1
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
2
|
Bahreyni-Toossi MT, Zafari N, Azimian H, Mehrad-Majd H, Farhadi J, Vaziri Nezamdoust F. Alteration in Expression of Trim29, TRIM37, TRIM44, and β-Catenin Genes After Irradiation in Human Cells with Different Radiosensitivity. Cancer Biother Radiopharm 2023; 38:506-511. [PMID: 32833505 DOI: 10.1089/cbr.2020.3915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction: Radiotherapy is a crucial component of treatment for ∼70% of all cancer patients. The identification of effective biomarkers of radiosensitivity (RS) is a fundamental goal of radiobiology. The authors hypothesize that the RS of human normal and tumoral cells is correlated by the level of expression of TRIM29, TRIM37, TRIM44, and β-catenin genes. Materials and Methods: Clonogenic assay was performed and RS of four cell lines was determined by survival fraction at 2 Gy. To determine the level of gene expression 6 and 24 h after irradiation, RNA was extracted from each cell line, and expression of the above-mentioned genes in cell lines with different RS was determined by real-time polymerase chain reaction (PCR). Results: The clonogenic assay showed that human dermal fibroblasts (fibroblast) and HT-29 (colorectal) cells are radioresistant, while human foreskin fibroblasts (fibroblast) and QU-DB (lung) cells are radiosensitive. Analysis of the real-time PCR data, 6 h after irradiation, showed that the increase and decrease of the expression of TRIM29 and TRIM37 genes were directly correlated with the RS of normal and tumor cells. At 24 h postirradiation, a considerable difference was only observed in the expression of the β-catenin gene. Conclusion: This study showed that the TRIM29 and TRIM37 genes are involved in the cell response to radiation and proposed that these genes may be biomarkers for predicting RS in normal and tumoral cell lines.
Collapse
Affiliation(s)
| | - Navid Zafari
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Farhadi
- Department of Biochemistry and Molecular Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|
3
|
Nagasawa S, Ikeda K, Shintani D, Yang C, Takeda S, Hasegawa K, Horie K, Inoue S. Identification of a Novel Oncogenic Fusion Gene SPON1-TRIM29 in Clinical Ovarian Cancer That Promotes Cell and Tumor Growth and Enhances Chemoresistance in A2780 Cells. Int J Mol Sci 2022; 23:689. [PMID: 35054873 PMCID: PMC8776205 DOI: 10.3390/ijms23020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gene structure alterations, such as chromosomal rearrangements that develop fusion genes, often contribute to tumorigenesis. It has been shown that the fusion genes identified in public RNA-sequencing datasets are mainly derived from intrachromosomal rearrangements. In this study, we explored fusion transcripts in clinical ovarian cancer specimens based on our RNA-sequencing data. We successfully identified an in-frame fusion transcript SPON1-TRIM29 in chromosome 11 from a recurrent tumor specimen of high-grade serous carcinoma (HGSC), which was not detected in the corresponding primary carcinoma, and validated the expression of the identical fusion transcript in another tumor from a distinct HGSC patient. Ovarian cancer A2780 cells stably expressing SPON1-TRIM29 exhibited an increase in cell growth, whereas a decrease in apoptosis was observed, even in the presence of anticancer drugs. The siRNA-mediated silencing of SPON1-TRIM29 fusion transcript substantially impaired the enhanced growth of A2780 cells expressing the chimeric gene treated with anticancer drugs. Moreover, a subcutaneous xenograft model using athymic mice indicated that SPON1-TRIM29-expressing A2780 cells rapidly generated tumors in vivo compared to control cells, whose growth was significantly repressed by the fusion-specific siRNA administration. Overall, the SPON1-TRIM29 fusion gene could be involved in carcinogenesis and chemotherapy resistance in ovarian cancer, and offers potential use as a diagnostic and therapeutic target for the disease with the fusion transcript.
Collapse
Affiliation(s)
- Saya Nagasawa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (S.N.); (K.I.); (C.Y.)
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (S.N.); (K.I.); (C.Y.)
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan; (D.S.); (K.H.)
| | - Chiujung Yang
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (S.N.); (K.I.); (C.Y.)
