1
|
Ji Z, Zhang Y, Hu G, Hong S, Su Z, Zhang Q, Wang L, Wang T, Yu S, Bu Q, Yuan F, Zhu X, Jia G. Hexavalent chromium and cellular senescence: A comprehensive analysis from chromate-exposed occupational population and chromate-inhaled mouse model. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138387. [PMID: 40286659 DOI: 10.1016/j.jhazmat.2025.138387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cellular senescence may predominantly drive the progression of early subclinical injury under conditions of low-dose, long-term occupational exposure. However, previous research has largely overlooked the cellular senescence induced by hexavalent chromium [Cr(VI)]. To bridge the gap, 304 workers from a chromate facility were enrolled, and a mouse model was used to confirm the effects of Cr(VI) on cellular senescence. A 2.7-fold increase in blood Cr was related to the changes of p53 [23.19 (13.06, 34.23)%], serum α-Klotho [11.45 (6.13, 17.04)%], adipsin [-14.11(-22.16, -5.24)%], leptin [-4.32(-6.99, -1.58)%] and resistin [-3.29(-5.54, -0.98)%]. There were significant correlations of blood Cr with DNA methylation of ELOVL2 and hTERT genes. Furthermore, methylation at hTERT Pos1, Pos2, Pos6, and Pos8 significantly mediated the relationship between blood Cr and p53. In the mouse model, we observed significantly higher mRNA expression levels of key genes in the p53/p21 and Rb/p16 pathways and senescence-associated β-galactosidase positive cell ratio in the exposed group. In conclusion, we found that p53 in human peripheral blood cells serves as a Cr(VI)-induced senescence biomarker, with α-Klotho upregulation and adipokines (adipsin, leptin, and resistin) downregulation indicating compensatory responses, as well as hTERT methylation partially mediating Cr(VI)-senescence association.
Collapse
Affiliation(s)
- Zhiqiang Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, PR China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100191, PR China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou, Henan 450052, PR China
| | - Qian Bu
- The Disease Control and Prevention Center of Tongnan District, Chongqing 402660, PR China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, PR China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, PR China.
| |
Collapse
|
2
|
Lai S, Qin H, Wang X, Sun G, Cao L, Fan Z, Zhang H, Guo W. Klotho mediates the association between serum testosterone and severe abdominal aortic calcification: a cross-sectional study from the NHANES database. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04048-4. [PMID: 40116869 DOI: 10.1007/s00210-025-04048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Severe abdominal aortic calcification (SAAC) is acknowledged as a significant contributor to cardiovascular morbidity and mortality, yet its relationship with sex steroid hormones remains unclear. Here, the unexplored link between serum sex steroid hormone levels and SAAC was investigated within the National Health and Nutrition Examination Survey (NHANES) cohort. This study utilized data from NHANES 2013-2014. SAAC was determined using the abdominal aortic calcification 24-point scale. Serum sex steroid hormones were categorized into quintiles 1-5 for analysis. Multivariable logistic regression and subgroup analyses were employed to investigate the potential relationship between serum sex steroid hormones and SAAC risk. Moreover, the Johnson-Neyman plot was applied to identify the presence of any threshold effects. Finally, to reveal the potential pathophysiological mechanism, mediation analyses were performed. A total of 1852 enrolled individuals were included, and the prevalence of SAAC stood at 8.00%. After adjusting for potential confounding factors, multivariate analysis suggested the association of higher level of serum testosterone with a reduced incidence of SAAC (AOR = 0.33, 95%CI:0.13-0.87, P = 0.0247 for quintile 5, P for trend = 0.025). Subgroup analyses demonstrated the negative associations were more significant in participants aged ≥ 60 (AOR = 0.20, 95%CI:0.07-0.56, P = 0.0023 for quintile 5) and non-hypertensive population (AOR = 0.29, 95%CI:0.09-0.96, P = 0.0436 for quintile 5). The restricted cubic spline curve indicated that among the non-hypertensive male population aged ≥ 60, there was a dose-response relationship between serum testosterone and SAAC risk. Furthermore, Johnson-Neyman plot showed that sex hormone binding globulin exhibited a threshold effect on the modulation of the association between serum testosterone and SAAC. Finally, mediation analysis identified the role of Klotho in mediating high levels of serum testosterone's association with SAAC. This study reported that serum testosterone was inversely associated with SAAC, and further highlighted the mediation effect of anti-ageing protein Klotho on that association. Our findings have positive implications for the prevention and treatment of SAAC.
Collapse
Affiliation(s)
- Shengwei Lai
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Vascular Surgery, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Handai Qin
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xinhao Wang
- Department of Vascular Surgery, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Guanchao Sun
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Long Cao
- Department of Vascular Surgery, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, 983, Hospital of Joint Logistic Support Force of PLA, Tianjin, 300142, China
| | - Zheqi Fan
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hongpeng Zhang
- Department of Vascular Surgery, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Wei Guo
- Department of Vascular Surgery, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Salah TM, Rabie MA, El Sayed NS. Renoprotective effect of berberine in cisplatin-induced acute kidney injury: Role of Klotho and the AMPK/mtor/ULK1/Beclin-1 pathway. Food Chem Toxicol 2025; 196:115179. [PMID: 39645019 DOI: 10.1016/j.fct.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (Cisp) is a potent cancer drug, but its use is limited by acute kidney injury (AKI). Autophagy, a process that removes damaged proteins and maintains cellular homeostasis, has been shown to alleviate Cisp-induced AKI. The balance between autophagy and apoptosis is crucial to kidney protection. Treatment with Berberine, known for its antioxidant and anti-inflammatory effects in nephrotoxicity models, was studied for its potential to enhance autophagy in Cisp-induced AKI. Treatment with Berberine (Berb) upregulated Klotho gene expression, enhancing autophagy as indicated by elevated protein levels of pS486-AMPK, pS638-ULK1, and Beclin-1, accompanied by a decrease in pS248-mTOR protein expression. Also, Berb mitigated oxidative stress by reducing elevated MDA levels and boosting SOD activity, which in turn suppressed inflammation by down-regulating HMGB1 and RAGE gene expression, as well as reducing pS536-NF-κB and IL-6 protein contents. Additionally, Berb reduced apoptosis by increasing Bcl-2 and decreasing Bax. This coordinated action preserved kidney function, evidenced by reductions in early injury markers (cystatin C, KIM-1, NGAL) and late markers (creatinine, BUN), along with attenuation of histopathological alterations. The use 3-MA, autophagy inhibitor, nullified these protective effects, highlighting Berb's role in promoting autophagy, reducing oxidative stress, inflammation, and apoptosis, and preserving renal health in Cisp-induced AKI.
Collapse
Affiliation(s)
- Tasneem M Salah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
4
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
5
|
Donate-Correa J, Ferri CM, Mora-Fernández C, Pérez-Delgado N, González-Luis A, Navarro-González JF. Pentoxifylline ameliorates subclinical atherosclerosis progression in patients with type 2 diabetes and chronic kidney disease: a randomized pilot trial. Cardiovasc Diabetol 2024; 23:314. [PMID: 39182114 PMCID: PMC11344929 DOI: 10.1186/s12933-024-02393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is associated with a higher risk of cardiovascular disease (CVD). Pentoxifylline (PTF), a nonselective phosphodiesterase inhibitor with anti-inflammatory, antiproliferative, and antifibrotic actions, has demonstrated renal benefits in both clinical trials and meta-analyses. The present work aimed to study the effects of PTF on the progression of subclinical atherosclerosis (SA) in a population of patients with diabetes and moderate to severe chronic kidney disease (CKD). METHODS In this open-label, randomized controlled, prospective single-center pilot study the evolution of carotid intima-media thickness (CIMT) and ankle-brachial index (ABI) were determined in 102 patients with type 2 diabetes mellitus and CKD assigned to PTF, aspirin or control groups during 18 months. We also determined the variations in the levels of inflammatory markers and Klotho (KL), a protein involved in maintaining cardiovascular health, and their relationship with the progression of SA. RESULTS Patients treated with PTF presented a better evolution of CIMT, increased KL mRNA levels in peripheral blood cells (PBCs) and reduced the inflammatory state. The progression of CIMT values was inversely related to variations in KL both in serum and mRNA expression levels in PBCs. Multiple regression analysis demonstrated that PTF treatment and variations in mRNA KL expression in PBCs, together with changes in HDL, were significant determinants for the progression of CIMT (adjusted R2 = 0.24, P < 0.001) independently of traditional risk factors. Moreover, both variables constituted protective factors against a worst progression of CIMT [OR: 0.103 (P = 0.001) and 0.001 (P = 0.005), respectively]. CONCLUSIONS PTF reduced SA progression assessed by CIMT variation, a beneficial effect related to KL gene expression in PBCs. TRIAL REGISTRATION The study protocol code is PTF-AA-TR-2009 and the trial was registered on the European Union Drug Regulating Authorities Clinical Trials (EudraCT #2009-016595-77). The validation date was 2010-03-09.
Collapse
Grants
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PIFIISC21/08 Fundación Canaria Instituto de Investigación Sanitaria de Canarias
- TESIS2018010110 Agencia Canaria de Investigación, Innovación y Sociedad de la Información
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain
| | - Nayra Pérez-Delgado
- Clinical Analysis Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
6
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yan D. Association between α-klotho levels and adults with COPD in the United States. Front Med (Lausanne) 2024; 11:1361922. [PMID: 39091285 PMCID: PMC11291460 DOI: 10.3389/fmed.2024.1361922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is accompanied by increased inflammation, persistent lung function decline, and extensive lung injury. Klotho, a well-known antiaging protein, has anti-inflammatory and antioxidative effects. However, the effects of klotho on COPD have yet to be thoroughly elucidated. This study examined the association among COPD adults and their α-klotho level. Patients and methods Data were collected from the 2007 to 2012 National Health and Nutrition Examination Survey (NHANES). A total of 676 participants were analyzed and divided into COPD (n = 403) and non-COPD (n = 273) groups. The two groups were compared with respect to clinical characteristics. Logistic regression analysis and a generalized additive model were used to estimate the association between COPD incidence and serum α-klotho concentration. All COPD participants were stratified according to the levels of α-klotho (Q1: <687 pg./mL; Q2: 687-900 pg./mL; Q3: ≥900 pg./mL), and clinical characteristics were compared. Results Non-COPD individuals had higher α-klotho levels than did COPD individuals (863.09 ± 267.13 vs. 817.51 ± 302.20, p < 0.05). Logistic regression analysis revealed that the Q2 and Q3 layers had a lower risk of COPD than did the Q1 layer, with odds ratios (ORs) of 0.73 (0.50, 0.99) for Q2 and 0.58 (0.41, 0.86) for Q3 (p < 0.001). The generalized additive model showed that the risk of COPD gradually decreased with increasing α-klotho concentration when the α-klotho concentration < 1,500 pg./mL, while the risk of COPD increased as the α-klotho concentration increased to ≥1,500 pg./mL. Compared with individuals in the Q2 or Q3 groups, individuals with COPD in the Q1 group were more likely to be current smokers, have lower levels of erythrocytes, and have higher levels of creatinine and leukocytes. Conclusion Increased α-klotho levels were negatively correlated with the risk of COPD in participants over 40 years old with α-klotho <1,500 pg./mL. When α-klotho was ≥1,500 pg./mL, the risk of COPD increased as α-klotho levels increased. Pulmonary ventilation function and the number of hemocytes differed among COPD patients with different levels of α-klotho.
