1
|
Thangapandian S, Fakharzadeh A, Moradi M, Tajkhorshid E. Conformational free energy landscape of a glutamate transporter and microscopic details of its transport mechanism. Proc Natl Acad Sci U S A 2025; 122:e2416381122. [PMID: 40042900 PMCID: PMC11912404 DOI: 10.1073/pnas.2416381122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
Removing glutamate from the synaptic cleft is vital for proper function of the brain. Excitatory amino acid transporters mediate this process by uptaking the neurotransmitter from the synaptic cleft back to the cell after its release. The archaeal homolog, GltPh, an aspartate transporter from Pyrococcus horikoshii, presents the best structurally characterized model for this family of transporters. In order to transport, GltPh undergoes elevator-like conformational changes between inward-facing (IF) and outward-facing (OF) states. Here, we characterize, at an atomic level, the OF⇌IF transition of GltPh in different apo/bound states using a combination of ensemble-based enhanced sampling techniques, employing more than two thousand of coupled simulation replicas of membrane-embedded GltPh. The resulting free-energy profiles portray the transition of apo/bound states as a complex four-stage process, while sodium binding alone locks the structure in one of its states. Along the transition, the transport domain (TD) disengages from the scaffold domain (SD), allowing it to move as a piston sliding vertically with respect to the membrane during the elevator-like motion of TD. Lipid interactions with residues comprising the SD-TD interface directly influence the large-scale conformational changes and, consequently, the energetics of transport. Structural intermediates formed during the transition leak water molecules and may correlate to the uncoupled Cl- ion conductance observed experimentally in both prokaryotic and mammalian glutamate transporters. Mechanistic insights obtained from our study provide a structural framework for better development of therapeutic for neurological disorders.
Collapse
Affiliation(s)
- Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Ashkan Fakharzadeh
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR72701
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
2
|
Reddy KD, Rasool B, Akher FB, Kutlešić N, Pant S, Boudker O. Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569786. [PMID: 38106174 PMCID: PMC10723334 DOI: 10.1101/2023.12.03.569786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secondary active membrane transporters harness the energy of ion gradients to concentrate their substrates. Homologous transporters evolved to couple transport to different ions in response to changing environments and needs. The bases of such diversification, and thus principles of ion coupling, are unexplored. Employing phylogenetics and ancestral protein reconstruction, we investigated sodium-coupled transport in prokaryotic glutamate transporters, a mechanism ubiquitous across life domains and critical to neurotransmitter recycling in humans. We found that the evolutionary transition from sodium-dependent to independent substrate binding to the transporter preceded changes in the coupling mechanism. Structural and functional experiments suggest that the transition entailed allosteric mutations, making sodium binding dispensable without affecting ion-binding sites. Allosteric tuning of transporters' energy landscapes might be a widespread route of their functional diversification.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Burha Rasool
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Farideh Badichi Akher
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Nemanja Kutlešić
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Swati Pant
- Dept. of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
3
|
Colucci E, Anshari ZR, Patiño-Ruiz MF, Nemchinova M, Whittaker J, Slotboom DJ, Guskov A. Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6. Nat Commun 2023; 14:1799. [PMID: 37002226 PMCID: PMC10066184 DOI: 10.1038/s41467-023-37503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.
Collapse
Affiliation(s)
- Emanuela Colucci
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Zaid R Anshari
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Miyer F Patiño-Ruiz
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Jacob Whittaker
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Dirk J Slotboom
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
4
|
Riederer EA, Moënne-Loccoz P, Valiyaveetil FI. Distinct roles of the Na + binding sites in the allosteric coupling mechanism of the glutamate transporter homolog, Glt Ph. Proc Natl Acad Sci U S A 2022; 119:e2121653119. [PMID: 35507872 PMCID: PMC9171649 DOI: 10.1073/pnas.2121653119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate transporters carry out the concentrative uptake of glutamate by harnessing the ionic gradients present across cellular membranes. A central step in the transport mechanism is the coupled binding of Na+ and substrate. The sodium coupled Asp transporter, GltPh is an archaeal homolog of glutamate transporters that has been extensively used to probe the transport mechanism. Previous studies have shown that hairpin-2 (HP2) functions as the extracellular gate for the aspartate binding site and plays a key role in the coupled binding of sodium and aspartate to GltPh. The binding sites for three Na+ ions (Na1-3) have been identified in GltPh, but the specific roles of the individual Na+ sites in the binding process have not been elucidated. In this study, we developed assays to probe Na+ binding to the Na1 and Na3 sites and to monitor the conformational switch in the NMDGT motif. We used these assays along with a fluorescence assay to monitor HP2 movement and EPR spectroscopy to show that Na+ binding to the Na3 site is required for the NMDGT conformational switch while Na+ binding to the Na1 site is responsible for the partial opening of HP2. Complete opening of HP2 requires the conformational switch of the NMDGT motif and therefore Na+ binding to both the Na1 and the Na3 sites. Based on our studies, we also propose an alternate pathway for the coupled binding of Na+ and Asp.