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan; (D.S.); (K.H.)
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (S.N.); (K.I.); (C.Y.)
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (S.N.); (K.I.); (C.Y.)
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
4
|
Hsu CY, Yanagi T, Ujiie H. TRIM29 in Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 8:804166. [PMID: 34988104 PMCID: PMC8720877 DOI: 10.3389/fmed.2021.804166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Purohit V, Wang L, Yang H, Li J, Ney GM, Gumkowski ER, Vaidya AJ, Wang A, Bhardwaj A, Zhao E, Dolgalev I, Zamperone A, Abel EV, Magliano MPD, Crawford HC, Diolaiti D, Papagiannakopoulos TY, Lyssiotis CA, Simeone DM. ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev 2021; 35:218-233. [PMID: 33446568 PMCID: PMC7849366 DOI: 10.1101/gad.344184.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease characterized by late diagnosis, propensity for early metastasis and resistance to chemotherapy. Little is known about the mechanisms that drive innate therapeutic resistance in pancreatic cancer. The ataxia-telangiectasia group D-associated gene (ATDC) is overexpressed in pancreatic cancer and promotes tumor growth and metastasis. Our study reveals that increased ATDC levels protect cancer cells from reactive oxygen species (ROS) via stabilization of nuclear factor erythroid 2-related factor 2 (NRF2). Mechanistically, ATDC binds to Kelch-like ECH-associated protein 1 (KEAP1), the principal regulator of NRF2 degradation, and thereby prevents degradation of NRF2 resulting in activation of a NRF2-dependent transcriptional program, reduced intracellular ROS and enhanced chemoresistance. Our findings define a novel role of ATDC in regulating redox balance and chemotherapeutic resistance by modulating NRF2 activity.
Collapse
Affiliation(s)
- Vinee Purohit
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Lidong Wang
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Huibin Yang
- Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Gina M Ney
- Department of Pediatric Oncology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Erica R Gumkowski
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Akash J Vaidya
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Annie Wang
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Surgery, New York University, New York, New York 10016, USA
| | - Amit Bhardwaj
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Igor Dolgalev
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Andrea Zamperone
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Ethan V Abel
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Marina Pasca Di Magliano
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Daniel Diolaiti
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
| | - Thales Y Papagiannakopoulos
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Pathology, New York University, New York, New York 10016, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University, New York, New York 10016, USA
- Department of Surgery, New York University, New York, New York 10016, USA
- Department of Pathology, New York University, New York, New York 10016, USA
| |
Collapse
|
6
|
Brancolini C, Di Giorgio E, Formisano L, Gagliano T. Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9. Life (Basel) 2021; 11:life11020090. [PMID: 33513699 PMCID: PMC7912504 DOI: 10.3390/life11020090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding how an epigenetic regulator drives different cellular responses can be a tricky task. Very often, their activities are modulated by large multiprotein complexes, the composition of which is context- and time-dependent. As a consequence, experiments aimed to unveil the functions of an epigenetic regulator can provide different outcomes and conclusions, depending on the circumstances. HDAC9 (histone deacetylase), an epigenetic regulator that influences different differentiating and adaptive responses, makes no exception. Since its discovery, different phenotypes and/or dysfunctions have been observed after the artificial manipulation of its expression. The cells and the microenvironment use multiple strategies to control and monitor HDAC9 activities. To date, some of the genes under HDAC9 control have been identified. However, the exact mechanisms through which HDAC9 can achieve all the different tasks so far described, remain mysterious. Whether it can assemble into different multiprotein complexes and how the cells modulate these complexes is not clearly defined. In summary, despite several cellular responses are known to be affected by HDAC9, many aspects of its network of interactions still remain to be defined.
