1
|
García-García CA, Cruz-Gregorio A, Pedraza-Chaverri J, Montaño LF, Rendón-Huerta EP. NDMA enhances claudin-1 and -6 expression viaCYP2E1/ROS in AGS cells. Toxicol In Vitro 2025; 102:105952. [PMID: 39395750 DOI: 10.1016/j.tiv.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Carcinogenic N-nitroso compounds, especially N-nitroso dimethylamine, increase the risk of gastric cancer development. Cytochrome P450-2E1 metabolizes this compound, thus generating an oxidant microenvironment. We aimed to evaluate in gastric adenocarcinoma cells if its effect on CYP2E1 and ROS affects signaling pathways associated with gastric cancer oncogenesis. The impact of N- nitroso dimethylamine upon CYP2E1 and ROS activation/secretion was evaluated by the DCFDA assay protocol, TER measurements, Stat3, pSTAT3, ERK1/2, and pERK1/2 expression, claudins-1 and -6 expression, and finally mRNA values of IL-1β IL-6, IL-8 and TNFα. Our results showed that exposure to N- N-nitroso dimethylamine disrupts the regulation of Stat3 and Erk1/2, alters the expression of claudin-1 and claudin-6 tight junction proteins, and increases the secretion of pro-inflammatory cytokines. These alterations induce a continuous local inflammatory process, an event identified as a gastric cancer promoter. In summary, N-nitroso dimethylamine can disrupt cell mechanisms associated with gastric cancer oncogenesis.
Collapse
Affiliation(s)
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico
| | | | - Luis F Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
2
|
Gao X, Guo X, Yuan W, Jiang S, Lu Z, Luo Q, Zha Y, Wang L, Li S, Wang K, Zhu X, Yao Y. Pyrotinib induces cell death in HER2-positive breast cancer via triggering HSP90-dependent HER2 degradation and ROS/HSF-1-dependent oxidative DNA damage. Cell Stress Chaperones 2024; 29:777-791. [PMID: 39566595 DOI: 10.1016/j.cstres.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
HER2-positive breast cancer (HER2+ BC) is distinguished by its poor prognosis, propensity for early onset, and high risk of recurrence and metastasis. Consequently, anti-HER2-targeted therapy has emerged as a principal strategy in the treatment of this form of breast cancer. Pyrotinib, a novel irreversible pan-HER2 tyrosine kinase inhibitor, has brought fresh hope to patients with advanced HER2+ breast cancer. In this study, we conducted a comprehensive exploration of pyrotinib's antitumor mechanism. The in vitro results showed that pyrotinib significantly inhibited SKBR3 cells viability and induced apoptosis by promoting HER2 endocytosis and ubiquitylation, leading to HER2 degradation through the displacement of HSP90 from HER2. Beyond targeting the HER2 signaling pathway, pyrotinib also induced DNA damage, which was mediated by the activation of the reactive oxygen species/heat shock factor 1 signaling pathway and the downregulation of proliferating cell nuclear antigen expression. Furthermore, the in vivo results demonstrated a pronounced anticancer effect of pyrotinib in the SKBR3 xenograft mouse model, concomitant with a reduction in HER2 expression. In summary, our findings provide novel insights into the mechanism of pyrotinib in the treatment of HER2+ BC.
Collapse
Affiliation(s)
- Xiaomin Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China
| | - Xu Guo
- Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China; Department of Pharmacy, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Wenbo Yuan
- Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China
| | - Sunmin Jiang
- Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China
| | - Zihong Lu
- Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China
| | - Qing Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuan Zha
- Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China; Nanjing Medical University, Wuxi Medical Center, Wuxi, Jiangsu Province, China
| | - Ling Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ying Yao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; Department of Pharmacy, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu Province, China.