Collapse
Affiliation(s)
- Erika A. Riederer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
5
|
Reddy KD, Ciftci D, Scopelliti AJ, Boudker O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J Gen Physiol 2022; 154:e202213131. [PMID: 35452090 PMCID: PMC9044058 DOI: 10.1085/jgp.202213131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structural and mechanistic determinants remain undefined. Here, we demonstrate that in a mutant GltPh, which exclusively populates the outward-facing state, at least two substates coexist in slow equilibrium, binding the substrate with different apparent affinities. Wild type GltPh shows similar binding properties, and modulation of the substate equilibrium correlates with transport rates. The low-affinity substate of the mutant is transient following substrate binding. Consistently, cryo-EM on samples frozen within seconds after substrate addition reveals the presence of structural classes with perturbed helical packing of the extracellular half of the transport domain in regions adjacent to the binding site. By contrast, an equilibrated structure does not show such classes. The structure at 2.2-Å resolution details a pattern of waters in the intracellular half of the domain and resolves classes with subtle differences in the substrate-binding site. We hypothesize that the rigid cytoplasmic half of the domain mediates substrate and ion recognition and coupling, whereas the extracellular labile half sets the affinity and dynamic properties.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Tri-Institutional Training Program in Chemical Biology, New York, NY
| | | | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Wu H, Liu S, Su P, Xie Z, Gui T, Zhao L, Liu Y, Chen L. Molecular insight into coordination sites for substrates and their coupling kinetics in Na
+
/HCO
3
−
cotransporter NBCe1. J Physiol 2022; 600:3083-3111. [DOI: 10.1113/jp282034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Shiyong Liu
- School of Physics Huazhong University of Science and Technology Wuhan 430074 China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Zhang‐Dong Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Tian‐Xiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Lei Zhao
- Department of Obstetrics Maternal and Child Health Hospital of Hubei Province Wuhan 430070 China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Li‐Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| |
Collapse
|
7
|
High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 2022; 119:2113927119. [PMID: 35101979 PMCID: PMC8833178 DOI: 10.1073/pnas.2113927119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
As cellular membranes are impermeable to most molecules, transporter proteins are typically present in the membrane to transport small molecules in or out of the cell. Due to the small, nanometer size of these transporters, it is challenging to study their transport mechanism. Here, we use advanced microscopy approaches to study in real time and at the single-molecule level the mode of action of the dimeric CitS tranpsorter. Using high-speed atomic force microscopy, we visualize the dynamic, elevator-like movement of the transporter, and we reveal that the two protomers move independently. We also discovered an intermediate state, reminiscent of another, unrelated transporter, indicating that independent evolutionary pathways have led to similar three-state elevator mechanisms. The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh. Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.
Collapse
|
8
|
Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Linking function to global and local dynamics in an elevator-type transporter. Proc Natl Acad Sci U S A 2021; 118:e2025520118. [PMID: 34873050 PMCID: PMC8670510 DOI: 10.1073/pnas.2025520118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.