Collapse
Affiliation(s)
- Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
- Correspondence:
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| | - Luigi Formisano
- Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples, Italy;
| | - Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| |
Collapse
|
7
|
Wikiniyadhanee R, Lerksuthirat T, Stitchantrakul W, Chitphuk S, Sura T, Dejsuphong D. TRIM29 is required for efficient recruitment of 53BP1 in response to DNA double-strand breaks in vertebrate cells. FEBS Open Bio 2020; 10:2055-2071. [PMID: 33017104 PMCID: PMC7530400 DOI: 10.1002/2211-5463.12954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Tripartite motif‐containing protein 29 (TRIM29) is involved in DNA double‐strand break (DSB) repair. However, the specific roles of TRIM29 in DNA repair are not clearly understood. To investigate the involvement of TRIM29 in DNA DSB repair, we disrupted TRIM29 in DT40 cells by gene targeting with homologous recombination (HR). The roles of TRIM29 were investigated by clonogenic survival assays and immunofluorescence analyses. TRIM29 triallelic knockout (TRIM29−/−/−/+) cells were sensitive to etoposide, but resistant to camptothecin. Foci formation assays to assess DNA repair activities showed that the dissociation of etoposide‐induced phosphorylated H2A histone family member X (ɣ‐H2AX) foci was retained in TRIM29−/−/−/+ cells, and the formation of etoposide‐induced tumor suppressor p53‐binding protein 1 (53BP1) foci in TRIM29−/−/−/+ cells was slower compared with wild‐type (WT) cells. Interestingly, the kinetics of camptothecin‐induced RAD51 foci formation of TRIM29−/−/−/+ cells was higher than that of WT cells. These results indicate that TRIM29 is required for efficient recruitment of 53BP1 to facilitate the nonhomologous end‐joining (NHEJ) pathway and thereby suppress the HR pathway in response to DNA DSBs. TRIM29 regulates the choice of DNA DSB repair pathway by facilitating 53BP1 accumulation to promote NHEJ and may have potential for development into a therapeutic target to sensitize refractory cancers or as biomarker of personalized therapies.
Collapse
Affiliation(s)
- Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tassanee Lerksuthirat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyachai Sura
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Kuang J, Min L, Liu C, Chen S, Gao C, Ma J, Wu X, Li W, Wu L, Zhu L. RNF8 Promotes Epithelial-Mesenchymal Transition in Lung Cancer Cells via Stabilization of Slug. Mol Cancer Res 2020; 18:1638-1649. [PMID: 32753472 DOI: 10.1158/1541-7786.mcr-19-1211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
RNF8 (ring finger protein 8), a RING finger E3 ligase best characterized for its role in DNA repair and sperm formation via ubiquitination, has been found to promote tumor metastasis in breast cancer recently. However, whether RNF8 also plays a role in other types of cancer, especially in lung cancer, remains unknown. We show here that RNF8 expression levels are markedly increased in human lung cancer tissues and negatively correlated with the survival time of patients. Overexpression of RNF8 promotes the EMT process and migration ability of lung cancer cells, while knockdown of RNF8 demonstrates the opposite effects. In addition, overexpression of RNF8 activates the PI3K/Akt signaling pathway, knockdown of RNF8 by siRNA inhibits this activation, and pharmacologic inhibition of PI3K/Akt in RNF8-overexpressing cells also reduces the expression of EMT markers and the ability of migration. Furthermore, RNF8 is found to directly interact with Slug and promoted the K63-Ub of Slug, and knockdown of Slug disrupts RNF8-dependent EMT in A549 cells, whereas overexpression of Slug rescues RNF8-dependent MET in H1299 cells, and depletion of RNF8 expression by shRNA inhibits metastasis of lung cancer cells in vivo. Taken together, these results indicate that RNF8 is a key regulator of EMT process in lung cancer and suggest that inhibition of RNF8 could be a useful strategy for lung cancer treatment. IMPLICATIONS: This study provides a new mechanistic insight into the novel role of RNF8 and identifies RNF8 as a potential new therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Si Chen
- Department of pathology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Changsong Gao
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Jiaxin Ma
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lei Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China. .,Hunan Engineering Research Center for Intelligent Decision Making and Big Data on Industrial Development, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China.