Collapse
Affiliation(s)
- Dan Yan
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, The Affiliated Jinhua Hospital, College of Medicine, Zhejiang University, Jinhua, China
| |
Collapse
|
8
|
Zhao J, Lai Y, Zeng L, Liang G, Jin X, Huang H, Luo M, Liu J. Inverse association of the systemic immune-inflammation index with serum anti-ageing protein Klotho levels in individuals with osteoarthritis: A cross-sectional study. PLoS One 2024; 19:e0300674. [PMID: 38713671 PMCID: PMC11075862 DOI: 10.1371/journal.pone.0300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND The association between the systemic immune-inflammation index (SII) and the serum soluble-Klotho concentration (pg/ml) in osteoarthritis (OA) patients is unknown. This study aimed to investigate the relationship between the SII and serum soluble-Klotho levels in OA patients. METHODS All study data were obtained from the National Health and Nutrition Examination Survey (NHANES) database (n = 1852 OA patients; age range = 40-79 years). The SII and serum Klotho measurement data are from the NHANES mobile examination centre. The SII values were divided into quartiles (Q1-4: 0.02-3.36, 3.36-4.78, 4.79-6.70, and 6.70-41.75). A multivariate linear regression model was constructed to evaluate the association between the SII and serum Klotho levels in OA patients; interaction tests were conducted to test the stability of the statistical results. RESULTS Multivariate linear regression revealed a negative linear relationship between the SII and serum Klotho concentration in OA patients (β = -6.05; 95% CI: -9.72, -2.39). Compared to Q1, Q4 was associated with lower serum Klotho concentrations (β = -59.93; 95% CI: -96.57, -23.28). Compared with that of Q1, the β value of Q2-Q4 showed a downwards trend as the SII increased (Ptrend <0.001). The stratified analysis results indicated that the SII had a greater sensitivity in predicting serum Klotho concentrations in OA patients aged 60-79 years (Pinteraction = 0.028). CONCLUSIONS There was a significant negative linear correlation between the SII and serum Klotho concentration in OA patients. The SII can serve as a predictive indicator of serum Klotho concentrations in OA patients. Klotho may be a potential anti-inflammatory drug for OA treatment.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yinhua Lai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Jin
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Minghui Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| |
Collapse
|
9
|
Hou CY, Hsieh CC, Hung YC, Hsu CC, Hsieh CW, Yu SH, Cheng KC. Evaluation of the amelioration effect of Ganoderma formosanum extract on delaying PM2.5 damage to lung macrophages. Mol Nutr Food Res 2024; 68:e2300667. [PMID: 38282089 DOI: 10.1002/mnfr.202300667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Indexed: 01/30/2024]
Abstract
SCOPE Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1β by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.
Collapse
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Yin-Ci Hung
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
10
|
Shi Y, Xu Z, Pu S, Xu K, Wang Y, Zhang C. Association Between Serum Klotho and Chronic Obstructive Pulmonary Disease in US Middle-Aged and Older Individuals: A Cross-Sectional Study from NHANES 2013-2016. Int J Chron Obstruct Pulmon Dis 2024; 19:543-553. [PMID: 38435124 PMCID: PMC10906733 DOI: 10.2147/copd.s451859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose This study sought to examine the potential association between serum Klotho levels and the prevalence of COPD in the United States. Patients and Methods This study was a cross-sectional analysis involving 4361 adults aged 40-79 years participating in the US National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2016. Our investigation utilized multivariate logistic regression and restricted cubic spline (RCS) regression to explore the potential correlation between serum Klotho concentrations and the prevalence of COPD. Additionally, we conducted stratified and interaction analyses to evaluate the consistency and potential modifiers of this relationship. Results In this study encompassing 4631 patients (with an average age of 57.6 years, 47.5% of whom were male), 445 individuals (10.2%) were identified as having COPD. In the fully adjusted model, ln-transformed serum Klotho was negatively associated with COPD (OR = 0.71; 95% CI: 0.51-0.99; p = 0.043). Meanwhile, compared with quartile 1, serum Klotho levels in quartiles 2-4 yielded odds ratios (ORs) (95% CI) for COPD were 0.84 (0.63~1.11), 0.76 (0.56~1.02), 0.84 (0.62~1.13), respectively. A negative relationship was observed between the ln-transformed serum Klotho and occurrence of COPD (nonlinear: p = 0.140). the association between ln-transformed serum Klotho and COPD were stable in stratified analyses. Conclusion Serum Klotho was negatively associated with the incidence of COPD, when ln-transformed Klotho concentration increased by 1 unit, the risk of COPD was 29% lower.
Collapse
Affiliation(s)
- Yushan Shi
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhangmeng Xu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People’s Republic of China
| | - Shuangshuang Pu
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 25000, People’s Republic of China
| | - Kanghong Xu
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 25000, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 25000, People’s Republic of China
| | - Chunlai Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 25000, People’s Republic of China
| |
Collapse
|
11
|
Zhao J, Jia Y, Zeng L, Huang H, Liang G, Hong K, Sha B, Luo M, Liu J, Yang W. Interplay of Systemic Immune-Inflammation Index and Serum Klotho Levels: Unveiling a New Dimension in Rheumatoid Arthritis Pathology. Int J Med Sci 2024; 21:396-403. [PMID: 38169796 PMCID: PMC10758150 DOI: 10.7150/ijms.89569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Aim: The association between the systemic immune-inflammation index (SII) and serum Klotho concentrations (pg/ml) in patients with rheumatoid arthritis (RA) has not been elucidated. The purpose of this study was to clarify the relationship between the SII and serum Klotho concentrations in RA patients. Methods: All data come from the National Health and Nutrition Examination Survey (NHANES) database in the United States, which included 982 RA patients (age range: 40 to 79 years). The measurement data of the SII and serum Klotho are all from the NHANES mobile examination centre. We constructed a multivariate linear regression model to evaluate the association between the SII and serum Klotho levels in RA patients and conducted a subgroup analysis to test the stability of the statistical results. Results: Multivariate linear regression results indicated a negative linear relationship between the SII and serum Klotho concentrations in RA patients (β = -6.33, 95% CI [confidence interval]: -10.15 to -2.53). Compared to the quartile 1 group, the quartile 4 group was associated with significantly lower (P<0.001) serum Klotho concentrations (β = -120.93, 95% CI: -174.84 to -67.02). Compared with the quartile 1 group, with the increase in the SII, the β value showed a decreasing trend (P trend < 0.001). The subgroup analysis showed that none of the covariates affected the stability of these results (all P for interaction ≥ 0.05). Conclusion: There is a significant negative linear association between the SII and serum Klotho concentrations in RA patients. The SII can serve as a predictive indicator of serum Klotho concentrations in RA patients, and Klotho may be a potential anti-inflammatory target for RA treatment.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Yifan Jia
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingfeng Zeng
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Guihong Liang
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghui Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Jun Liu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| |
Collapse
|
12
|
Han YY, Celedón JC, Forno E. Serum α-Klotho level, lung function, airflow obstruction and inflammatory markers in US adults. ERJ Open Res 2023; 9:00471-2023. [PMID: 37936898 PMCID: PMC10626412 DOI: 10.1183/23120541.00471-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Background α-Klotho is a pleiotropic protein that may have anti-oxidative and anti-inflammatory properties in the lung, but its role in airflow obstruction or lung function is largely unknown. Methods This was a cross-sectional study of 6046 adults aged 40-79 years in the US National Health and Nutrition Examination Survey (NHANES) 2007-2012. We used multivariable logistic or linear regression to examine the relation between serum α-Klotho level and airflow obstruction, defined as forced expiratory volume in 1 s (FEV1) <80% of predicted and FEV1/forced vital capacity (FVC) ratio <0.70; FEV1, FVC and FEV1/FVC as percentage of predicted; and inflammatory markers in blood (white blood cell count, eosinophils, neutrophils and C-reactive protein (CRP)). Results α-Klotho levels in the second to fourth quartiles (Q2-Q4) were associated with significantly decreased odds of airflow obstruction (adjusted OR for Q2-Q4 versus lowest quartile (Q1) 0.54 (95% CI 0.35-0.81)) in never-smokers and ex-smokers with <10 pack-years of smoking, but not in current smokers or ex-smokers with ≥10 pack-years of smoking. In all participants, each unit increment in log10-transformed α-Klotho level was significantly associated with 5.0% higher FEV1 % pred and 3.7% higher FVC % pred. Higher α-Klotho was also associated with lower eosinophils, neutrophils and CRP in participants both with and without airflow obstruction. Conclusions Higher serum α-Klotho is associated with lower inflammatory markers and higher lung function in adults with and without airflow obstruction, and with decreased odds of airflow obstruction in never-smokers and ex-smokers with <10 pack-years of smoking. Further studies are warranted to replicate our findings and evaluate underlying mechanisms.
Collapse
Affiliation(s)
- Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary, Allergy and Sleep Medicine, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
Lucas V, Cavadas C, Aveleira CA. Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacol Rev 2023; 75:675-713. [PMID: 36732079 DOI: 10.1124/pharmrev.122.000622] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
An increase in life expectancy in developed countries has led to a surge of chronic aging-related diseases. In the last few decades, several studies have provided evidence of the prominent role of cellular senescence in many of these pathologies. Key traits of senescent cells include cell cycle arrest, apoptosis resistance, and secretome shift to senescence-associated secretory phenotype resulting in increased secretion of various intermediate bioactive factors important for senescence pathophysiology. However, cellular senescence is a highly phenotypically heterogeneous process, hindering the discovery of totally specific and accurate biomarkers. Also, strategies to prevent the pathologic effect of senescent cell accumulation during aging by impairing senescence onset or promoting senescent cell clearance have shown great potential during in vivo studies, and some are already in early stages of clinical translation. The adaptability of these senotherapeutic approaches to human application has been questioned due to the lack of proper senescence targeting and senescence involvement in important physiologic functions. In this review, we explore the heterogeneous phenotype of senescent cells and its influence on the expression of biomarkers currently used for senescence detection. We also discuss the current evidence regarding the efficacy, reliability, development stage, and potential for human applicability of the main existing senotherapeutic strategies. SIGNIFICANCE STATEMENT: This paper is an extensive review of what is currently known about the complex process of cellular senescence and explores its most defining features. The main body of the discussion focuses on how the multifeature fluctuation of the senescence phenotype and the physiological role of cellular senescence have both caused a limitation in the search for truly reliable senescence biomarkers and the progression in the development of senotherapies.