Collapse
Affiliation(s)
- Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
| | - Chloe Martens
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Vishnu G Ghani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
9
|
Thermostability-based binding assays reveal complex interplay of cation, substrate and lipid binding in the bacterial DASS transporter, VcINDY. Biochem J 2021; 478:3847-3867. [PMID: 34643224 PMCID: PMC8652582 DOI: 10.1042/bcj20210061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
The divalent anion sodium symporter (DASS) family of transporters (SLC13 family in humans) are key regulators of metabolic homeostasis, disruption of which results in protection from diabetes and obesity, and inhibition of liver cancer cell proliferation. Thus, DASS transporter inhibitors are attractive targets in the treatment of chronic, age-related metabolic diseases. The characterisation of several DASS transporters has revealed variation in the substrate selectivity and flexibility in the coupling ion used to power transport. Here, using the model DASS co-transporter, VcINDY from Vibrio cholerae, we have examined the interplay of the three major interactions that occur during transport: the coupling ion, the substrate, and the lipid environment. Using a series of high-throughput thermostability-based interaction assays, we have shown that substrate binding is Na+-dependent; a requirement that is orchestrated through a combination of electrostatic attraction and Na+-induced priming of the binding site architecture. We have identified novel DASS ligands and revealed that ligand binding is dominated by the requirement of two carboxylate groups in the ligand that are precisely distanced to satisfy carboxylate interaction regions of the substrate-binding site. We have also identified a complex relationship between substrate and lipid interactions, which suggests a dynamic, regulatory role for lipids in VcINDY's transport cycle.
Collapse
|
10
|
Kinetic mechanism of Na +-coupled aspartate transport catalyzed by Glt Tk. Commun Biol 2021; 4:751. [PMID: 34140623 PMCID: PMC8211817 DOI: 10.1038/s42003-021-02267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s−1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging. Trinco et al. measure aspartate uptake rates in proteoliposomes containing purified prokaryotic Na+-coupled aspartate transporter GltTk. To overcome limitation of protein orientation, they use synthetic nanobody that blocks transporters from outside and reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution.
Collapse
|
11
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
12
|
Observing spontaneous, accelerated substrate binding in molecular dynamics simulations of glutamate transporters. PLoS One 2021; 16:e0250635. [PMID: 33891665 PMCID: PMC8064580 DOI: 10.1371/journal.pone.0250635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters are essential for removing the neurotransmitter glutamate from the synaptic cleft. Glutamate transport across the membrane is associated with elevator-like structural changes of the transport domain. These structural changes require initial binding of the organic substrate to the transporter. Studying the binding pathway of ligands to their protein binding sites using molecular dynamics (MD) simulations requires micro-second level simulation times. Here, we used three methods to accelerate aspartate binding to the glutamate transporter homologue Gltph and to investigate the binding pathway. 1) Two methods using user-defined forces to prevent the substrate from diffusing too far from the binding site. 2) Conventional MD simulations using very high substrate concentrations in the 0.1 M range. The final, substrate bound states from these methods are comparable to the binding pose observed in crystallographic studies, although they show more flexibility in the side chain carboxylate function. We also captured an intermediate on the binding pathway, where conserved residues D390 and D394 stabilize the aspartate molecule. Finally, we investigated glutamate binding to the mammalian glutamate transporter, excitatory amino acid transporter 1 (EAAT1), for which a crystal structure is known, but not in the glutamate-bound state. Overall, the results obtained in this study reveal new insights into the pathway of substrate binding to glutamate transporters, highlighting intermediates on the binding pathway and flexible conformational states of the side chain, which most likely become locked in once the hairpin loop 2 closes to occlude the substrate.
Collapse
|
13
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
14
|
Alleva C, Machtens JP, Kortzak D, Weyand I, Fahlke C. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Neurochem Res 2021; 47:9-22. [PMID: 33587237 PMCID: PMC8763778 DOI: 10.1007/s11064-021-03252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1–5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.