| |
Collapse
|
3
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Labbadia J. Potential roles for mitochondria-to-HSF1 signaling in health and disease. Front Mol Biosci 2023; 10:1332658. [PMID: 38164224 PMCID: PMC10757924 DOI: 10.3389/fmolb.2023.1332658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Genetics, Evolution and Environment, Division of Biosciences, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
5
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
6
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
7
|
Transcriptomic Analysis of Testicular Gene Expression in a Dog Model of Experimentally Induced Cryptorchidism. Cells 2022; 11:cells11162476. [PMID: 36010553 PMCID: PMC9406621 DOI: 10.3390/cells11162476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptorchidism, a condition in which testes fail to descend from the abdomen into the scrotum, is a risk factor for infertility and germ cell cancer. Normally, tight junctions between adjacent Sertoli cells in the testes form a blood–testes barrier that regulates spermatogenesis; however, the effect of cryptorchidism on tight junctions is not well-understood. We established a model of heat-induced testicular damage in dogs using surgical cryptorchidism. We sequenced RNA to investigate whether certain transcripts are expressed at higher rates in heat-damaged versus normally descended testes. Claudins, cell adhesion molecules, were relatively highly expressed in cryptorchid testes: claudins 2, 3, 5, 11, and 18 were significantly increased in cryptorchid testes and reduced by orchiopexy. SOX9-positive Sertoli cells were present in the seminiferous tubules in both cryptorchid and control testes. Using real-time PCR and Western blot analysis to compare Sertoli cells cultured at 34 °C and 37 °C, we found that Sertoli cell claudins 2, 3, 5, 11, and 18 were significantly increased at 37 °C; however, accumulation was higher in the G0/G1 phase in Sertoli cells cultured at 34 °C. These results indicate that testicular hyperthermia caused by cryptorchidism affects claudin expression, regulated germ cell death, and the proliferation of Sertoli cells.
Collapse
|
8
|
Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells 2021; 10:cells10081901. [PMID: 34440674 PMCID: PMC8391498 DOI: 10.3390/cells10081901] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.
Collapse
|
9
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
10
|
Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021; 188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are a major source of ATP provision as well as cellular suicidal weapon store. Accumulating evidences demonstrate that mitochondrial bioenergetics, biosynthesis and signaling are important mediators of tumorigenesis. Metabolic plasticity enables cancer cell reprogramming to cope with cellular and environmental alterations, a process requires mitochondria biology. Mitochondrial metabolism emerges to be a promising arena for cancer therapeutic targets. The permeability transition pore (PTP) participates in physiological Ca2+ and ROS homeostasis as well as cell death depending on the open state. The hypothesis that PTP forms from F-ATP synthase provides clues to the potential collaborative role of mitochondrial respiration and PTP in regulating cancer cell fate and metabolic reprogramming.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
11
|
Carpenter RL, Gökmen-Polar Y. HSF1 as a Cancer Biomarker and Therapeutic Target. Curr Cancer Drug Targets 2020; 19:515-524. [PMID: 30338738 DOI: 10.2174/1568009618666181018162117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022]
Abstract
Heat shock factor 1 (HSF1) was discovered in 1984 as the master regulator of the heat shock response. In this classical role, HSF1 is activated following cellular stresses such as heat shock that ultimately lead to HSF1-mediated expression of heat shock proteins to protect the proteome and survive these acute stresses. However, it is now becoming clear that HSF1 also plays a significant role in several diseases, perhaps none more prominent than cancer. HSF1 appears to have a pleiotropic role in cancer by supporting multiple facets of malignancy including migration, invasion, proliferation, and cancer cell metabolism among others. Because of these functions, and others, of HSF1, it has been investigated as a biomarker for patient outcomes in multiple cancer types. HSF1 expression alone was predictive for patient outcomes in multiple cancer types but in other instances, markers for HSF1 activity were more predictive. Clearly, further work is needed to tease out which markers are most representative of the tumor promoting effects of HSF1. Additionally, there have been several attempts at developing small molecule inhibitors to reduce HSF1 activity. All of these HSF1 inhibitors are still in preclinical models but have shown varying levels of efficacy at suppressing tumor growth. The growth of research related to HSF1 in cancer has been enormous over the last decade with many new functions of HSF1 discovered along the way. In order for these discoveries to reach clinical impact, further development of HSF1 as a biomarker or therapeutic target needs to be continued.
