repression of the mitotic kinase activity of the CAK complex and facilitating progression through mitosis.
Collapse
Affiliation(s)
- Rishita Narendra Nag
- Institute of Cell Biology, Department of Biology, University of Bern, 3012 Bern, Switzerland
| | - Selina Niggli
- Institute of Cell Biology, Department of Biology, University of Bern, 3012 Bern, Switzerland
| | - Sofia Sousa-Guimarães
- Institute of Cell Biology, Department of Biology, University of Bern, 3012 Bern, Switzerland
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, Department of Biology, University of Bern, 3012 Bern, Switzerland
| | - Beat Suter
- Institute of Cell Biology, Department of Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
22
|
Ben-Shimon L, Paul VD, David-Kadoch G, Volpe M, Stümpfig M, Bill E, Mühlenhoff U, Lill R, Ben-Aroya S. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. J Cell Sci 2018; 131:jcs.211433. [DOI: 10.1242/jcs.211433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects.
Collapse
Affiliation(s)
- Lilach Ben-Shimon
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Viktoria D. Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Galit David-Kadoch
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Marina Volpe
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim-Ruhr, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Shay Ben-Aroya
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| |
Collapse
|
23
|
Odermatt DC, Gari K. The CIA Targeting Complex Is Highly Regulated and Provides Two Distinct Binding Sites for Client Iron-Sulfur Proteins. Cell Rep 2017; 18:1434-1443. [PMID: 28178521 PMCID: PMC5993189 DOI: 10.1016/j.celrep.2017.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/08/2016] [Accepted: 01/14/2017] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic iron-sulfur assembly (CIA) targeting complex is required for the transfer of an iron-sulfur (Fe-S) cluster to cytoplasmic and nuclear proteins, but how it engages with client proteins is unknown. Here, we show that the complex members MIP18 and CIAO1 associate with the C terminus of MMS19. By doing so, they form a docking site for Fe-S proteins that is disrupted in the absence of either MMS19 or MIP18. The Fe-S helicase XPD seems to be the only exception, since it can interact with MMS19 independently of MIP18 and CIAO1. We further show that the direct interaction between MMS19 and MIP18 is required to protect MIP18 from proteasomal degradation. Taken together, these data suggest a remarkably regulated interaction between the CIA targeting complex and client proteins and raise the possibility that Fe-S cluster transfer is controlled, at least in part, by the stability of the CIA targeting complex itself.
Collapse
Affiliation(s)
- Diana C Odermatt
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Upadhyay AS, Stehling O, Panayiotou C, Rösser R, Lill R, Överby AK. Cellular requirements for iron-sulfur cluster insertion into the antiviral radical SAM protein viperin. J Biol Chem 2017; 292:13879-13889. [PMID: 28615450 DOI: 10.1074/jbc.m117.780122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Indexed: 01/05/2023] Open
Abstract
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.
Collapse
Affiliation(s)
- Arunkumar S Upadhyay
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Oliver Stehling
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Christakis Panayiotou
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ralf Rösser
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Roland Lill
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Anna K Överby
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden, .,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
25
|
Vo A, Fleischman NM, Froehlich MJ, Lee CY, Cosman JA, Glynn CA, Hassan ZO, Perlstein DL. Identifying the Protein Interactions of the Cytosolic Iron–Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets. Biochemistry 2017; 57:2349-2358. [DOI: 10.1021/acs.biochem.7b00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amanda Vo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | - Mary J. Froehlich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Claudia Y. Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jessica A. Cosman
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Calina A. Glynn
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zanub O. Hassan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Deborah L. Perlstein
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Mehdinejad M, Sobhan MR, Mazaheri M, Zare Shehneh M, Neamatzadeh H, Kalantar SM. Genetic Association between ERCC2, NBN, RAD51 Gene
Variants and Osteosarcoma Risk: a Systematic Review and
Meta-Analysis. Asian Pac J Cancer Prev 2017; 18:1315-1321. [PMID: 28610420 PMCID: PMC5555541 DOI: 10.22034/apjcp.2017.18.5.1315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: To date, only a few studies have investigated associations between ERCC2, NBN, and RAD51 variants and risk of developing osteosarcoma. In this systematic review and meta-analysis, we focused on clarifying links. Materials and Methods: We systematically searched PubMed, Google Scholar, and ISI web of knowledge databases to identify relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of associations with fixed effect models. Results: No statistical evidence of association was found between ERCC2 rs13181 (G vs. T: OR= 1.224, 95% CI: 0.970-1.545, p= 0.088; GT vs. TT OR= 1.135, 95% CI: 0.830-1.552, p= 0.428; GG vs. TT: OR= 1.247, 95% CI: 0.738-2.108, p= 0.409; GG+GT vs. TT: OR= 1.174, 95% CI: 0.929-1.484, p= 0.179; GG vs. GT+ TT: OR= 1.476, 95% CI: 0.886-2.460, p= 0.135), ERCC2 rs1799793 (GA+AA vs. GG: OR= 1.279, 95% CI: 0.912-1.793, p= 0.154), NBN rs709816 (OR= 1.047, 95% CI: 0.763-1.437, p= 0.775), NBN rs1805794 (OR= 1.126, 95% CI: 0.789-1.608, p= 0.513), RAD51 rs1801320 (OR= 0.977, 95% CI: 0.675-1.416, p= 0.904), RAD51 rs1801321 (TT+GT vs. GG OR= 1.167, 95% CI: 0.848-1.604, p= 0.343), RAD51 rs12593359 (GG+GT vs. TT OR= 0.761, 95% CI: 0.759-1.470, p= 0.744) polymorphisms and osteosarcomas. The lack of the original data limited our further evaluation of the adjusted ORs concerning age and gender; however, the previous individual studies results indicated the age-and gender-specific effects of two ERCC2 rs1799793 and NBN rs1805794 variants on osteosarcoma risk. Conclusion: The results suggested a lack of association between the ERCC2 (rs13181 and rs1799793), NBN (rs709816 and rs1805794), and RAD51 (rs1801320, rs1801321, and rs12593359) variants with osteosarcoma risk. Further comprehensive and well-designed studies are required to assess the role for ERCC2, NBN, RAD51 variants in osteosarcoma development more adequately.