Collapse
Affiliation(s)
- Claudia Alleva
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
15
|
Zhou W, Trinco G, Slotboom DJ, Forrest LR, Faraldo-Gómez JD. On the Role of a Conserved Methionine in the Na +-Coupling Mechanism of a Neurotransmitter Transporter Homolog. Neurochem Res 2021; 47:163-175. [PMID: 33565025 PMCID: PMC8431971 DOI: 10.1007/s11064-021-03253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs GltPh and GltTk, revealed that this methionine is involved in the coordination of one of the three Na+ ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of GltPh showing that mutations of this methionine diminish the binding cooperativity between substrates and Na+. It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of GltTk using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Wang J, Qu S. Conformationally Sensitive Proximity Between the TM3-4 Loop and Hairpin Loop 2 of the Glutamate Transporter EAAT2 Revealed by Paired-Cysteine Mutagenesis. ACS Chem Neurosci 2021; 12:163-175. [PMID: 33315395 DOI: 10.1021/acschemneuro.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-β-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
17
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
18
|
Sampson CDD, Stewart MJ, Mindell JA, Mulligan C. Solvent accessibility changes in a Na +-dependent C 4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism. J Biol Chem 2020; 295:18524-18538. [PMID: 33087444 PMCID: PMC7939474 DOI: 10.1074/jbc.ra120.013894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site-associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.
Collapse
Affiliation(s)
- Connor D D Sampson
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Matthew J Stewart
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, Machtens JP. Na +-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. SCIENCE ADVANCES 2020; 6:6/47/eaba9854. [PMID: 33208356 PMCID: PMC7673805 DOI: 10.1126/sciadv.aba9854] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Excitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
Collapse
Affiliation(s)
- C Alleva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - K Kovalev
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M I Berndt
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - C Baeken
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - T Balandin
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - V Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ch Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - J-P Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Hall JL, Sohail A, Cabrita EJ, Macdonald C, Stockner T, Sitte HH, Angulo J, MacMillan F. Saturation transfer difference NMR on the integral trimeric membrane transport protein GltPh determines cooperative substrate binding. Sci Rep 2020; 10:16483. [PMID: 33020522 PMCID: PMC7536232 DOI: 10.1038/s41598-020-73443-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Saturation-transfer difference (STD) NMR spectroscopy is a fast and versatile method which can be applied for drug-screening purposes, allowing the determination of essential ligand binding affinities (KD). Although widely employed to study soluble proteins, its use remains negligible for membrane proteins. Here the use of STD NMR for KD determination is demonstrated for two competing substrates with very different binding affinities (low nanomolar to millimolar) for an integral membrane transport protein in both detergent-solubilised micelles and reconstituted proteoliposomes. GltPh, a homotrimeric aspartate transporter from Pyrococcus horikoshii, is an archaeal homolog of mammalian membrane transport proteins-known as excitatory amino acid transporters (EAATs). They are found within the central nervous system and are responsible for fast uptake of the neurotransmitter glutamate, essential for neuronal function. Differences in both KD's and cooperativity are observed between detergent micelles and proteoliposomes, the physiological implications of which are discussed.
Collapse
Affiliation(s)
- Jenny L Hall
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Azmat Sohail
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Eurico J Cabrita
- UCIBIO, Chemistry Department, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Colin Macdonald
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Stockner
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
21
|
Arkhipova V, Guskov A, Slotboom DJ. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Nat Commun 2020; 11:998. [PMID: 32081874 PMCID: PMC7035293 DOI: 10.1038/s41467-020-14834-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Glutamate transporters are cation-coupled secondary active membrane transporters that clear the neurotransmitter L-glutamate from the synaptic cleft. These transporters are homotrimers, with each protomer functioning independently by an elevator-type mechanism, in which a mobile transport domain alternates between inward- and outward-oriented states. Using single-particle cryo-EM we have determined five structures of the glutamate transporter homologue GltTk, a Na+- L-aspartate symporter, embedded in lipid nanodiscs. Dependent on the substrate concentrations used, the protomers of the trimer adopt a variety of asymmetrical conformations, consistent with the independent movement. Six of the 15 resolved protomers are in a hitherto elusive state of the transport cycle in which the inward-facing transporters are loaded with Na+ ions. These structures explain how substrate-leakage is prevented - a strict requirement for coupled transport. The belt protein of the lipid nanodiscs bends around the inward oriented protomers, suggesting that membrane deformations occur during transport.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands. .,Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
22
|
Wang X, Boudker O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 2020; 9:58417. [PMID: 33155546 PMCID: PMC7682989 DOI: 10.7554/elife.58417] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/05/2020] [Indexed: 01/21/2023] Open
Abstract
Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States,Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
23
|
Glutamate transporters: a broad review of the most recent archaeal and human structures. Biochem Soc Trans 2019; 47:1197-1207. [PMID: 31383819 DOI: 10.1042/bst20190316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Glutamate transporters play important roles in bacteria, archaea and eukaryotes. Their function in the mammalian central nervous system is essential for preventing excitotoxicity, and their dysregulation is implicated in many diseases, such as epilepsy and Alzheimer's. Elucidating their transport mechanism would further the understanding of these transporters and promote drug design as they provide compelling targets for understanding the pathophysiology of diseases and may have a direct role in the treatment of conditions involving glutamate excitotoxicity. This review outlines the insights into the transport cycle, uncoupled chloride conductance and modulation, as well as identifying areas that require further investigation.