Collapse
Affiliation(s)
- Vasco Lucas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Célia Alexandra Aveleira
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Donate-Correa J, Martín-Núñez E, Martin-Olivera A, Mora-Fernández C, Tagua VG, Ferri CM, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, Pérez-Delgado N, González-Luis A, Navarro-González JF. Klotho inversely relates with carotid intima- media thickness in atherosclerotic patients with normal renal function (eGFR ≥60 mL/min/1.73m 2): a proof-of-concept study. Front Endocrinol (Lausanne) 2023; 14:1146012. [PMID: 37274332 PMCID: PMC10235765 DOI: 10.3389/fendo.2023.1146012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Klotho protein is predominantly expressed in the kidneys and has also been detected in vascular tissue and peripheral blood circulating cells to a lesser extent. Carotid artery intima-media thickness (CIMT) burden, a marker of subclinical atherosclerosis, has been associated with reductions in circulating Klotho levels in chronic kidney disease patients, who show reduced levels of this protein at all stages of the disease. However, the contribution of serum Klotho and its expression levels in peripheral blood circulating cells and in the carotid artery wall on the CIMT in the absence of kidney impairment has not yet been evaluated. METHODS We conducted a single-center study in 35 atherosclerotic patients with preserved kidney function (eGFR≥60 mL/min/1.73m2) subjected to elective carotid surgery. Serum levels of Klotho and cytokines TNFa, IL6 and IL10 were determined by ELISA and transcripts encoding for Klotho (KL), TNF, IL6 and IL10 from vascular segments were measured by qRT-PCR. Klotho protein expression in the intima-media and adventitia areas was analyzed using immunohistochemistry. RESULTS APatients with higher values of CIMT showed reduced Klotho levels in serum (430.8 [357.7-592.9] vs. 667.8 [632.5-712.9] pg/mL; p<0.001), mRNA expression in blood circulating cells and carotid artery wall (2.92 [2.06-4.8] vs. 3.69 [2.42-7.13] log.a.u., p=0.015; 0.41 [0.16-0.59] vs. 0.79 [0.37-1.4] log.a.u., p=0.013, respectively) and immunoreactivity in the intimal-medial area of the carotids (4.23 [4.15-4.27] vs. 4.49 [4.28-4.63] log µm2 p=0.008). CIMT was inversely related with Klotho levels in serum (r= -0.717, p<0.001), blood mRNA expression (r=-0.426, p=0.011), and with carotid artery mRNA and immunoreactivity levels (r= -0.45, p=0.07; r= -0.455, p= 0.006, respectively). Multivariate analysis showed that serum Klotho, together with the gene expression levels of tumor necrosis factor TNFa in blood circulating cells, were independent determinants of CIMT values (adjusted R2 = 0.593, p<0.001). DISCUSSION The results of this study in subjects with eGFR≥60mL/min/1.73m2 show that patients with carotid artery atherosclerosis and higher values of CIMT present reduced soluble Klotho levels, as well as decreased KL mRNA expression in peripheral blood circulating cells and Klotho protein levels in the intima-media of the carotid artery wall.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Alberto Martin-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | | | | | | | | | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Nefrología, HUNSC, Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Onmaz M, Demirbas N, Eryavuz Onmaz D, Kutlu R, Unlu A. Effect of cigarette smoking on serum methylarginine and α-klotho levels. Nutr Metab Cardiovasc Dis 2023; 33:602-609. [PMID: 36710115 DOI: 10.1016/j.numecd.2022.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Smoking causes many diseases such as cardiovascular, lung diseases, stroke and premature aging. However, the role of smoking in the pathogenesis of these diseases is unclear. Increasing evidence suggests that methylarginine pathway metabolites and α-klotho may be strong markers for pathologies such as premature aging, endothelial dysfunction, and oxidant damage. Therefore, the study aimed to measure the serum levels of arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), N-monomethyl-l-arginine (L-NMMA), and α-klotho levels in smokers. METHODS AND RESULTS This case-control analytical study included 65 smokers and 71 non-smokers. Sociodemographic characteristics, routine biochemistry parameters, Framingham risk scores and Fagerström Nicotine Dependence Test (FTND) were recorded. Serum methylarginine and α-klotho levels were analyzed by tandem mass spectrometry and enzyme-linked immunosorbent assay (ELISA), respectively. Serum ADMA (p < 0.001), L-NMMA (p = 0.024), SDMA (p < 0.001) levels of smokers were higher than non-smokers, and serum α-klotho (p < 0.001) and arginine levels (p < 0.001) were lower. There was a positive correlation between serum ADMA levels with FNDT, age and pack/year in smokers, while there was a negative correlation between klotho levels and age. A positive correlation was found between serum ADMA levels, Framingham risk score and age in non-smokers. CONCLUSION Smoking is related to premature aging and is a strong risk factor for various diseases such as cardiovascular, inflammatory, and renal diseases. Elevated serum methylarginine and decreased serum klotho levels were found in smokers. Therefore, our findings suggest that smoking may be involved in the pathogenesis of these diseases by affecting α-klotho and methylarginine-related pathways.
Collapse
Affiliation(s)
- Mustafa Onmaz
- Necmettin Erbakan University Faculty of Medicine, Department of Family Medicine, Konya, Turkey.
| | - Nur Demirbas
- Necmettin Erbakan University Faculty of Medicine, Department of Family Medicine, Konya, Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ruhusen Kutlu
- Necmettin Erbakan University Faculty of Medicine, Department of Family Medicine, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
16
|
Wang Y, Xiong X, Wang K, Bao Y, Zhang T, Ainiwaer D, Wang G, Li H, Sun Z. Peripheral Klotho protects the kidney and brain by regulating M2a/M2c macrophage polarization in d-gal-treated aged mice. Tissue Cell 2023. [PMID: 36863110 DOI: 10.1016/j.tice.2023.102049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In elderly individuals, aging can cause changes in the structure and function of one or more organs, increasing their susceptibility to various damage factors, especially the heart, kidney, brain and other important organs. Therefore, the incidence of cardiovascular disease, neurodegenerative diseases and chronic kidney disease in the elderly population is significantly higher than that in the general population. In our previous study, the hearts of aged mice did not express the antiaging protein Klotho (KL), but peripheral elevation of KL may significantly delay cardiac aging. The kidney and brain are the main organs that produce KL, but the effects and mechanism of peripheral KL supplementation on the kidney and hippocampus are still unclear. To study the effect and possible mechanism of KL against kidney and hippocampus aging, 60 male BALB/c mice were randomly divided into the Adult group, the KL group, the D-gal-induced Aged group, and the KL + Aged group. The results showed that KL increased anti-inflammatory M2a/M2c macrophages in the kidney and hippocampus of aging mice, significantly reduced tissue inflammation and oxidative stress, and improved organ function and aging status. More importantly, we demonstrate that despite the impermeable bloodbrain barrier in mice, peripherally administered KL surprisingly enhances M2-type microglia polarization, induces cognitive enhancement and reduces neuroinflammation. Cellular experimental results suggest that KL may play a role in delaying senescence by regulating the TLR4/Myd88/NF-κB signaling pathway to regulate macrophage polarization and reduce aging-related inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xicheng Xiong
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Kun Wang
- Laboratory Animal Centre, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yali Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Gang Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Huihui Li
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China.
| |
Collapse
|
17
|
Qiu J, Liu X, Yang G, Gui Z, Ding S. MiR-29b level-mediated regulation of Klotho methylation via DNMT3A targeting in chronic obstructive pulmonary disease. Cells Dev 2023; 174:203827. [PMID: 36758856 DOI: 10.1016/j.cdev.2023.203827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by chronic bronchitis and emphysema. Cigarette smoke extract (CSE) is the predominant cause of COPD. This study aimed to investigate the effects of miR-29b and their underlying mechanisms in a COPD cell model. MiR-29b and DNMT3A expression in lung tissue samples (taken at least 5 cm away from the tumor lesion) of NSCLC cases with smoking (n = 30), without smoking (n = 30), and with COPD (with smoking) (n = 30) was researched by qRT-PCR. A medium containing 10 % CSE was employed to induce murine alveolar macrophage MH-S cells to establish COPD cells. 5-Aza-cdr (5-AZA-2'-deoxycytidine) was used to block DNMT3A. The relationship and interaction between miR-29b and DNMT3A were validated through the dual luciferase reporter assay. The expression levels of macrophage M1 polarization marker proteins iNOS and TNF-α, DNMT3A, and Klotho protein were monitored using western blotting. The methylation levels of the miR-29b precursor gene and Klotho promoter were detected by quantitative methylation-specific PCR (MS-qPCR). The levels of IL-1β, IL-6, and TNF-α in cell culture medium were detected via ELISA. It was found that the expression of miR-29b was downregulated, as a result of increased DNA methylation, and that of DNMT3A was upregulated in the lung tissues of NSCLC cases with COPD (with smoking). DNMT3A expression was negatively correlated with miR-29b expression in the lung tissues of NSCLC cases with COPD (with smoking). In addition, miR-29b expression was distinctly downregulated in CSE-induced MH-S cells and inhibited CSE-induced M1 polarization and inflammation. Importantly, DNMT3A was identified as a direct target gene of miR-29b. MiR-29b is negatively regulated by DNMT3A-mediated DNA methylation. Moreover, Klotho expression was downregulated and the Klotho promoter methylation level was increased in lung tissues of NSCLC cases with COPD (with smoking). The negative feedback between miR-29b and DNMT3A modulates CSE-induced M1 polarization and inflammation in macrophages as well as Klotho promoter methylation in CSE-mediated MH-S. Collectively, these findings indicate that the miR-29b level in COPD controls Klotho methylation via DNMT3, which maybe a promising target for the treatment of COPD.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuming Liu
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Guilan Yang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Zhenzhen Gui
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Shengquan Ding
- Department of Intensive Care Medicine, Ningxia Corps Hospital of Armed Police Force, Yinchuan 750004, China
| |
Collapse
|
18
|
Wang W, Zhang S, Cui L, Chen Y, Xu X, Wu L. Bufei Yishen Formula Inhibits the Cell Senescence in COPD by Up-Regulating the ZNF263 and Klotho Expression. Int J Chron Obstruct Pulmon Dis 2023; 18:533-539. [PMID: 37065635 PMCID: PMC10094478 DOI: 10.2147/copd.s383295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/24/2023] [Indexed: 04/18/2023] Open
Abstract
Background Bufei Yishen formula (BYF) is an effective prescription for the clinical treatment of chronic obstructive pulmonary disease (COPD). However, the molecular mechanism by which it exerts its pharmacological effects remains to be explored. Methods The human bronchial cell line BEAS-2B was treated with cigarette smoke extract (CSE). Cellular senescence markers were detected by Western blot and ELISA. Potential transcription factor of klotho was predicted using JASPAR and USCS databases. Results CSE induced cellular senescence with intracellular accumulation of cellular senescence biomarkers (p16, p21 and p27) and increased secretion of senescence-related secretory phenotypic (SASP) factors (IL-6, IL-8, and CCL3). In contrast, BYF treatment inhibited CSE-induced cellular senescence. CSE suppressed the transcription, expression and secretion of klotho, whereas BYF treatment rescued its transcription, expression and secretion. CSE downregulated the protein level of ZNF263, whereas BYF treatment rescued the expression of ZNF263. Furthermore, ZNF263-overexpressing BEAS-2B cells could inhibit CSE-induced cellular senescence and SASP factor secretion by upregulating the expression of klotho. Conclusion This study revealed a novel pharmacological mechanism by which BYF alleviates clinical symptoms of COPD patients, and regulating ZNF263 and klotho expression may be beneficial to the treatment and prevention of COPD.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Gerontology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, People’s Republic of China
| | - Shaohong Zhang
- Department of Gerontology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, People’s Republic of China
| | - Lei Cui
- Department of Respiratory Medicine, Huaian Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Huaian, People’s Republic of China
| | - Yu Chen
- Department of Respiratory Medicine, Huaian Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Huaian, People’s Republic of China
| | - Xingxing Xu
- Department of Respiratory Medicine, Huaian Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Huaian, People’s Republic of China
- Correspondence: Longchuan Wu; Xingxing Xu, Email ;
| | - Longchuan Wu
- Department of Respiratory Medicine, Huaian Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Huaian, People’s Republic of China
- Correspondence: Longchuan Wu; Xingxing Xu, Email ;
| |
Collapse
|
19
|
Nakao VW, Mazucanti CHY, de Sá Lima L, de Mello PS, de Souza Port’s NM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Neuroprotective action of α-Klotho against LPS-activated glia conditioned medium in primary neuronal culture. Sci Rep 2022; 12:18884. [PMID: 36344527 PMCID: PMC9640694 DOI: 10.1038/s41598-022-21132-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
The α-Klotho is an anti-aging protein that, when overexpressed, extends the life span in humans and mice. It has an anti-inflammatory and protective action on renal cells by inhibiting NF-κB activation and production of inflammatory cytokines in response to TNF-α. Furthermore, studies have shown the neuroprotective effect of α-Klotho against neuroinflammation on different conditions, such as aging, animal models of neurodegenerative diseases, and ischemic brain injury. This work aimed to evaluate the effects of α-Klotho protein on primary glial cell culture against the proinflammatory challenge with LPS and how this could interfere with neuronal health. Cortical mixed glial cells and purified astrocytes were pretreated with α- α-Klotho and stimulated with LPS followed by TNFα, IL-1β, IL-6, IFN-γ levels, and NF-κB activity analysis. Conditioned medium from cortical mixed glia culture treated with LPS (glia conditioned medium (GCM) was used to induce neuronal death of primary cortical neuronal culture and evaluate if GCM-KL (medium from glia culture pretreated α-Klotho followed by LPS stimulation) or GCM + LPS in the presence of KL can reverse the effect. LPS treatment in glial cells induced an increase in proinflammatory mediators such as TNF-α, IL-1β, IL-6, and IFN-γ, and activation of astrocyte NF-κB. GCM treated-cortical neuronal culture induced a concentration-dependent neuronal death. Pretreatment with α-Klotho decreased TNF-α and IL-6 production, reverted NF-κB activation, and decreased neuronal death induced by GCM. In addition, KL incubation together with GCM + LPS completely reverts the neuronal toxicity induced by low concentration of GCM-LPS. These data suggest an anti-inflammatory and neuroprotective effect of α-Klotho protein in the CNS. This work demonstrated the therapeutic potential of α-Klotho in pathological processes which involves a neuroinflammatory component.
