1
|
Ausländer S, Ausländer D, Lang PF, Kemi M, Fussenegger M. Design of Multipartite Transcription Factors for Multiplexed Logic Genome Integration Control in Mammalian Cells. ACS Synth Biol 2020; 9:2964-2970. [PMID: 33213155 PMCID: PMC7684658 DOI: 10.1021/acssynbio.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Synthetic
biology relies on rapid and efficient methods to stably
integrate DNA payloads encoding for synthetic biological systems into
the genome of living cells. The size of designed biological systems
increases with their complexity, and novel methods are needed that
enable efficient and simultaneous integration of multiple payloads
into single cells. By assembling natural and synthetic protein–protein
dimerization domains, we have engineered a set of multipartite transcription
factors for driving heterologous target gene expression. With the
distribution of single parts of multipartite transcription factors
on piggyback transposon-based donor plasmids, we have created a logic
genome integration control (LOGIC) system that allows for efficient
one-step selection of stable mammalian cell lines with up to three
plasmids. LOGIC significantly enhances the efficiency of multiplexed
payload integration in mammalian cells compared to traditional cotransfection
and may advance cell line engineering in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul F. Lang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Maarit Kemi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
2
|
Yao X, Chen C, Wang Y, Dong S, Liu YJ, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer EA, Cui Q, Feng Y. Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules. SCIENCE ADVANCES 2020; 6:6/43/eabd7182. [PMID: 33097546 PMCID: PMC7608827 DOI: 10.1126/sciadv.abd7182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.
Collapse
Affiliation(s)
- Xingzhe Yao
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yifei Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhenling Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Perrett
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Vita N, Borne R, Fierobe HP. Cell-surface exposure of a hybrid 3-cohesin scaffoldin allowing the functionalization of Escherichia coli envelope. Biotechnol Bioeng 2020; 117:626-636. [PMID: 31814100 DOI: 10.1002/bit.27242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/26/2022]
Abstract
Cellulosomes are large plant cell wall degrading complexes secreted by some anaerobic bacteria. They are typically composed of a major scaffolding protein containing multiple receptors called cohesins, which tightly anchor a small complementary module termed dockerin harbored by the cellulosomal enzymes. In the present study, we have successfully cell surface exposed in Escherichia coli a hybrid scaffoldin, Scaf6, fused to the curli protein CsgA, the latter is known to polymerize at the surface of E. coli to form extracellular fibers under stressful environmental conditions. The C-terminal part of the chimera encompasses the hybrid scaffoldin composed of three cohesins from different bacterial origins and a carbohydrate-binding module targeting insoluble cellulose. Using three cellulases hosting the complementary dockerin modules and labeled with different fluorophores, we have shown that the hybrid scaffoldin merged to CsgA is massively exposed at the cell surface of E. coli and that each cohesin module is fully operational. Altogether these data open a new route for a series of biotechnological applications exploiting the cell-surface exposure of CsgA-Scaf6 in various industrial sectors such as vaccines, biocatalysts or bioremediation, simply by grafting the small dockerin module to the desired proteins before incubation with the engineered E. coli.
Collapse
Affiliation(s)
- Nicolas Vita
- Aix-Marseille université, CNRS, LCB, Marseille, France
| | - Romain Borne
- Aix-Marseille université, CNRS, LCB, Marseille, France
| | | |
Collapse
|
4
|
Bule P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA. Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction. Sci Rep 2018; 8:6987. [PMID: 29725056 PMCID: PMC5934362 DOI: 10.1038/s41598-018-25171-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.
Collapse
Affiliation(s)
- Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| | - Virgínia M R Pires
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Victor D Alves
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Ana Luísa Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José A M Prates
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís M A Ferreira
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ilit Noach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal. .,NZYTech genes & enzymes, Estrada do Paço do Lumiar, 1649-038, Lisboa, Portugal.
| |
Collapse
|
5
|
Cellulosome assembly: paradigms are meant to be broken! Curr Opin Struct Biol 2018; 49:154-161. [DOI: 10.1016/j.sbi.2018.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
|
6
|
Zhivin O, Dassa B, Moraïs S, Utturkar SM, Brown SD, Henrissat B, Lamed R, Bayer EA. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:211. [PMID: 28912832 PMCID: PMC5590126 DOI: 10.1186/s13068-017-0898-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo) Bacteroides cellulosolvens is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the B. cellulosolvens genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the B. cellulosolvens cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature. RESULTS The organization of the B. cellulosolvens cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes). CONCLUSIONS The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of B. cellulosolvens, with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.
Collapse
Affiliation(s)
- Olga Zhivin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagar M. Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
| | - Steven D. Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
- Biosciences Division, Energy and Environment Directorate, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University and CNRS, Marseille, France
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Bule P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, Gilbert HJ, Najmudin S, Bayer EA, Fontes CMGA. Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes. Sci Rep 2017; 7:759. [PMID: 28389644 PMCID: PMC5429695 DOI: 10.1038/s41598-017-00919-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
ABTRACT Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens' cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.
Collapse
Affiliation(s)
- Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Victor D Alves
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Vered Israeli-Ruimy
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ana L Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Luís M A Ferreira
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
8
|
Bule P, Alves VD, Leitão A, Ferreira LMA, Bayer EA, Smith SP, Gilbert HJ, Najmudin S, Fontes CMGA. Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome. J Biol Chem 2016; 291:26658-26669. [PMID: 27875311 PMCID: PMC5207176 DOI: 10.1074/jbc.m116.761643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
The assembly of one of Nature's most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.
Collapse
Affiliation(s)
- Pedro Bule
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Victor D Alves
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Leitão
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luís M A Ferreira
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- the Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steven P Smith
- the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Harry J Gilbert
- the Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Shabir Najmudin
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M G A Fontes
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal,
| |
Collapse
|
9
|
Near-Complete Genome Sequence of the Cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01022-15. [PMID: 26404597 PMCID: PMC4582573 DOI: 10.1128/genomea.01022-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, wherein the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions, whereas enzymes are integrated via type-II interactions.
Collapse
|