Collapse
|
24
|
Investigation of the allosteric coupling mechanism in a glutamate transporter homolog via unnatural amino acid mutagenesis. Proc Natl Acad Sci U S A 2019; 116:15939-15946. [PMID: 31332002 DOI: 10.1073/pnas.1907852116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamate transporters harness the ionic gradients across cell membranes for the concentrative uptake of glutamate. The sodium-coupled Asp symporter, GltPh is an archaeal homolog of glutamate transporters and has been extensively used to understand the transport mechanism. A critical aspect of the transport cycle in GltPh is the coupled binding of sodium and aspartate. Previous studies have suggested a major role for hairpin-2 (HP2), which functions as the extracellular gate for the aspartate binding site, in the coupled binding of sodium and aspartate to GltPh In this study, we develop a fluorescence assay for monitoring HP2 movement by incorporating tryptophan and the unnatural amino acid, p-cyanophenylalanine into GltPh We use the HP2 assays to show that HP2 opening with Na+ follows an induced-fit mechanism. We also determine how residues in the substrate binding site affect the opening and closing of HP2. Our data, combined with previous studies, provide the molecular sequence of events in the coupled binding of sodium and aspartate to GltPh.
Collapse
|
25
|
Setiadi J, Kuyucak S. Free-Energy Simulations Resolve the Low-Affinity Na +-High-Affinity Asp Binding Paradox in Glt Ph. Biophys J 2019; 117:780-789. [PMID: 31383357 DOI: 10.1016/j.bpj.2019.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters clear up excess extracellular glutamate by cotransporting three Na+ and one H+ with the countertransport of one K+. The archaeal homologs are selective to aspartate and only cotransport three Na+. The crystal structures of GltPh from archaea have been used in computational studies to understand the transport mechanism. Although some progress has been made with regard to the ligand-binding sites, a consistent picture of transport still eludes us. A major concern is the discrepancy between the computed binding free energies, which predict high-affinity Na+-low-affinity aspartate binding, and the experimental results in which the opposite is observed. Here, we show that the binding of the first two Na+ ions involves an intermediate state near the Na1 site, where two Na+ ions coexist and couple to aspartate with similar strengths, boosting its affinity. Binding free energies for Na+ and aspartate obtained using this intermediate state are in good agreement with the experimental values. Thus, the paradox in binding affinities arises from the assumption that the ligands bind to the sites observed in the crystal structure following the order dictated by their binding free energies with no intermediate states. In fact, the presence of an intermediate state eliminates such a correlation between the binding free energies and the binding order. The intermediate state also facilitates transition of the first Na+ ion to its final binding site via a knock-on mechanism, which induces substantial conformational changes in the protein consistent with experimental observations.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
Arkhipova V, Trinco G, Ettema TW, Jensen S, Slotboom DJ, Guskov A. Binding and transport of D-aspartate by the glutamate transporter homolog Glt Tk. eLife 2019; 8:45286. [PMID: 30969168 PMCID: PMC6482001 DOI: 10.7554/elife.45286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/09/2019] [Indexed: 01/31/2023] Open
Abstract
Mammalian glutamate transporters are crucial players in neuronal communication as they perform neurotransmitter reuptake from the synaptic cleft. Besides L-glutamate and L-aspartate, they also recognize D-aspartate, which might participate in mammalian neurotransmission and/or neuromodulation. Much of the mechanistic insight in glutamate transport comes from studies of the archeal homologs GltPh from Pyrococcus horikoshii and GltTk from Thermococcus kodakarensis. Here, we show that GltTk transports D-aspartate with identical Na+: substrate coupling stoichiometry as L-aspartate, and that the affinities (Kd and Km) for the two substrates are similar. We determined a crystal structure of GltTk with bound D-aspartate at 2.8 Å resolution. Comparison of the L- and D-aspartate bound GltTk structures revealed that D-aspartate is accommodated with only minor rearrangements in the structure of the binding site. The structure explains how the geometrically different molecules L- and D-aspartate are recognized and transported by the protein in the same way.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Thijs W Ettema
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Sonja Jensen