Collapse
Affiliation(s)
- Vinicius Wanatable Nakao
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Caio Henrique Yokowama Mazucanti
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil ,grid.419475.a0000 0000 9372 4913Laboratory of Clinical Investigation, National Institute on Aging (NIA), Bethesda, USA
| | - Larissa de Sá Lima
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Paloma Segura de Mello
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Natacha Medeiros de Souza Port’s
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Paula Fernanda Kinoshita
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Sciences, University Federal of Goias, Goiana, Brazil
| | - Elisa Mitiko Kawamoto
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Cristoforo Scavone
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| |
Collapse
|
20
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
21
|
Zhang F, Guo F, Liu Y, Zhang Y, Li D, Yang H. Shema Oral Liquid Ameliorates the Severity of LPS-Induced COPD via Regulating DNMT1. Front Pharmacol 2022; 13:903593. [PMID: 35754478 PMCID: PMC9214040 DOI: 10.3389/fphar.2022.903593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is the most common respiratory disease with high morbidity and mortality. Shema oral liquid (Shema) is a traditional Chinese medicine (TCM) approved for the treatment of respiratory diseases. Clinical applications have shown that Shema has antitussive, expectorant, and anti-asthmatic effects, but its definite efficacy to COPD is still unclear. This study aimed to explore the therapeutic capacity and potential mechanism of Shema in treatment of COPD. Methods: Network pharmacology was used to investigated the possible pharmacological mechanism of Shema against COPD. A rat model of lipopolysaccharide (LPS)-induced COPD was established to determine pulmonary ventilatory function, serum inflammatory cytokines, and pulmonary pathological change. Subsequently, tandem mass tag (TMT)-based quantitative proteomics was used to further reveal the therapeutic targets related with Shema against COPD. Western blot was finally performed to validate the expression of targeted proteins screened by proteomics research. Results: Network pharmacology analysis indicated that Shema against COPD mainly inhibited the inflammation and affected the immune system. The animal experiment demonstrated that Shema treatment protected the lung tissue from LPS induced injury, inhibited the levels of serum inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α, and improved the respiratory ventilatory function by upregulating forced expiratory volume in 0.1 s (FEV0.1), FEV0.3, forced vital capacity (FVC), and the ratios of FEV0.1 (0.3)/FVC. Proteomic analysis and western blot both proved that Shema inhibited the expression of DNA methyltransferase 1 (DNMT1) in the lung tissue. Conclusion: The therapeutic mechanism of Shema in treatment of COPD may involve inhibiting inflammatory response, improving pulmonary ventilatory function, and alleviating LPS-induced lung injury through regulating the expression of DNMT1. This study also shed light on the development of therapeutic strategies in treating COPD by intervening DNMT-related pathways.
Collapse
Affiliation(s)
- Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Yao Y, Long Y, Du FW, Zhao Y, Luo XB. Association between serum cotinine and α-Klotho levels among adults: Findings from the National Health and Nutrition Examination Survey 2007–2016. Tob Induc Dis 2022; 20:57. [PMID: 35799621 PMCID: PMC9194926 DOI: 10.18332/tid/144622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Serum cotinine is a sensitive and specific marker of tobacco smoke exposure. α-Klotho is an anti-ageing molecule, which plays an important role in several diseases. We aimed to examine the association between smoke exposure indicated by the serum cotinine and α-Klotho levels, as previous reports regarding the level of α-Klotho in smokers have been inconsistent. METHODS This secondary dataset analysis included 9833 participants (aged 40–79 years; 47.0% females and 53.0% males) from the US National Health and Nutrition Examination Survey 2007–2016. Independent variables were serum cotinine level, age, sex, race, body mass index (BMI), and alcohol consumption. The outcome variable was serum α-Klotho level. Multiple linear regression analysis was used to examine the association between serum cotinine and α-Klotho levels. RESULTS The serum cotinine level was negatively associated with the α-Klotho level (β= -0.107, 95% CI: -0.155 to -0.059, p<0.0001) after adjusting for age, BMI, sex, race, and alcohol consumption. The α-Klotho level in participants with cotinine ≥3 ng/mL decreased by 44.514 pg/mL (p<0.0001) compared to that in participants with cotinine <3 ng/mL. There is a non-linear relationship between serum cotinine and α-Klotho levels. The piecewise linear models indicated a significant threshold effect between serum cotinine and α-Klotho levels. On the left of the inflection point (cotinine <130 ng/mL), the serum cotinine level increased with decreased α-Klotho level (β= -0.519, 95% CI: -0.682 to -0.356). On the right of the inflection point (cotinine ≥130 ng/mL), the serum cotinine level increased with increased α-Klotho level (β=0.085, 95% CI: 0.000 to 0.170). CONCLUSIONS Based on our study results, serum cotinine level was associated with the serum α-Klotho level.
Collapse
Affiliation(s)
- Yu Yao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Ying Long
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Fa-Wang Du
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Yong Zhao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Xiao-Bin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| |
Collapse
|
23
|
Huang D, Su L, He C, Chen L, Huang D, Peng J, Yang F, Cao Y, Luo X. Pristimerin alleviates cigarette smoke-induced inflammation in chronic obstructive pulmonary disease via inhibiting NF-κB pathway. Biochem Cell Biol 2022; 100:223-235. [PMID: 35833632 DOI: 10.1139/bcb-2021-0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease (COPD), which can exacerbate inflammation and oxidative stress. Pristimerin (Pris) is a natural compound with antioxidant and anti-inflammatory effects. We managed to evaluate the protective effects of Pris on CS-induced COPD. The CS-induced COPD mice model and cell model were constructed. The effects of Pris treatment on lung function, inflammatory cell infiltration, myeloperoxidase (MPO), and pathological changes of lung tissues in mice model were evaluated. The impacts of Pris treatment on inflammatory factors, chemokines, and oxidative stress parameters in mice lung tissues and cells were determined by kits. The viability of human bronchial epithelial cells after Pris treatment was tested by CCK-8. The activation of NF-κB pathway was confirmed by Western blot and immunofluorescence. CS treatment impaired lung function, reduced weight of mice, and enhanced inflammatory cell infiltration, MPO, and lung tissue damage, but these effects of CS were reversed by Pris treatment. Furthermore, Pris treatment downregulated the levels of malondialdehyde, IL-6, IL-1β, TNF-α, CXCL1, and CXLC2, but upregulated superoxide dismutase and catalase levels. Pris treatment could overturn CS-induced activation of the NF-κB pathway. Pris alleviates CS-induced COPD by inactivating NF-κB pathway.
Collapse
Affiliation(s)
- Dongsheng Huang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Lianhui Su
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Chaowen He
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Licheng Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Dongxuan Huang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Jianfeng Peng
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Yahui Cao
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Xiaohua Luo
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| |
Collapse
|
24
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
25
|
Zhong S, Yang L, Liu N, Zhou G, Hu Z, Chen C, Wang Y. Identification and validation of aging-related genes in COPD based on bioinformatics analysis. Aging (Albany NY) 2022; 14:4336-4356. [PMID: 35609226 PMCID: PMC9186770 DOI: 10.18632/aging.204064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disorder. One of the major risk factors for COPD progression is aging. Therefore, we investigated aging-related genes in COPD using bioinformatic analyses. Firstly, the Aging Atlas database containing 500 aging-related genes and the Gene Expression Omnibus database (GSE38974) were utilized to screen candidates. A total of 24 candidate genes were identified related to both COPD and aging. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that this list of 24 genes was enriched in genes associated with cytokine activity, cell apoptosis, NF-κB and IL-17 signaling. Four of these genes (CDKN1A, HIF1A, MXD1 and SOD2) were determined to be significantly upregulated in clinical COPD samples and in cigarette smoke extract-exposed Beas-2B cells in vitro, and their expression was negatively correlated with predicted forced expiratory volume and forced vital capacity. In addition, the combination of expression levels of these four genes had a good discriminative ability for COPD patients (AUC = 0.794, 95% CI 0.743-0.845). All four were identified as target genes of hsa-miR-519d-3p, which was significantly down-regulated in COPD patients. The results from this study proposed that regulatory network of hsa-miR-519d-3p/CDKN1A, HIF1A, MXD1, and SOD2 closely associated with the progression of COPD, which provides a theoretical basis to link aging effectors with COPD progression, and may suggest new diagnostic and therapeutic targets of this disease.