| |
Collapse
|
9
|
Li W, Xue H, Li Y, Li P, Ma F, Liu M, Kong S. ATDC promotes the growth and invasion of hepatocellular carcinoma cells by modulating GSK-3β/Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:845-853. [PMID: 31168819 DOI: 10.1111/1440-1681.13119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has suggested that the ataxia telangiectasia group D complementing (ATDC) gene is an emerging cancer-related gene in multiple human cancer types. However, little is known about the role of ATDC in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the expression level, biological function and underlying mechanism of ATDC in HCC. The expression of ATDC in HCC cells was detected by quantitative real-time polymerase chain reaction and western blot analysis. Cell growth was determined by cell counting kit-8 assay and colony formation assay. Cell invasion was assessed by Transwell invasion assay. The activation status of Wnt/β-catenin signalling was evaluated by the luciferase reporter assay. Functional experiments showed that the silencing of ATDC expression significantly suppressed the growth and invasion of HCC cells, whereas the overexpression of ATDC promoted the growth and invasion of HCC cells in vitro. Moreover, we showed that ATDC overexpression promoted the phosphorylation of glycogen synthase kinase (GSK)-3β and resulted in the activation of Wnt/β-catenin signalling. Notably, the inhibition of GSK-3β activity significantly abrogated the tumour suppressive effect of ATDC silencing, while the silencing of β-catenin partially reversed the oncogenic effect of ATDC overexpression. Taken together, these findings reveal an oncogenic role of ATDC in HCC and show that the suppression of ATDC impedes the growth and invasion of HCC cells associated with the inactivation of Wnt/β-catenin signalling. Our study suggests that ATDC may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Cao Y, Shi L, Wang M, Hou J, Wei Y, Du C. ATDC contributes to sustaining the growth and invasion of glioma cells through regulating Wnt/β-catenin signaling. Chem Biol Interact 2019; 305:148-155. [DOI: 10.1016/j.cbi.2019.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/09/2023]
|
11
|
Valletti A, Marzano F, Pesole G, Sbisà E, Tullo A. Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? Int J Mol Sci 2019; 20:ijms20071776. [PMID: 30974870 PMCID: PMC6479553 DOI: 10.3390/ijms20071776] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Chemosensitivity is a crucial feature for all tumours so that they can be successfully treated, but the huge heterogeneity of these diseases, to be intended both inter- and intra-tumour, makes it a hard-to-win battle. Indeed, this genotypic and phenotypic variety, together with the adaptability of tumours, results in a plethora of chemoresistance acquisition mechanisms strongly affecting the effectiveness of treatments at different levels. Tripartite motif (TRIM) proteins are shown to be involved in some of these mechanisms thanks to their E3-ubiquitin ligase activity, but also to other activities they can exert in several cellular pathways. Undoubtedly, the ability to regulate the stability and activity of the p53 tumour suppressor protein, shared by many of the TRIMs, represents the preeminent link between this protein family and chemoresistance. Indeed, they can modulate p53 degradation, localization and subset of transactivated target genes, shifting the cellular response towards a cytoprotective or cytotoxic reaction to whatever damage induced by therapy, sometimes in a cellular-dependent way. The involvement in other chemoresistance acquisition mechanisms, independent by p53, is known, affecting pivotal processes like PI3K/Akt/NF-κB signalling transduction or Wnt/beta catenin pathway, to name a few. Hence, the inhibition or the enhancement of TRIM proteins functionality could be worth investigating to better understand chemoresistance and as a strategy to increase effectiveness of anticancer therapies.
Collapse
Affiliation(s)
- Alessio Valletti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro"-Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council-CNR, Via Amendola 122/d, 70126 Bari, Italy.