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Oh S, Boudker O. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. eLife 2018; 7:37291. [PMID: 30255846 PMCID: PMC6175574 DOI: 10.7554/elife.37291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Many secondary active membrane transporters pump substrates against concentration gradients by coupling their uptake to symport of sodium ions. Symport requires the substrate and ions to be always transported together. Cooperative binding of the solutes is a key mechanism contributing to coupled transport in the sodium and aspartate symporter from Pyrococcus horikoshii GltPh. Here, we describe the kinetic mechanism of coupled binding for GltPh in the inward facing state. The first of the three coupled sodium ions, binds weakly and slowly, enabling the protein to accept the rest of the ions and the substrate. The last ion binds tightly, but is in rapid equilibrium with solution. Its release is required for the complex disassembly. Thus, the first ion serves to ‘open the door’ for the substrate, the last ion ‘locks the door’ once the substrate is in, and one ion contributes to both events.
Collapse
Affiliation(s)
- SeCheol Oh
- Department of Physiology & Biophysics, Weill Cornell Medicine, Cornell University, New York, United States
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, Cornell University, New York, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
28
|
Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K, Borbat PP, Freed JH, Blanchard SC, Boudker O, Valiyaveetil FI. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 2018; 7:36478. [PMID: 29889023 PMCID: PMC6025958 DOI: 10.7554/elife.36478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.
Collapse
Affiliation(s)
- Erika A Riederer
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Paul J Focke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Kimberly Matulef
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Olga Boudker
- Weill Cornell Medicine, New York, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Francis I Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
29
|
Arkhipova V, Guskov A, Slotboom DJ. Analysis of the quality of crystallographic data and the limitations of structural models. J Gen Physiol 2017; 149:1091-1103. [PMID: 29089418 PMCID: PMC5715909 DOI: 10.1085/jgp.201711852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Arkhipova et al. caution that the limitations of structural models be taken into account when interpreting crystallographic data. Crystal structures provide visual models of biological macromolecules, which are widely used to interpret data from functional studies and generate new mechanistic hypotheses. Because the quality of the collected x-ray diffraction data directly affects the reliability of the structural model, it is essential that the limitations of the models are carefully taken into account when making interpretations. Here we use the available crystal structures of members of the glutamate transporter family to illustrate the importance of inspecting the data that underlie the structural models. Crystal structures of glutamate transporters in multiple different conformations have been solved, but most structures were determined at relatively low resolution, with deposited models based on crystallographic data of moderate quality. We use these examples to demonstrate the extent to which mechanistic interpretations can be made safely.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Albert Guskov
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Machtens JP, Briones R, Alleva C, de Groot BL, Fahlke C. Gating Charge Calculations by Computational Electrophysiology Simulations. Biophys J 2017; 112:1396-1405. [PMID: 28402882 DOI: 10.1016/j.bpj.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 11/15/2022] Open
Abstract
Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K+ channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na+ ions in Na+-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.
Collapse
Affiliation(s)
- Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
| | - Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Alleva
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
31
|
Visualizing multistep elevator-like transitions of a nucleoside transporter. Nature 2017; 545:66-70. [PMID: 28424521 PMCID: PMC5567992 DOI: 10.1038/nature22057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
Membrane transporters move substrates across the membrane by alternating access of their binding sites between the opposite sides of the membrane. An emerging model of this process is the elevator mechanism, in which a substrate-binding transport domain moves a large distance across the membrane. This mechanism has been characterized by a transition between two states, but the conformational path that leads to the transition is not yet known, largely because the available structural information has been limited to the two end states. Here we present crystal structures of the inward-facing, intermediate, and outward-facing states of a concentrative nucleoside transporter from Neisseria wadsworthii. Notably, we determined the structures of multiple intermediate conformations, in which the transport domain is captured halfway through its elevator motion. Our structures present a trajectory of the conformational transition in the elevator model, revealing multiple intermediate steps and state-dependent conformational changes within the transport domain that are associated with the elevator-like motion.