Collapse
Affiliation(s)
- Shan Zhong
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P.R. China
| | - Li Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Naijia Liu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Guangkeng Zhou
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Zhangli Hu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Yun Wang
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| |
Collapse
|
26
|
Martín-Núñez E, Pérez-Castro A, Tagua VG, Hernández-Carballo C, Ferri C, Pérez-Delgado N, Rodríguez-Ramos S, Cerro-López P, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, González-Luis A, Martín-Olivera A, Morales-Estévez CC, Mora-Fernández C, Donate-Correa J, Navarro-González JF. Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Sci Rep 2022; 12:8422. [PMID: 35590090 PMCID: PMC9120199 DOI: 10.1038/s41598-022-12548-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. New therapeutic strategies are aimed to modulate the athero-inflammatory process that partially orchestrates underlying vascular damage. Peripheral blood circulating cells include different immune cells with a central role in the development of the atherogenic inflammatory response. The anti-aging protein α-Klotho has been related to protective effects against CVD. KL is expressed in monocytes, macrophages, and lymphocytes where it exerts anti-inflammatory effects. In this work, we analyse the relationships of the levels of inflammatory markers with the expression of the KL gene in PBCCs and with the serum levels of soluble KL in atherosclerotic vascular disease. For this, we conducted a cross-sectional single-center case-control study including a study group of 76 CVD patients and a control group of 16 cadaveric organ donors without medical antecedent or study indicating CVD. Vascular artery fragments and whole blood and serum samples were obtained during elective or organ retrieval surgery. Serum levels of sKL, TNFα and IL10, and gene expression levels of KL, TNF, IL10, NFKB1, DNMT1, and DNMT3A in PBCCs were measured. In these cells, we also determined KL promoter methylation percentage. Histological and immunohistochemical analyses were employed to visualize atherosclerotic lesions and to measure IL10 and TNFα levels in vascular fragments. Patients with CVD presented higher values of proinflammatory markers both at systemic and in the vasculature and in the PBCCs, compared to the control group. In PBCCs, CVD patients also presented lower gene expression levels of KL gene (56.4% difference, P < 0.001), higher gene expression levels of DNMT1 and DNMT3A (P < 0.0001, for both) and a higher methylation status of in the promoter region of KL (34.1 ± 4.1% vs. 14.6 ± 3.4%, P < 0.01). In PBCCs and vasculature, KL gene expression correlated inversely with pro-inflammatory markers and directly with anti-inflammatory markers. sKL serum levels presented similar associations with the expression levels of pro- and anti-inflammatory markers in PBCCs. The differences in KL expression levels in PBCCs and in serum sKL levels with respect to control group was even greater in those CVD patients with macroscopically observable atheromatous plaques. We conclude that promoter methylation-mediated downregulation of KL gene expression in PBCCs is associated with the pro-inflammatory status in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Carolina Hernández-Carballo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Nayra Pérez-Delgado
- Servicio de Análisis Clínicos, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Sergio Rodríguez-Ramos
- Coordinación de Trasplantes, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Purificación Cerro-López
- Coordinación de Trasplantes, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Ángel López-Castillo
- Servicio de Cirugía Vascular, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Alejandro Delgado-Molinos
- Servicio de Cirugía Vascular, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Victoria Castro López-Tarruella
- Servicio de Anatomía Patológica, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Miguel A Arévalo-Gómez
- Departamento de Anatomía E Histología Humana, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
- Escuela de Doctorado Y Estudios de Posgrado, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain
| | - Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain.
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010, Santa Cruz de Tenerife, Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
27
|
Gayan‐Ramirez G, Janssens W. Vitamin D Actions: The Lung Is a Major Target for Vitamin D, FGF23, and Klotho. JBMR Plus 2021; 5:e10569. [PMID: 34950829 PMCID: PMC8674778 DOI: 10.1002/jbm4.10569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is well known for its role as a calcium regulator and in maintenance of phosphate homeostasis in musculoskeletal health, and fibroblast growth factor 23 (FGF23) and its coreceptor α-klotho are known for their roles as regulators of serum phosphate levels. However, apart from these classical actions, recent data point out a relevant role of vitamin D and FGF23/klotho in lung health. The expression of the vitamin D receptor by different cell types in the lung and the fact that those cells respond to vitamin D or can locally produce vitamin D indicate that the lung represents a target for vitamin D actions. Similarly, the presence of the four FGF receptor isoforms in the lung and the ability of FGF23 to stimulate pulmonary cells support the concept that the lung is a target for FGF23 actions, whereas the contribution of klotho is still undetermined. This review will give an overview on how vitamin D or FGF23/klotho may act on the lung and interfere positively or negatively with lung health. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ghislaine Gayan‐Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
- Clinical Department of Respiratory DiseasesUZ LeuvenLeuvenBelgium
| |
Collapse
|
28
|
Zhou H, Pu S, Zhou H, Guo Y. Klotho as Potential Autophagy Regulator and Therapeutic Target. Front Pharmacol 2021; 12:755366. [PMID: 34737707 PMCID: PMC8560683 DOI: 10.3389/fphar.2021.755366] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
The protein Klotho can significantly delay aging, so it has attracted widespread attention. Abnormal downregulation of Klotho has been detected in several aging-related diseases, such as Alzheimer’s disease, kidney injury, cancer, chronic obstructive pulmonary disease (COPD), vascular disease, muscular dystrophy and diabetes. Conversely, many exogenous and endogenous factors, several drugs, lifestyle changes and genetic manipulations were reported to exert therapeutic effects through increasing Klotho expression. In recent years, Klotho has been identified as a potential autophagy regulator. How Klotho may contribute to reversing the effects of aging and disease became clearer when it was linked to autophagy, the process in which eukaryotic cells clear away dysfunctional proteins and damaged organelles: the abovementioned diseases involve abnormal autophagy. Interestingly, growing evidence indicates that Klotho plays a dual role as inducer or inhibitor of autophagy in different physiological or pathological conditions through its influence on IGF-1/PI3K/Akt/mTOR signaling pathway, Beclin 1 expression and activity, as well as aldosterone level, which can help restore autophagy to beneficial levels. The present review examines the role of Klotho in regulating autophagy in Alzheimer’s disease, kidney injury, cancer, COPD, vascular disease, muscular dystrophy and diabetes. Targeting Klotho may provide a new perspective for preventing and treating aging-related diseases.
Collapse
Affiliation(s)
- Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Donate-Correa J, Ferri CM, Martín-Núñez E, Pérez-Delgado N, González-Luis A, Mora-Fernández C, Navarro-González JF. Klotho as a biomarker of subclinical atherosclerosis in patients with moderate to severe chronic kidney disease. Sci Rep 2021; 11:15877. [PMID: 34354161 PMCID: PMC8342510 DOI: 10.1038/s41598-021-95488-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has been associated with a higher risk of cardiovascular disease (CVD). CKD patients present a decrease in the levels of the protein Klotho that accompanies the decrease in kidney function. This protein has been related to protective effects against CVD. However, it is unclear whether circulating Klotho, and its expression in peripheral blood cells (PBCs) are also associated with subclinical atherosclerosis in CKD. The present study aimed to study the relationship between Klotho and subclinical atherosclerosis in a population of patients with moderate to severe CKD. We determined the serum levels and gene expression in PBCs levels of Klotho and three inflammatory cytokines in 103 patients with CKD and investigated their relationship with two surrogate markers of subclinical atherosclerotis: ankle-brachial index (ABI) and carotid intima-media thickness (CIMT). Patients with subclinical atherosclerosis presented lower serum and PBCs expression levels of Klotho. Both variables were associated with the presence of subclinical atherosclerosis, being directly related with ABI and inversely with CIMT (P < 0.0001 for both). Multiple regression analysis demonstrated that both variables were significant determinants for ABI (adjusted R2 = 0.511, P < 0.0001) and CIMT (adjusted R2 = 0.445, P < 0.0001), independently of traditional and emergent cardiovascular risk factors. Moreover, both constituted protective factors against subclinical atherosclerosis [OR: 0.993 (P = 0.002) and 0.231 (P = 0.025), respectively]. Receiver operating characteristic analysis pointed to the utility of serum Klotho (area under the curve [AUC]: 0.817, 95% CI: 0.736-0.898, P < 0.001) and its gene expression in PBCs (AUC: 0.742, 95% CI: 0.647-0.836, P < 0.001) to distinguish subclinical atherosclerosis. The reductions in serum and PBCs expression levels of Klotho in CKD patients are independently associated with the presence of for subclinical atherosclerosis. Further research exploring whether therapeutic approaches to maintain or elevate Klotho could reduce the impact of CVD in CKD patients is warranted.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Nayra Pérez-Delgado
- Clinical Analysis Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
30
|
Donate-Correa J, Martín-Núñez E, González-Luis A, Ferri CM, Luis-Rodríguez D, Tagua VG, Mora-Fernández C, Navarro-González JF. Pathophysiological Implications of Imbalances in Fibroblast Growth Factor 23 in the Development of Diabetes. J Clin Med 2021; 10:2583. [PMID: 34208131 PMCID: PMC8230948 DOI: 10.3390/jcm10122583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Observational studies have associated the increase in fibroblast growth factor (FGF) 23 levels, the main regulator of phosphate levels, with the onset of diabetes. These studies open the debate on the plausible existence of undescribed diabetogenic mechanisms derived from chronic supraphysiological levels of FGF23, a prevalent condition in chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. These maladaptive and diabetogenic responses to FGF23 may occur at different levels, including a direct effect on the pancreatic ß cells, and an indirect effect derived from the stimulation of the synthesis of pro-inflammatory factors. Both mechanisms could be mediated by the binding of FGF23 to noncanonical receptor complexes with the subsequent overactivation of signaling pathways that leads to harmful effects. The canonical binding of FGF23 to the receptor complex formed by the receptor FGFR1c and the coreceptor αKlotho activates Ras/MAPK/ERK signaling. However, supraphysiological concentrations of FGF23 favor non-αKlotho-dependent binding of this molecule to other FGFRs, which could generate an undesired overactivation of the PLCγ/CN/NFAT pathway, as observed in cardiomyocytes and hepatocytes. Moreover, the decrease in αKlotho expression may constitute a contributing factor to the appearance of these effects by promoting the nonspecific activation of the PLCγ/CN/NFAT to the detriment of the αKlotho-dependent Ras/MAPK/ERK pathway. The description of these mechanisms would allow the development of new therapeutic targets susceptible to be modified by dietary changes or by pharmacological intervention.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Protective effects of klotho on palmitate-induced podocyte injury in diabetic nephropathy. PLoS One 2021; 16:e0250666. [PMID: 33891667 PMCID: PMC8064606 DOI: 10.1371/journal.pone.0250666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
The anti-aging gene, klotho, has been identified as a multi-functional humoral factor and is implicated in multiple biological processes. However, the effects of klotho on podocyte injury in diabetic nephropathy are poorly understood. Thus, the current study aims to investigate the renoprotective effects of klotho against podocyte injury in diabetic nephropathy. We examined lipid accumulation and klotho expression in the kidneys of diabetic patients and animals. We stimulated cultured mouse podocytes with palmitate to induce lipotoxicity-mediated podocyte injury with or without recombinant klotho. Klotho level was decreased in podocytes of lipid-accumulated obese diabetic kidneys and palmitate-treated mouse podocytes. Palmitate-treated podocytes showed increased apoptosis, intracellular ROS, ER stress, inflammation, and fibrosis, and these were significantly attenuated by klotho administration. Klotho treatment restored palmitate-induced downregulation of the antioxidant molecules, Nrf2, Keap1, and SOD1. Klotho inhibited the phosphorylation of FOXO3a, promoted its nuclear translocation, and then upregulated MnSOD expression. In addition, klotho administration attenuated palmitate-induced cytoskeleton changes, decreased nephrin expression, and increased TRPC6 expression, eventually improving podocyte albumin permeability. These results suggest that klotho administration prevents palmitate-induced functional and morphological podocyte injuries, and this may indicate that klotho is a potential therapeutic agent for the treatment of podocyte injury in obese diabetic nephropathy.
