1
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Zhang M, Li K, Qu S, Guo Z, Wang Y, Yang X, Zhou J, Ouyang G, Weng R, Li F, Wu Y, Yang X. Integrative analyses of maternal plasma cell-free DNA nucleosome footprint differences reveal chromosomal aneuploidy fetuses gene expression profile. J Transl Med 2022; 20:536. [PMID: 36401256 PMCID: PMC9673457 DOI: 10.1186/s12967-022-03735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Chromosomal aneuploidy is the most common birth defect. However, the developmental mechanism and gene expression profile of fetuses with chromosomal aneuploidy are relatively unknown, and the maternal immune changes induced by fetal aneuploidy remain unclear. The inability to obtain the placenta multiple times in real-time is a bottleneck in research on aneuploid pregnancies. Plasma cell-free DNA (cfDNA) carries the gene expression profile information of its source cells and may be used to evaluate the development of fetuses with aneuploidy and the immune changes induced in the mother owing to fetal aneuploidy. Methods Here, we carried out whole-genome sequencing of the plasma cfDNA of 101 pregnant women carrying a fetus with trisomy (trisomy 21, n = 42; trisomy 18, n = 28; trisomy 13, n = 31) based on non-invasive prenatal testing (NIPT) screening and 140 normal pregnant women to identify differential genes according to the cfDNA nucleosome profile in the region around the transcription start sites (TSSs). Results The plasma cfDNA promoter profiles were found to differ between aneuploid and euploid pregnancies. A total of 158 genes with significant differences were identified, of which 43 genes were upregulated and 98 genes were downregulated. Functional enrichment and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases found that these signal pathways were mainly related to the coordination of developmental signals during embryonic development, the control of cell growth and development, regulation of neuronal survival, and immune regulation, such as the MAPK, Hippo, TGF-β, and Rap1 signaling pathways, which play important roles in the development of embryonic tissues and organs. Furthermore, based on the results of differential gene analysis, a total of 14 immune-related genes with significant differences from the ImmPort database were collected and analyzed. These significantly different immune genes were mainly associated with the maintenance of embryonic homeostasis and normal development. Conclusions These results suggest that the distribution characteristics of cfDNA nucleosomes in maternal plasma can be used to reflect the status of fetal development and changes of the immune responses in trisomic pregnancies. Overall, our findings may provide research ideas for non-invasive detection of the physiological and pathological states of other diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03735-7.
Collapse
|
4
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
5
|
Hongbo M, Yanjiao D, Shuo W, Kun S, Yanjie L, Mengmeng L. Podocyte RNF166 deficiency alleviates diabetic nephropathy by mitigating mitochondria impairment and apoptosis via regulation of CYLD signal. Biochem Biophys Res Commun 2021; 545:46-53. [PMID: 33545631 DOI: 10.1016/j.bbrc.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/12/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of renal failure in diabetic patients. RING-finger protein 166 (RNF166), composed of an N-terminal RING domain and C-terminal ubiquitin interaction motif, plays a critical role in mediating various cellular processes. However, its potential in DN has not been investigated. In the present study, we found that DN patients exhibited significantly increased expression of RNF166 in renal tissues compared with the normal individuals, and abundant RNF166 was detected in podocytes. We then showed that podocyte-conditional RNF166 knockout (RNF166cKO) markedly reduced blood glucose levels and ameliorated renal dysfunction in streptozotocin (STZ)-induced diabetic mice. Additionally, abnormal histological changes and podocyte injury were observed in STZ-induced diabetic mice, while being markedly ameliorated by RNF166cKO. Furthermore, podocyte-specific RNF166 deficiency considerably mitigated apoptosis and mitochondrial impairments in glomeruli podocytes of STZ-challenged mice through suppressing Caspase-3 cleavage and improving mitochondrial fission-associated molecules. In vitro studies further confirmed that high glucose (HG) induced mitochondrial dysfunction, along with enhanced releases of Cyto-c from mitochondria and elevated expression of cleaved Caspase-9, contributing to intrinsic apoptosis in podocytes. Intriguingly, these effects triggered by HG were dramatically ameliorated by RNF166 knockout. Mechanistically, we demonstrated that RNF166 directly interacted with cylindromatosis (CYLD), and negatively regulated CYLD expression. Notably, RNF166 knockout-attenuated mitochondrial damage and apoptosis were mainly through CYLD in podocytes upon HG stimulation. Together, all these findings provided new insights into the novel effects of RNF166 on maintaining mitochondrial function and apoptosis in podocytes during DN progression both in vivo and in vitro through interacting with CYLD, indicating that RNF166/CYLD may be an innovative therapeutic target for developing effective strategy against DN development.
Collapse
Affiliation(s)
- Ma Hongbo
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China.
| | - Dong Yanjiao
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China
| | - Wang Shuo
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China
| | - Sun Kun
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China
| | - Liu Yanjie
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China
| | - Li Mengmeng
- Department of Nephrology, Shandong Province Zibo Central Hospital, 54 West Communist Youth League Road, Zhangdian District, Zibo, Shandong, 255000, China
| |
Collapse
|
6
|
Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharm Res 2019; 42:76-87. [PMID: 30610617 DOI: 10.1007/s12272-018-01107-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 12/26/2022]
Abstract
Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.