Collapse
|
32
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
33
|
Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods. J Membr Biol 2016; 250:145-162. [DOI: 10.1007/s00232-016-9942-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
34
|
Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue Glt Tk. Nat Commun 2016; 7:13420. [PMID: 27830699 PMCID: PMC5110648 DOI: 10.1038/ncomms13420] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters are of relatively low resolution. Here we solve crystal structures of the archaeal transporter GltTk in the presence and absence of aspartate and use molecular dynamics simulations and binding assays to show how strict coupling between the binding of three sodium ions and aspartate takes place. In neurons and glia, glutamate transporters catalyse the reuptake of this neurotransmitter by coupling it with cation transport. Here the authors combine X-ray crystallography and molecular dynamics simulations of the archeal glutamate transporter GltTk to get insight into the coupled transport mechanism.
Collapse
|
35
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
36
|
Fahlke C, Kortzak D, Machtens JP. Molecular physiology of EAAT anion channels. Pflugers Arch 2015; 468:491-502. [PMID: 26687113 DOI: 10.1007/s00424-015-1768-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.
Collapse
Affiliation(s)
- Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
37
|
Setiadi J, Heinzelmann G, Kuyucak S. Computational Studies of Glutamate Transporters. Biomolecules 2015; 5:3067-86. [PMID: 26569328 PMCID: PMC4693270 DOI: 10.3390/biom5043067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| | - Germano Heinzelmann
- Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| |
Collapse
|
38
|
Silverstein N, Ewers D, Forrest LR, Fahlke C, Kanner BI. Molecular Determinants of Substrate Specificity in Sodium-coupled Glutamate Transporters. J Biol Chem 2015; 290:28988-96. [PMID: 26475859 DOI: 10.1074/jbc.m115.682666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/04/2023] Open
Abstract
Crystal structures of the archaeal homologue GltPh have provided important insights into the molecular mechanism of transport of the excitatory neurotransmitter glutamate. Whereas mammalian glutamate transporters can translocate both glutamate and aspartate, GltPh is only one capable of aspartate transport. Most of the amino acid residues that surround the aspartate substrate in the binding pocket of GltPh are highly conserved. However, in the brain transporters, Thr-352 and Met-362 of the reentrant hairpin loop 2 are replaced by the smaller Ala and Thr, respectively. Therefore, we have studied the effects of T352A and M362T on binding and transport of aspartate and glutamate by GltPh. Substrate-dependent intrinsic fluorescence changes were monitored in transporter constructs containing the L130W mutation. GltPh-L130W/T352A exhibited an ~15-fold higher apparent affinity for l-glutamate than the wild type transporter, and the M362T mutation resulted in an increased affinity of ~40-fold. An even larger increase of the apparent affinity for l-glutamate, around 130-fold higher than that of wild type, was observed with the T352A/M362T double mutant. Radioactive uptake experiments show that GltPh-T352A not only transports aspartate but also l-glutamate. Remarkably, GltPh-M362T exhibited l-aspartate but not l-glutamate transport. The double mutant retained the ability to transport l-glutamate, but its kinetic parameters were very similar to those of GltPh-T352A alone. The differential impact of mutation on binding and transport of glutamate suggests that hairpin loop 2 not only plays a role in the selection of the substrate but also in its translocation.
Collapse
Affiliation(s)
- Nechama Silverstein
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - David Ewers
- the Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany, the Institut für Neurophysiology, Medizinische Hochschule, 30625 Hannover, Germany, and
| | - Lucy R Forrest
- the Computational Structural Biology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20894
| | - Christoph Fahlke
- the Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Baruch I Kanner
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel,
| |
Collapse
|
39
|
The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter. Neurochem Res 2015; 41:593-9. [DOI: 10.1007/s11064-015-1699-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
|