Collapse
|
32
|
Akasaka-Manya K, Manya H, Nadanaka S, Kitagawa H, Kondo Y, Ishigami A, Endo T. Decreased ADAM17 expression in the lungs of α-Klotho reduced mouse. J Biochem 2021; 167:483-493. [PMID: 31951006 DOI: 10.1093/jb/mvz113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/11/2019] [Indexed: 01/26/2023] Open
Abstract
The deficiency of α-Klotho in mice causes phenotypes resembling human age-associated disorders at 3-4 weeks after birth and shows short lifespans of ∼2 months. One of the crucial symptoms is pulmonary emphysema, although α-Klotho is not expressed in the lungs. α-Klotho secreted from the kidneys is probably involved in the pathology of emphysema because kidney-specific knockout mice exhibit emphysematous structural changes. We examined whether any glycan changes in α-Klotho mouse lungs were observed, because α-Klotho is reported to have glycosidase activity. Here, we found the accumulation of heparan sulphate in the microsomal fraction of α-Klotho mouse lungs. Meanwhile, a disintegrin and metalloproteinase 17 (ADAM17) expression was decreased in α-Klotho mice. From these results, it is thought that the increase in heparan sulphate is due to insufficient cleavage of the core protein by ADAM17. Additionally, a reduction in α-Klotho and a decline of ADAM17 were also observed both in normal aged mice and in senescence marker protein-30 (SMP30) knockout mice, a mouse model of premature ageing. Thus, the decrease in ADAM17 is caused by the reduction in α-Klotho. These may be involved in the deterioration of lung function during ageing and may be associated with the pathology of pulmonary emphysema.
Collapse
Affiliation(s)
- Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Research Team for Functional Biogerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Research Team for Functional Biogerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
33
|
Typiak M, Piwkowska A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22020956. [PMID: 33478014 PMCID: PMC7835923 DOI: 10.3390/ijms22020956] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Correspondence:
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
34
|
The E, Yao Q, Zhang P, Zhai Y, Ao L, Fullerton DA, Meng X. Mechanistic Roles of Matrilin-2 and Klotho in Modulating the Inflammatory Activity of Human Aortic Valve Cells. Cells 2020; 9:cells9020385. [PMID: 32046115 PMCID: PMC7072362 DOI: 10.3390/cells9020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a chronic inflammatory disease. Soluble extracellular matrix (ECM) proteins can act as damage-associated molecular patterns and may induce valvular inflammation. Matrilin-2 is an ECM protein and has been found to elevate the pro-osteogenic activity in human aortic valve interstitial cells (AVICs). Klotho, an anti-aging protein, appears to have anti-inflammatory properties. The effect of matrilin-2 and Klotho on AVIC inflammatory responses remains unclear. METHODS AND RESULTS Isolated human AVICs were exposed to matrilin-2. Soluble matrilin-2 induced the production of ICAM-1, MCP-1, and IL-6. It also induced protein kinase R (PKR) activation via Toll-like receptor (TLR) 2 and 4. Pretreatment with PKR inhibitors inhibited NF-κB activation and inflammatory mediator production induced by matrilin-2. Further, recombinant Klotho suppressed PKR and NF-κB activation and markedly reduced the production of inflammatory mediators in human AVICs exposed to matrilin-2. CONCLUSIONS This study revealed that soluble matrilin-2 upregulates AVIC inflammatory activity via activation of the TLR-PKR-NF-κB pathway and that Klotho is potent to suppress AVIC inflammatory responses to a soluble ECM protein through inhibiting PKR. These novel findings indicate that soluble matrilin-2 may accelerate the progression of CAVD by inducing valvular inflammation and that Klotho has the potential to suppress valvular inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianzhong Meng
- Correspondence: ; Tel.: +1-303-724-6303; Fax: +1-303-724-6330
| |
Collapse
|
35
|
Garth J, Easter M, Skylar Harris E, Sailland J, Kuenzi L, Chung S, Dennis JS, Baumlin N, Adewale AT, Rowe SM, King G, Faul C, Barnes JW, Salathe M, Krick S. The Effects of the Anti-aging Protein Klotho on Mucociliary Clearance. Front Med (Lausanne) 2020; 6:339. [PMID: 32039219 PMCID: PMC6992571 DOI: 10.3389/fmed.2019.00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/24/2019] [Indexed: 01/23/2023] Open
Abstract
α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters. Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated at the air liquid interface (ALI), were treated with recombinant KL or infected with a lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel activities, and expression levels were analyzed. These experiments were paired with ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient mice and their wild type littermates. Our results showed that klotho deficiency led to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled by increased activation of the large-conductance, Ca2+-activated, voltage-dependent potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and attenuated TGF-β-mediated downregulation of LRRC26, the γ subunit of BK, necessary for its function in non-excitable cells. In summary, we show that KL regulates mucociliary function by increasing ASL volume in the airways possibly due to underlying BK activation. The KL mediated BK channel activation may be a potentially important target to design therapeutic strategies in inflammatory airway diseases when ASL volume is decreased.
Collapse
Affiliation(s)
- Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Skylar Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lisa Kuenzi
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Chung
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - John S. Dennis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Adegboyega T. Adewale
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Steven M. Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gwendalyn King
- Department of Biology, Creighton University, Omaha, NE, United States
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
36
|
Zhang J, Cao K, Pastor JV, Li L, Moe OW, Hsia CCW. Alpha-Klotho, a critical protein for lung health, is not expressed in normal lung. FASEB Bioadv 2019; 1:675-687. [PMID: 32123814 PMCID: PMC6996373 DOI: 10.1096/fba.2019-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Alpha-Klotho (αKlotho), produced by the kidney and selected organs, is essential for tissue maintenance and protection. Homozygous αKlotho-deficiency leads to premature multi-organ degeneration and death; heterozygous insufficiency leads to apoptosis, oxidative stress, and increased injury susceptibility. There is inconsistent data in the literature regarding whether αKlotho is produced locally in the lung or derived from circulation. We probed murine and human lung by immunohistochemistry (IHC) and immunoblot (IB) using two monoclonal (anti-αKlotho Kl1 and Kl2 domains) and three other common commercial antibodies. Monoclonal anti-Kl1 and anti-Kl2 yielded no labeling in lung on IHC or IB; specific labeling was observed in kidney (positive control) and also murine lungs following tracheal delivery of αKlotho cDNA, demonstrating specificity and ability to detect artificial pulmonary expression. Other commercial antibodies labeled numerous lung structures (IHC) and multiple bands (IB) incompatible with known αKlotho mobility; labeling was not abolished by blocking with purified αKlotho or using lungs from hypomorphic αKlotho-deficient mice, indicating nonspecificity. Results highlight the need for rigorous validation of reagents. The lung lacks native αKlotho expression and derives full-length αKlotho from circulation; findings could explain susceptibility to lung injury in extrapulmonary pathology associated with reduced circulating αKlotho levels, for example, renal failure. Conversely, αKlotho may be artificially expressed in the lung, suggesting therapeutic opportunities.
Collapse
Affiliation(s)
- Jianning Zhang
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Khoa Cao
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Johanne V. Pastor
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Liping Li
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Orson W. Moe
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Departments of PhysiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Connie C. W. Hsia
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
37
|
Lower levels of α-Klotho in serum are associated with decreased lung function in individuals with interstitial lung abnormalities. Sci Rep 2019; 9:10801. [PMID: 31346213 PMCID: PMC6658567 DOI: 10.1038/s41598-019-47199-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
Interstitial lung abnormalities (ILA) represent aging-associated bilateral interstitial abnormalities in nondependent areas of the lung. However, the aging mechanisms associated with ILA remain uncertain. α-Klotho is an anti-aging molecule that decreases progressively with age, and abnormally low circulating levels of this protein have been revealed in several chronic-degenerative diseases. In this study, we evaluated α-Klotho serum concentrations in individuals with ILA, and examined whether its levels were associated with pulmonary function decline. α-Klotho was measured by ELISA in 50 respiratory asymptomatic adults with ILA and 150 healthy individuals over 60 years. Compared with controls, ILA subjects were predominantly older males, and showed lower lung diffusing capacity (DLCO), higher desaturation after exercise, and higher concentrations of serum matrix metalloprotease-7 (6.24 ± 4.1 versus 4.3 ± 1.7 ng/ml; p = 0.002). No differences were found in serum concentrations of α-Klotho. However, lower levels of this protein in ILA significantly correlated with lower values of forced vital capacity (Rho = 0.39; p = 0.005), forced expiratory volume in one second (Rho = 0.39; p = 0.005), and DLCO (Rho = 0.29, p = 0.04). These findings suggest that decreased concentrations of α-Klotho may be a predictive biomarker of accelerated decline of lung function in individuals with ILA.
Collapse
|
38
|
Nakanishi K, Nishida M, Taneike M, Yamamoto R, Adachi H, Moriyama T, Yamauchi-Takihara K. Implication of alpha-Klotho as the predictive factor of stress. J Investig Med 2019; 67:1082-1086. [PMID: 31324693 DOI: 10.1136/jim-2018-000977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 11/03/2022]
Abstract
Stress is known as a risk factor for both mental and physical health problems. While stress is known as one of the major health problems in modern society, a biomarker of stress has not yet been well established. In the present study, we focused on the serum levels of α-Klotho (αKl) as a possible objective biomarker of stress. Subjects included apparently healthy individuals who underwent a health examination in the Osaka University Health and Counseling Center. Physical and biochemical parameters were obtained from all subjects. Information regarding the lifestyle of each individual was obtained via questionnaires. Among male subjects, serum levels of soluble αKl (sαKl) were significantly elevated in subjects who had poor stress management and unsatisfactory sleep, suggesting that stress management and sleeping conditions influenced the serum levels of sαKl. The total Kessler Screening Scale for Psychological Distress (K6) score was significantly increased in subjects who reported experiencing considerable stress, had poor stress management and unsatisfactory sleep. Since serum levels of sαKl showed the same tendency as the K6 score in terms of the relationship between stress management and sleeping conditions in male subjects, increased sαKl levels could be associated with considerable psychological stress in healthy men.
