2
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Schiemer J, Bohm A, Lin L, Merrill-Skoloff G, Flaumenhaft R, Huang JS, Le Breton GC, Chishti AH. Gα13 Switch Region 2 Relieves Talin Autoinhibition to Activate αIIbβ3 Integrin. J Biol Chem 2016; 291:26598-26612. [PMID: 27803165 DOI: 10.1074/jbc.m116.747279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Integrins function as bi-directional signaling transducers that regulate cell-cell and cell-matrix signals across the membrane. A key modulator of integrin activation is talin, a large cytoskeletal protein that exists in an autoinhibited state in quiescent cells. Talin is a large 235-kDa protein composed of an N-terminal 45-kDa FERM (4.1, ezrin-, radixin-, and moesin-related protein) domain, also known as the talin head domain, and a series of helical bundles known as the rod domain. The talin head domain consists of four distinct lobes designated as F0-F3. Integrin binding and activation are mediated through the F3 region, a critically regulated domain in talin. Regulation of the F3 lobe is accomplished through autoinhibition via anti-parallel dimerization. In the anti-parallel dimerization model, the rod domain region of one talin molecule binds to the F3 lobe on an adjacent talin molecule, thus achieving the state of autoinhibition. Platelet functionality requires integrin activation for adherence and thrombus formation, and thus regulation of talin presents a critical node where pharmacological intervention is possible. A major mechanism of integrin activation in platelets is through heterotrimeric G protein signaling regulating hemostasis and thrombosis. Here, we provide evidence that switch region 2 (SR2) of the ubiquitously expressed G protein (Gα13) directly interacts with talin, relieves its state of autoinhibition, and triggers integrin activation. Biochemical analysis of Gα13 shows SR2 binds directly to the F3 lobe of talin's head domain and competes with the rod domain for binding. Intramolecular FRET analysis shows Gα13 can relieve autoinhibition in a cellular milieu. Finally, a myristoylated SR2 peptide shows demonstrable decrease in thrombosis in vivo Altogether, we present a mechanistic basis for the regulation of talin through Gα13.
Collapse
Affiliation(s)
- James Schiemer
- From the Department of Developmental, Molecular, and Chemical Biology.,Sackler School of Graduate Biomedical Sciences, Programs in Cellular and Molecular Physiology
| | - Andrew Bohm
- From the Department of Developmental, Molecular, and Chemical Biology
| | - Li Lin
- From the Department of Developmental, Molecular, and Chemical Biology.,Pharmacology and Experimental Therapeutics and Molecular Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Glenn Merrill-Skoloff
- the Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert Flaumenhaft
- the Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Jin-Sheng Huang
- the Research Resources Center, Protein Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Guy C Le Breton
- the Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Athar H Chishti
- From the Department of Developmental, Molecular, and Chemical Biology, .,Sackler School of Graduate Biomedical Sciences, Programs in Cellular and Molecular Physiology.,Pharmacology and Experimental Therapeutics and Molecular Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
5
|
Dasgupta SK, Le A, Da Q, Cruz M, Rumbaut RE, Thiagarajan P. Wdr1-Dependent Actin Reorganization in Platelet Activation. PLoS One 2016; 11:e0162897. [PMID: 27627652 PMCID: PMC5023164 DOI: 10.1371/journal.pone.0162897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
In resting platelets, the integrin αIIbβ3 is present in a low-affinity “bent” state. During platelet aggregation, intracytoplasmic signals induce conformational changes (inside-out signaling) that result in a “swung-out” conformation competent to bind ligands such as fibrinogen. The cytoskeleton plays an essential role in αIIbβ3 activation. We investigated the role of the actin interacting protein Wdr1 in αIIbβ3 activation. Wdr1-hypomorphic mice had a prolonged bleeding time (> 10 minutes) compared to that of wild-type mice (2.1 ± 0.7 minutes). Their platelets had impaired aggregation to collagen and thrombin. In a FeCl3 induced carotid artery thrombosis model, vessel occlusion in Wdr1-hypomorphic mice was prolonged significantly compared to wild-type mice (9.0 ± 10.5 minutes versus 5.8 ± 12.6 minutes (p = 0.041). Activation-induced binding of JON/A (a conformation-specific antibody to activated αIIbβ3) was significantly less in Wdr1-hypomorphic platelets at various concentrations of collagen, indicating impaired inside-out activation of αIIbβ3, despite a normal calcium response. Actin turnover, assessed by measuring F-actin and G-actin ratios during collagen- and thrombin-induced platelet aggregation, was highly impaired in Wdr1-hypomorphic platelets. Furthermore, talin failed to redistribute and translocate to the cytoskeleton following activation in Wdr1-hypomorphic platelets. These studies show that Wdr1 is essential for talin-induced activation of αIIbβ3 during platelet activation.
Collapse
Affiliation(s)
- Swapan K. Dasgupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
- * E-mail:
| | - Anhquyen Le
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Qi Da
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Miguel Cruz
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Rolando E. Rumbaut
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Perumal Thiagarajan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|