Collapse
Affiliation(s)
- Masoud Mehdinejad
- Department of Orthopedics, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|
27
|
Compe E, Egly JM. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond. Annu Rev Biochem 2016; 85:265-90. [DOI: 10.1146/annurev-biochem-060815-014857] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 67404 Illkirch Cedex, Commune Urbaine Strasbourg, France; ,
| |
Collapse
|
28
|
Abstract
XPD, as part of the TFIIH complex, has classically been linked to the damage verification step of nucleotide excision repair (NER). However, recent data indicate that XPD, due to its iron-sulfur center interacts with the iron sulfur cluster assembly proteins, and may interact with other proteins in the cell to mediate a diverse set of biological functions including cell cycle regulation, mitosis, and mitochondrial function. In this perspective, after first reviewing the function and some of the key disease causing variants that affect XPD's interaction with TFIIH and the CDK-activating kinase complex (CAK), we investigate these intriguing cellular roles of XPD and highlight important unanswered questions that provide a fertile ground for further scientific exploration.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jochen Kuper
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
29
|
Song YZ, Duan MN, Zhang YY, Shi WY, Xia CC, Dong LH. ERCC2 polymorphisms and radiation-induced adverse effects on normal tissue: systematic review with meta-analysis and trial sequential analysis. Radiat Oncol 2015; 10:247. [PMID: 26627042 PMCID: PMC4665885 DOI: 10.1186/s13014-015-0558-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background The relationship between ERCC2 polymorphisms and the risk of radiotoxicity remains inconclusive. The aim of our study is to systematically evaluate the association between ERCC2 polymorphisms and the risk of radiotoxicity. Methods Publications were identified through a search of the PubMed and Web of Science databases up to August 15, 2015. The pooled odds ratios (ORs) with corresponding 95 % confidence intervals (CIs) were calculated to evaluate the association between ERCC2 polymorphisms and radiotoxicity. Trial sequential analysis (TSA) and power calculation were performed to evaluate the type 1 and type 2 errors. Results Eleven studies involving 2584 patients were ultimately included in this meta-analysis. Conventional meta-analysis identified a significant association between ERCC2 rs13181 polymorphism and radiotoxicity (OR = 0.71, 95 % CI: 0.55-0.93, P = 0.01), but this association failed to get the confirmation of TSA. Conclusions The minor allele of rs13181 polymorphism may confer a protect effect against radiotoxicity. To confirm this correlation at the level of OR = 0.71, an overall information size of approximate 2800 patients were needed. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0558-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Zhe Song
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Mei-Na Duan
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yu-Yu Zhang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Wei-Yan Shi
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Cheng-Cheng Xia
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Li-Hua Dong
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| |
Collapse
|
30
|
Wang Y, Zhao Y, Zhang A, Ma J, Wang Z, Zhang X. A meta-analysis of xeroderma pigmentosum gene D Ls751Gln polymorphism and susceptibility to hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12949-12954. [PMID: 26722489 PMCID: PMC4680434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most common malignant tumors worldwide, but with unclear mechanisms. Xeroderma pigmentosum gene D (XPD) is one important DNA damage repair gene and can be involved in protein mutation. Currently little has been known about XPD polymorphism and HCC susceptibility in Chinese people. This study used a meta-analysis approach to comprehensively investigate the correlation between XPD polymorphism and HCC susceptibility in Chinese population, based on previously published literatures. A computer retrieval system was used to collect all case-control studies about XPD Lys751Gln polymorphism and HCC susceptibility. Data in literatures were extracted for meta-analysis. After the primary screening, four independent studies, which were published in 3 English articles and one Chinese article, were recruited in this study. There were 1,717 samples included in all studies. Using Gln/Gln + Lys/Gln, Lys/Lys + Lys/Gln and Lys allels as the reference, HCC disease alleles including Lys/Lys, Gln/Gln and Gln had OR values (95% CI, I(2)) of 1.007 (0.657~4.672, 91%), 3.516 (0.220~20.661, 48%) and 3.225 (0.278~12.326, 84%), respectively. The polymorphism of XPD751 loci is closely correlated with primary HCC. Lys751Gln polymorphism of XPD gene can be used as one susceptibility factor for HCC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, Xi’an Jiaotong University School of Medicine, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University School of MedicineXi’an 710061, Shanxi, China
| | - Aiyun Zhang
- Department of Infectious Diseases, Infectious Disease Department of General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Juan Ma
- Department of Infectious Diseases, Infectious Disease Department of General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Zhenzhen Wang
- Department of Infectious Diseases, Infectious Disease Department of General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Xu Zhang
- Department of Infectious Diseases, Infectious Disease Department of General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| |
Collapse
|
31
|
Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol 2015; 94:280-91. [DOI: 10.1016/j.ejcb.2015.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|