Collapse
Affiliation(s)
- Kaori Nakanishi
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Makoto Nishida
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Manabu Taneike
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Ryohei Yamamoto
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroyoshi Adachi
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Toshiki Moriyama
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | | |
Collapse
|
39
|
Lee JW, Ryu HW, Lee SU, Kim MG, Kwon OK, Kim MO, Oh TK, Lee JK, Kim TY, Lee SW, Choi S, Li WY, Ahn KS, Oh SR. Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide‑induced pulmonary inflammation by inhibiting interleukin‑8 production and NF‑κB activation. Int J Mol Med 2019; 44:949-959. [PMID: 31257455 PMCID: PMC6657956 DOI: 10.3892/ijmm.2019.4247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Pistacia weinmannifolia (PW) has been used in traditional Chinese medicine to treat headaches, dysentery, enteritis and influenza. However, PW has not been known for treating respiratory inflammatory diseases, including chronic obstructive pulmonary disease (COPD). The present in vitro analysis confirmed that PW root extract (PWRE) exerts anti-inflammatory effects in phorbol myristate acetate- or tumor necrosis factor α (TNF-α)-stimulated human lung epithelial NCI-H292 cells by attenuating the expression of interleukin (IL)-8, IL-6 and Mucin A5 (MUC5AC), which are closely associated with the pulmonary inflammatory response in the pathogenesis of COPD. Thus, the aim of the present study was to evaluate the protective effect of PWRE on pulmonary inflammation induced by cigarette smoke (CS) and lipopoly-saccharide (LPS). Treatment with PWRE significantly reduced the quantity of neutrophils and the levels of inflammatory molecules and toxic molecules, including tumor TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, neutrophil elastase and reactive oxygen species, in the bronchoalveolar lavage fluid of mice with CS- and LPS-induced pulmonary inflammation. PWRE also attenuated the influx of inflammatory cells in the lung tissues. Furthermore, PWRE downregulated the activation of nuclear factor-κB and the expression of phosphodiesterase 4 in the lung tissues. Therefore, these findings suggest that PWRE may be a valuable adjuvant treatment for COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Mun Ok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Tae Kyu Oh
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Jae Kyoung Lee
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Tae Young Kim
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, P.R. China
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| |
Collapse
|
40
|
Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li Y, Yang Y, Zou M, Li S, Wang L, Guan M, Xue Y. Extracellular Vesicles from Albumin-Induced Tubular Epithelial Cells Promote the M1 Macrophage Phenotype by Targeting Klotho. Mol Ther 2019; 27:1452-1466. [PMID: 31208912 DOI: 10.1016/j.ymthe.2019.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Albumin absorbed by renal tubular epithelial cells induces inflammation and plays a key role in promoting diabetic kidney disease (DKD) progression. Macrophages are prominent inflammatory cells in the kidney, and their role there is dependent on their phenotypes. However, whether albuminuria influences macrophage phenotypes and underlying mechanisms during the development of DKD is still unclear. We found that M1 macrophage-related markers were increased in diabetes mellitus (DM) mouse renal tissues with the development of DKD, and coculture of extracellular vesicles (EVs) from human serum albumin (HSA)-induced HK-2 cells with macrophages induced macrophage M1 polarization in the presence of lipopolysaccharide (LPS). Through a bioinformatic analysis, miR-199a-5p was selected and found to be increased in EVs from HSA-induced HK-2 cells and in urinary EVs from DM patients with macroalbuminuria. Tail-vein injection of DM mice with EVs from HSA-induced HK-2 cells induced kidney macrophage M1 polarization and accelerated the progression of DKD through miR-199a-5p. miR-199a-5p exerted its effect by targeting Klotho, and Klotho induced macrophage M2 polarization through the Toll-like receptor 4 (TLR4) pathway both in vivo and in vitro. In summary, miR-199a-5p from HSA-stimulated HK-2 cell-derived EVs induces M1 polarization by targeting the Klotho/TLR4 pathway and further accelerates the progression of DKD.
Collapse
Affiliation(s)
- Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Shuting Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Hu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yang Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meina Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuangshuang Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Qiu J, Zhang YN, Zheng X, Zhang P, Ma G, Tan H. Notch promotes DNMT-mediated hypermethylation of Klotho leads to COPD-related inflammation. Exp Lung Res 2019; 44:368-377. [PMID: 30686068 DOI: 10.1080/01902148.2018.1556749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM Klotho expression significantly declines in alveolar macrophages and airway epithelial cells in chronic obstructive pulmonary disease (COPD) patients, and cigarette smoke extract dramatically inhibits the expression and secretion of α-Klotho. This suggests that the silencing of Klotho is the major factor promoting COPD related inflammatory responses. This study aims to investigate the mechanism of Klotho downregulation and its effect on the inflammatory cytokines secretion and cell apoptosis. METHODS Expression of DNA methyltransferases (DNMTs) and Notch signaling activation were quantified in MH-S and 16HBE cells stimulated with cigarette smoke extract (CSE) solution. Specific inhibitors of DNMTs or Notch pathway were added together with CSE into treated and control cells. Inflammatory cytokines, cell viability and cell death were determined to explore the effect of Klotho on COPD related inflammation. RESULTS CSE treatment statistically increased the level of DNMTs expression, Klotho promoter methylation, and activated the Notch signaling pathway. Notch signal activation played a critical role in the process of modification of Klotho promoter methylation. The inhibition of DNMTs and Notch pathway rescued Klotho levels and inhibited inflammation and cell apoptosis after CSE treatment. CONCLUSION Notch-mediated Klotho hypermethylation inhibited Klotho expression, which promoted inflammatory response and cell apoptosis that were associated with the development of COPD.
Collapse
Affiliation(s)
- Jie Qiu
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Ya-Nan Zhang
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Xiwei Zheng
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Peng Zhang
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Gang Ma
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Hai Tan
- a Department of Respiratory and Critical Care Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| |
Collapse
|
42
|
Zhou L, Le Y, Tian J, Yang X, Jin R, Gai X, Sun Y. Cigarette smoke-induced RANKL expression enhances MMP-9 production by alveolar macrophages. Int J Chron Obstruct Pulmon Dis 2018; 14:81-91. [PMID: 30587964 PMCID: PMC6304243 DOI: 10.2147/copd.s190023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Cigarette smoke (CS) induces alveolar destruction through overproduction of proteinases including matrix metalloproteinase (MMP)-9 by alveolar macrophages (AMs). Receptor activator of nuclear factor-κB ligand (RANKL) functions in immune regulation and cytokine secretion; whether it is involved in CS-induced MMP-9 expression is unknown. The purpose of our study was to investigate the expression and functional role of RANKL pathway in MMP-9 production pertaining to the pathogenesis of COPD. Materials and methods We first localized RANKL and its receptor RANK in the lungs of mice exposed to long-term CS exposure. Next, we studied RANKL and RANK expression under CS extract (CSE) stimulation in vitro. Lastly, we studied the in vitro biological function of RANKL in CS-induced production of MMP-9. Results Both RANKL and RANK were highly expressed in AMs in CS-exposed mice, but not in the control mice. In vitro, CSE increased the expressions of RANKL and RANK in macrophages. AMs responded to CSE and RANKL stimulation by overexpressing MMP-9, and CSE-induced MMP-9 expression was partly blocked by using monoclonal anti-RANKL antibody. Conclusion RANKL/RANK pathway mediates CS-induced MMP-9 expression in AMs, suggesting a novel mechanism for CS-associated emphysema.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Yanqing Le
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Jieyu Tian
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Yongchang Sun
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| |
Collapse
|
43
|
Yuan Y, Lin D, Feng L, Huang M, Yan H, Li Y, Chen Y, Lin B, Ma Y, Ye Z, Mei Y, Yu X, Zhou K, Zhang Q, Chen T, Zeng J. Upregulation of miR-196b-5p attenuates BCG uptake via targeting SOCS3 and activating STAT3 in macrophages from patients with long-term cigarette smoking-related active pulmonary tuberculosis. J Transl Med 2018; 16:284. [PMID: 30326918 PMCID: PMC6192289 DOI: 10.1186/s12967-018-1654-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Background Cigarette smoking (CS) triggers an intense and harmful inflammatory response in lungs mediated by alveolar and blood macrophages, monocytes, and neutrophils and is closely associated with prevalence of tuberculosis (TB). The risk of death in patients with long-term cigarette smoking-related pulmonary tuberculosis (LCS-PTB) is approximately 4.5 times higher than those with nonsmoking pulmonary tuberculosis (N-PTB). However, the mechanisms underlying the harmful inflammatory responses in the setting of LCS-PTB have not been well documented. Methods 28 cases LCS-PTB patients, 22 cases N-PTB patients and 20 cases healthy volunteers were enrolled in this study. Monocytes were isolated from peripheral blood mononuclear cells. Differentiated human MDM and U937 cell were prepared with M-CSF and PMA stimulation, respectively. The miR-196b-5p, STAT1, STAT3, STAT4, STAT5A, STAT5B, STAT6, SOCS1 and SOCS3 mRNA expression were detected by qRT-PCR. Western blot was performed according to SOCS1, SOCS3, and pSTAT3 expression. The mycobacterial uptake by MDMs from different groups of patients after Bacillus Calmette–Guérin (BCG) infection and agomir-196b-5p or antagomir-196b-5p transfection were used by flow cytometry analysis. Human IL-6, IL-10 and TNF-α levels on the plasma and cell culture supernatant samples were measured using ELISA. For dual-luciferase reporter assay, the SOCS3 3′-UTR segments, containing the binding elements of miR-196b-5p or its mutant versions were synthesized as sense and antisense linkers. Results In this study, we found that IL-6, TNF-α production, SOCS3 mRNA expression were downregulated, while miR-196b-5p and STAT3 mRNA expression were upregulated in monocytes from LCS-PTB patients as compared to N-PTB patients. Meanwhile, we demonstrated that miR-196b-5p could target SOCS3 and activate STAT3 signaling pathway, which may possibly contribute to attenuation of BCG uptake and decrease in IL-6 and TNF-α production in macrophages. Conclusions Our findings revealed that CS exposure regulates inflammatory responses in monocyte/macrophages from LCS-PTB patients via upregulating miR-196b-5p, and further understanding of the specific role of miR-196b-5p in inflammatory responses mightfacilitate elucidating the pathogenesis of LCS-PTB, thus leading to the development of new therapeutic strategies for PTB patients with long-term cigarette smoking. Electronic supplementary material The online version of this article (10.1186/s12967-018-1654-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaoqin Yuan
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Dongzi Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Long Feng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China
| | - Yumei Li
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Yinwen Chen
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yan Ma
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuezhi Mei
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Xiaolin Yu
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Keyuan Zhou
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA
| | - Tao Chen
- Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China.