Collapse
|
7
|
Yan K, Ponnusamy M, Xin Y, Wang Q, Li P, Wang K. The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med 2018; 22:4558-4567. [PMID: 30102008 PMCID: PMC6156430 DOI: 10.1111/jcmm.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination, also known as ubiquitylation, is a vital post‐translational modification of proteins that play a crucial role in the multiple biological processes including cell growth, proliferation and apoptosis. K63‐linked ubiquitination is one of the vital post‐translational modifications of proteins that are involved in the activation of protein kinases and protein trafficking during cell survival and proliferation. It also contributes to the development of various disorders including cancer, neurodegeneration and cardiac hypertrophy. In this review, we summarize the role of K63‐linked ubiquitination signalling in protein kinase activation and its implications in cardiac hypertrophy. We have also provided our perspectives on therapeutically targeting K63‐linked ubiquitination in downstream effector molecules of growth factor receptors for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | | | - Ying Xin
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Godwin RC, Gmeiner WH, Salsbury FR. All-atom molecular dynamics comparison of disease-associated zinc fingers. J Biomol Struct Dyn 2018; 36:2581-2594. [PMID: 28814200 PMCID: PMC5882596 DOI: 10.1080/07391102.2017.1363662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
An important regulatory domain of NF-[Formula: see text]B Essential Modulator (NEMO) is a ubiquitin-binding zinc finger, with a tetrahedral CYS3HIS1 zinc-coordinating binding site. Two variations of NEMO's zinc finger are implicated in various disease states including ectodermal dysplasia and adult-onset glaucoma. To discern structural and dynamical differences between these disease states, we present results of 48-[Formula: see text]s of molecular dynamics simulations for three zinc finger systems each in two states, with and without zinc-bound and correspondingly appropriate cysteine thiol/thiolate configurations. The wild-type protein, often studied for its role in cancer, maintains the most rigid and conformationally stable zinc-bound configuration compared with the diseased counterparts. The glaucoma-related protein has persistent loss of secondary structure except within the dominant conformation. Conformational overlap between wild-type and glaucoma isoforms indicate a competitive binding mechanism may be substantial in the malfunctioning configuration, while the alpha-helical disruption of the ectodermal dysplasia suggests a loss of binding selectivity is responsible for aberrant function.
Collapse
Affiliation(s)
- Ryan C. Godwin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - William H. Gmeiner
- Department of Cancer Biology, WFU School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
9
|
Ji YX, Huang Z, Yang X, Wang X, Zhao LP, Wang PX, Zhang XJ, Alves-Bezerra M, Cai L, Zhang P, Lu YX, Bai L, Gao MM, Zhao H, Tian S, Wang Y, Huang ZX, Zhu XY, Zhang Y, Gong J, She ZG, Li F, Cohen DE, Li H. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 2018; 24:213-223. [PMID: 29291351 DOI: 10.1038/nm.4461] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK-p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet-fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD-TAK1 axis as a promising therapeutic target for management of the disease.
Collapse
Affiliation(s)
- Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xia Yang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xiaozhan Wang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling-Ping Zhao
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Lin Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yue-Xin Lu
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Lan Bai
- Institute of Model Animal of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao-Mao Gao
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huan Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yong Wang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | | | - Xue-Yong Zhu
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yan Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Li
- Basic Medical School, Wuhan University, Wuhan, China
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
11
|
Xu L, Jia Y, Yang XH, Han F, Zheng Y, Ni Y, Chen X, Hong J, Liu JQ, Li Q, Sun RH, Mo SJ. MicroRNA-130b transcriptionally regulated by histone H3 deacetylation renders Akt ubiquitination and apoptosis resistance to 6-OHDA. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1678-1689. [PMID: 28412322 DOI: 10.1016/j.bbadis.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Apoptosis of DA neurons is a contributing cause of disability and death for Parkinson's disease (PD). Akt may become a potential therapeutic target for PD since Akt has been deactivated during DA neuron apoptosis. We previously demonstrated that Akt confers apoptosis resistance against 6-OHDA in DA neuron-like PC12 cells, yet the underlying mechanisms accounted for this are not fully understood. Here we report that microRNA-130b (miR-130b)-dependent and cylindromatosis (CYLD) repression-mediated Akt ubiquitination renders apoptosis resistance of PC12 cells to 6-OHDA, which elicits histone H3 deacetylation-induced transcriptional downregulation of miR-130b vice versa. CYLD deficiency ubiquitinates Akt at Lys63, thereby phosphorylating Akt and antagonizing 6-OHDA-initiated apoptosis. MiR-130b targetedly represses CYLD and increases apoptosis resistance to 6-OHDA. CYLD repression by miR-130b restores Akt ubiquitination and activation, GSK3β and FoxO3a phosphorylation, FoxO3a removal from Bim promoter as well as Bim downregulation during 6-OHDA administration. CYLD deficiency-mediated Akt activation is instrumental for the apoptosis-resistant phenotypes of miR-130b. In addition, 6-OHDA transcriptionally downregulates miR-130b through recruitment of HDAC3 at the promoter. Furthermore, EPO potentiates the ability of miR-130b to activate Akt and augment apoptosis resistance. Our findings identify the apoptosis-resistant function of miR-130b and suggest that histone H3 deacetylation plays a pivotal role in regulating miR-130b transcription in response to 6-OHDA.
Collapse
Affiliation(s)
- Liang Xu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yu Jia
- Department of Nephrology, Tongji Hospital, Tongji Medical College of Huanzhong University of Science & Technology, Wuhan 430030, Hubei, China
| | - Xiang-Hong Yang
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yang Zheng
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yin Ni
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Xu Chen
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Jun Hong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Jing-Quan Liu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China.
| | - Shi-Jing Mo
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|