Collapse
Affiliation(s)
- Richard L Carpenter
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, United States
| | - Yesim Gökmen-Polar
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Bloomington, IN 47405, United States.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Walker OS, Ragos R, Gurm H, Lapierre M, May LL, Raha S. Delta-9-tetrahydrocannabinol disrupts mitochondrial function and attenuates syncytialization in human placental BeWo cells. Physiol Rep 2020; 8:e14476. [PMID: 32628362 PMCID: PMC7336740 DOI: 10.14814/phy2.14476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
The psychoactive component in cannabis, delta-9-tetrahydrocannabinol, can restrict fetal growth and development. Delta-9-tetrahydrocannabinol has been shown to negatively impact cellular proliferation and target organelles like the mitochondria resulting in reduced cellular respiration. In the placenta, mitochondrial dysfunction leading to oxidative stress prevents proper placental development and function. A key element of placental development is the proliferation and fusion of cytotrophoblasts to form the syncytium that comprises the materno-fetal interface. The impact of delta-9-tetrahydrocannabinol on this process is not well understood. To elucidate the nature of the mitochondrial dysfunction and its consequences on trophoblast fusion, we treated undifferentiated and differentiated BeWo human trophoblast cells, with 20 µM delta-9-tetrahydrocannabinol for 48 hr. At this concentration, delta-9-tetrahydrocannabinol on BeWo cells reduced the expression of markers involved in syncytialization and mitochondrial dynamics, but had no effect on cell viability. Delta-9-tetrahydrocannabinol significantly attenuated the process of syncytialization and induced oxidative stress responses in BeWo cells. Importantly, delta-9-tetrahydrocannabinol also caused a reduction in the secretion of human chorionic gonadotropin and the production of human placental lactogen and insulin growth factor 2, three hormones known to be important in facilitating fetal growth. Furthermore, we also demonstrate that delta-9-tetrahydrocannabinol attenuated mitochondrial respiration, depleted adenosine triphosphate, and reduced mitochondrial membrane potential. These changes were also associated with an increase in cellular reactive oxygen species, and the expression of stress responsive chaperones, HSP60 and HSP70. These findings have important implications for understanding the role of delta-9-tetrahydrocannabinol-induced mitochondrial injury and the role this might play in compromising human pregnancies.
Collapse
Affiliation(s)
- O’Llenecia S. Walker
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- The Graduate Program in Medical SciencesMcMaster UniversityHamiltonONCanada
| | | | - Harmeet Gurm
- Department of PediatricsMcMaster UniversityHamiltonONCanada
| | | | - Linda L. May
- Department of PediatricsMcMaster UniversityHamiltonONCanada
| | - Sandeep Raha
- Department of PediatricsMcMaster UniversityHamiltonONCanada
- The Graduate Program in Medical SciencesMcMaster UniversityHamiltonONCanada
| |
Collapse
|
13
|
Marchese NA, Occhieppo VB, Basmadjian OM, Casarsa BS, Baiardi G, Bregonzio C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur J Neurosci 2019; 51:1026-1041. [PMID: 31646669 DOI: 10.1111/ejn.14605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Amphetamine-induced neuroadaptations involve vascular damage, neuroinflammation, a hypo-functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1 -R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1 -R in the development of amphetamine-induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1 -R antagonist, candesartan, followed by repeated amphetamine. After one week drug-off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine-induced alterations were prevented by the AT1 -R blockade. Our results support the AT1 -R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Belén Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Solange Casarsa
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial Dysfunction in Huntington's Disease; Interplay Between HSF1, p53 and PGC-1α Transcription Factors. Front Cell Neurosci 2019; 13:103. [PMID: 30941017 PMCID: PMC6433789 DOI: 10.3389/fncel.2019.00103] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene, causing the protein to misfold and aggregate. HD progression is characterized by motor impairment and cognitive decline associated with the preferential loss of striatal medium spiny neurons (MSNs). The mechanisms that determine increased susceptibility of MSNs to mutant HTT (mHTT) are not fully understood, although there is abundant evidence demonstrating the importance of mHTT mediated mitochondrial dysfunction in MSNs death. Two main transcription factors, p53 and peroxisome proliferator co-activator PGC-1α, have been widely studied in HD for their roles in regulating mitochondrial function and apoptosis. The action of these two proteins seems to be interconnected. However, it is still open to discussion whether p53 and PGC-1α dependent responses directly influence each other or if they are connected via a third mechanism. Recently, the stress responsive transcription factor HSF1, known for its role in protein homeostasis, has been implicated in mitochondrial function and in the regulation of PGC-1α and p53 levels in different contexts. Based on previous reports and our own research, we discuss in this review the potential role of HSF1 in mediating mitochondrial dysfunction in HD and propose a unifying mechanism that integrates the responses mediated by p53 and PGC-1α in HD via HSF1.
Collapse
Affiliation(s)
- Taylor A. Intihar
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elisa A. Martinez
- Department of Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
16
|
Abstract
Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH-ubiquinone oxidoreductase (Complex I) is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|