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China. .,Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
44
|
Jin M, Lou J, Yu H, Miao M, Wang G, Ai H, Huang Y, Han S, Han D, Yu G. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin promotes inflammation in mouse testes: The critical role of Klotho in Sertoli cells. Toxicol Lett 2018; 295:134-143. [DOI: 10.1016/j.toxlet.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
|
45
|
Moattari M, Moattari F, Kaka G, Mohseni Kouchesfehani H, Sadraie SH, Naghdi M, Mansouri K. Evaluation of dexamethasone treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. Neurol Res 2018; 40:1060-1070. [PMID: 30246623 DOI: 10.1080/01616412.2018.1517859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Peripheral nerve injuries comprise significant portion of the nervous system injuries. Although peripheral nerves show some capacity of regeneration after injury, the extent of regeneration is not remarkable. The present study aimes to evaluate the regeneration of transected sciatic nerve by a therapeutic value of dexamethasone (DEX) associated with cell therapy (Cell) and biodegradable membrane (Mem) in rat. METHODS Male Wistar rats (n = 42, 180-200g) were randomly divided into control (Ctrl), Membrane+ Cell, Mem, DEX, DEX+ Cell, DEX+ Mem and DEX+ Cell+ Mem groups. Functional recovery was evaluated at 2, 4, 6, 8 and 12 weeks after surgery using sciatic functional index (SFI), withdrawal reflex latency (WRL) test, electrophysiological and histological analyses. RESULTS The rats in the DEX+ Cell+ Mem-treated group showed a significant improvement in SFI, WRL and electrophysiological findings during the 2nd to 12th weeks after surgery. In addition, histomorphological findings showed a significant improvement in the DEX+ Cell+ Memtreated group, at 12 weeks after surgery. DISCUSSION Taken together, use of DEX associated with cell and biodegradable membrane could improve functional and histomorphological properties of the sciatic nerve after injury.
Collapse
Affiliation(s)
- Mehrnaz Moattari
- a Department of Animal Biology, Faculty of Biological Science , Kharazmi University , Tehran , Iran
| | - Farahnaz Moattari
- b Faculty of Agriculture and Natural Resources , Persian Gulf University , Bushehr , Iran
| | - Gholamreza Kaka
- c Neuroscience Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | - Seyed Homayoon Sadraie
- c Neuroscience Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Naghdi
- d Department of Anatomy , Fasa University of Medical Science , Fasa , Fars , Iran
| | - Korosh Mansouri
- e Department of Physical Medicine, and Rehabilitation , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
46
|
Shin NR, Kim C, Seo CS, Ko JW, Cho YK, Kim JC, Kim JS, Shin IS. So-Cheong-Ryoung-Tang Attenuates Pulmonary Inflammation Induced by Cigarette Smoke in Bronchial Epithelial Cells and Experimental Mice. Front Pharmacol 2018; 9:1064. [PMID: 30298007 PMCID: PMC6160558 DOI: 10.3389/fphar.2018.01064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
So-Cheong-Ryoung-Tang is a traditionally used herbal formula for the treatment of pulmonary diseases in China, Korea, and Japan. We investigated the protective effects of So-Cheong-Ryong-Tang water extract (SCWE) in cigarette smoke concentrate (CSC) stimulated human airway epithelial cell line NCI-H292 and mice exposed cigarette smoke (CS) and lipopolysaccharide (LPS). In the CSC-stimulated NCI-H292 cells, SCWE inhibited proinflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Also, SCWE significant reduced inducible nitric oxide synthase (iNOS) expression and nuclear factor kappa B (NF-κB) phosphorylation in CSC-stimulated cells. The mice were exposed to CS for 1 h per day (a total of eight cigarettes per day) for 7 days and received LPS intranasally on day 5. The mice were administered a dose of SCWE (100 and 200 mg/kg) 1 h before CS exposure. In in vivo, SCWE decreased the inflammatory cell count and reduced the expression of the proinflammatory cytokines in the broncho-alveolar lavage fluid (BALF) compared with CS and LPS exposed mice. SCWE attenuated inflammatory cell infiltration in airway induced by CS and LPS exposure, and this decrease was accompanied by a reduction in the expression levels of iNOS and MMP-9 in lung tissue. The extract also inhibited the phosphorylation of inhibitor of kappa B alpha (IκBα) and NF-κB induced by CS and LPS exposure in lung tissue. These results suggest that SCWE may effectively inhibit airway inflammatory responses induced by CS and LPS exposure via the NF-κB pathway. Therefore, SCWE may be a potential treatment for airway inflammatory diseases, such as chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Na-Rae Shin
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Chul Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Je-Won Ko
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, Cheongju, South Korea
| | - Jong-Choon Kim
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Joong-Sun Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - In-Sik Shin
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
47
|
Wu CH, Chang HM, Wang CY, Chen L, Chen LW, Lai CH, Kuo SW, Wang HC, Wu VC. Long-Term Outcomes in Patients with Incident Chronic Obstructive Pulmonary Disease after Acute Kidney Injury: A Competing-Risk Analysis of a Nationwide Cohort. J Clin Med 2018; 7:237. [PMID: 30149499 PMCID: PMC6162866 DOI: 10.3390/jcm7090237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Both acute kidney injury (AKI) and chronic obstructive pulmonary disease (COPD) are associated with increased morbidity and mortality. However, the incidence of de novo COPD in patients with AKI, and the impact of concurrent COPD on the outcome during post-AKI care is unclear. Patients who recovered from dialysis-requiring AKI (AKI-D) during index hospitalizations between 1998 and 2010 were identified from nationwide administrative registries. A competing risk analysis was conducted to predict the incidence of adverse cardiovascular events and mortality. Among the 14,871 patients who recovered from temporary dialysis, 1535 (10.7%) were identified as having COPD (COPD group) one year after index discharge and matched with 1473 patients without COPD (non-COPD group) using propensity scores. Patients with acute kidney disease superimposed withs COPD were associated with a higher risk of incident ischemic stroke (subdistribution hazard ratio (sHR), 1.52; 95% confidence interval (95% CI), 1.17 to 1.97; p = 0.002) and congestive heart failure (CHF; sHR, 1.61; (95% CI), 1.39 to 1.86; p < 0.001). The risks of incident hemorrhagic stroke, myocardial infarction, end-stage renal disease, and mortality were not statistically different between the COPD and non-COPD groups. This observation adds another dimension to accumulating evidence regarding pulmo-renal consequences after AKI.
Collapse
Affiliation(s)
- Che-Hsiung Wu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Huang-Ming Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Likwang Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Liang-Wen Chen
- Department of Surgery, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan.
| | - Chien-Heng Lai
- Department of Surgery, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan.
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan.
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
48
|
Krick S, Grabner A, Baumlin N, Yanucil C, Helton S, Grosche A, Sailland J, Geraghty P, Viera L, Russell DW, Wells JM, Xu X, Gaggar A, Barnes J, King GD, Campos M, Faul C, Salathe M. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur Respir J 2018; 52:1800236. [PMID: 29748308 PMCID: PMC6044452 DOI: 10.1183/13993003.00236-2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 04/27/2018] [Indexed: 01/20/2023]
Abstract
Circulating levels of fibroblast growth factor (FGF)23 are associated with systemic inflammation and increased mortality in chronic kidney disease. α-Klotho, a co-receptor for FGF23, is downregulated in chronic obstructive pulmonary disease (COPD). However, whether FGF23 and Klotho-mediated FGF receptor (FGFR) activation delineates a pathophysiological mechanism in COPD remains unclear. We hypothesised that FGF23 can potentiate airway inflammation via Klotho-independent FGFR4 activation.FGF23 and its effect were studied using plasma and transbronchial biopsies from COPD and control patients, and primary human bronchial epithelial cells isolated from COPD patients as well as a murine COPD model.Plasma FGF23 levels were significantly elevated in COPD patients. Exposure of airway epithelial cells to cigarette smoke and FGF23 led to a significant increase in interleukin-1β release via Klotho-independent FGFR4-mediated activation of phospholipase Cγ/nuclear factor of activated T-cells signalling. In addition, Klotho knockout mice developed COPD and showed airway inflammation and elevated FGFR4 expression in their lungs, whereas overexpression of Klotho led to an attenuation of airway inflammation.Cigarette smoke induces airway inflammation by downregulation of Klotho and activation of FGFR4 in the airway epithelium in COPD. Inhibition of FGF23 or FGFR4 might serve as a novel anti-inflammatory strategy in COPD.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Duke University, Durham, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Astrid Grosche
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Juliette Sailland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek W. Russell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Health Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwendalyn D. King
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Campos
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
49
|
Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatr Nephrol 2018; 33:1019-1027. [PMID: 29313136 DOI: 10.1007/s00467-017-3877-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Klotho G-395-A gene polymorphism may impact children with end-stage renal disease (ESRD). We investigated the relevance of Klotho G-395-A on ESRD development and progression, and its relationship with evolution of cardiovascular complications in pediatric dialysis patients. METHODS Fifty-five children with chronic kidney disease (CKD) and seventy healthy children were genotyped for Klotho G-395A. RESULTS Incidence of GA/AA genotypes and A allele were higher in ESRD patients compared with controls (54.5 vs. 7.1%, P < 0.001; 30.9 vs. 13.6%, P = 0.001, respectively). Also, children with GA/AA genotypes were 15.6 times more likely to develop ESRD than with GG genotype (95% CI 5.4-44.7, P < 0.001). A allele carriers have 2.8 times higher risk of developing ESRD than those with G allele (95% CI 1.5-5.35, P = 0.001). Also, the A allele could be considered a predictor of cardiovascular disease (CVD), as carriers have 161 times higher risk of cardiovascular complications than non-carriers (95% CI 21-1233, P < 0.001). All ESRD patients with CVD presented with left ventricular hypertrophy (LVH) and the frequency of A allele was significantly higher among ESRD children with LVH, whereas G allele frequency was significantly higher among ESRD children without LVH. CONCLUSIONS The A allele of the G-395A Klotho gene polymorphism shows a significantly higher frequency among children with CKD and those with CVD and LVH. This mutant allele could be used as a risk marker for the development of ESRD as well as a predictor of CVD in these children.
Collapse
|
50
|
Liu X, Yin S, Chen Y, Wu Y, Zheng W, Dong H, Bai Y, Qin Y, Li J, Feng S, Zhao P. LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. Mol Med Rep 2018; 17:5484-5491. [PMID: 29393460 DOI: 10.3892/mmr.2018.8542] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/01/2017] [Indexed: 11/05/2022] Open
Abstract
Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Sugai Yin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yulong Chen
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yaosong Wu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Wanchun Zheng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Haoran Dong
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yan Bai
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yanqin Qin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Suxiang Feng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|