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council-CNR, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
12
|
Liang C, Dong H, Miao C, Zhu J, Wang J, Li P, Li J, Wang Z. TRIM29 as a prognostic predictor for multiple human malignant neoplasms: a systematic review and meta-analysis. Oncotarget 2017; 9:12323-12332. [PMID: 29552313 PMCID: PMC5844749 DOI: 10.18632/oncotarget.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that tripartite motif-containing protein 29 (TRIM29) had prognostic values in several cancers. However, different studies have been inconsistent. We conducted a meta-analysis to elucidate the precise predictive value of TRIM29 in various human malignant disease. Eleven eligible studies with 2046 patients were ultimately enrolled in this meta-analysis. Heterogeneity between studies was assessed using I2 statistics. Pooled Hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were calculated to investigate the correlation between TRIM29 expression and cancer prognosis. The results identified an important link between upregulated TRIM29 expression and poor prognosis in patients with multiple human malignant neoplasms in terms of recurrence-free survival (RFS)/disease-free survival (DFS) (HR = 1.66, 95% CI 1.36–2.04) but favorable progression-free survival (PFS)/metastasis-free survival (MFS) (HR = 0.37, 95% CI 0.16–0.85). We found that high TRIM29 expression predicted no significant impact on overall survival (OS) (HR = 1.32, 95% CI 0.90–1.93). Subgroup analyses showed that high TRIM29 expression predicted poor OS in Asians (HR = 2.21, 95% CI 1.78–2.74) but favorable OS in Caucasian (HR = 0.47, 95% CI 0.25–0.89). TRIM29 might play an essential role in carcinogenesis of multiple human malignant neoplasms and could serve as a biomarker for the prediction of patients’ prognosis.
Collapse
Affiliation(s)
- Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Zeng SX, Cai QC, Guo CH, Zhi LQ, Dai X, Zhang DF, Ma W. High expression of TRIM29 (ATDC) contributes to poor prognosis and tumor metastasis by inducing epithelial‑mesenchymal transition in osteosarcoma. Oncol Rep 2017; 38:1645-1654. [PMID: 28731167 DOI: 10.3892/or.2017.5842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
The association of TRIM29 overexpression with cancer progression and poor clinical prognosis has been reported in the context of several types of cancers. In the present study, we investigated the prognostic relevance of TRIM29 and its involvement in the progression of human osteosarcoma. To the best of our knowledge, this is the first study to demonstrate a major role of TRIM29 in osteosarcoma. Our results showed that the expression of TRIM29 in osteosarcoma tissues was much higher than that in normal bone tissues. Furthermore, TRIM29 expression was significantly correlated with tumor size, recurrence, metastasis and overall survival time. High expression of TRIM29 and presence of metastasis were independent predictors of poor prognosis in these patients. Both protein and mRNA expression of TRIM29 in osteosarcoma cell lines were significantly higher than those in osteoblast cell line, hFOB1.19. Moreover, the results indicated that TRIM29 promoted migration and invasive growth of osteosarcoma cells by inducing epithelial-mesenchymal transition. Therefore, ectopic expression of TRIM29 potentially contributes to metastasis and poor prognosis in patients with osteosarcoma. In summary, TRIM29 is a potential prognostic biomarker and a therapeutic target for patients with osteosarcoma.
Collapse
Affiliation(s)
- Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qing-Chun Cai
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Qiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xing Dai
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dang-Feng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Hatakeyama S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem Sci 2017; 42:297-311. [DOI: 10.1016/j.tibs.2017.01.002] [Citation(s) in RCA: 660] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 01/19/2023]
|
15
|
RNF8 identified as a co-activator of estrogen receptor α promotes cell growth in breast cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1615-1628. [PMID: 28216286 DOI: 10.1016/j.bbadis.2017.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The ring finger protein 8 (RNF8), a key component of protein complex crucial for DNA-damage response, consists of a forkhead-associated (FHA) domain and a really interesting new gene (RING) domain that enables it to function as an E3 ubiquitin ligase. However, the biological functions of RNF8 in estrogen receptor α (ERα)-positive breast cancer and underlying mechanisms have not been fully defined. Here, we have explored RNF8 as an associated partner of ERα in breast cancer cells, and co-activates ERα-mediated transactivation. Accordingly, RNF8 depletion inhibits the expression of endogenous ERα target genes. Interestingly, our results have demonstrated that RNF8 increases ERα stability at least partially if not all via triggering ERα monoubiquitination. RNF8 functionally promotes breast cancer cell proliferation. RNF8 is highly expressed in clinical breast cancer samples and the expression of RNF8 positively correlates with that of ERα. Up-regulation of ERα-induced transactivation by RNF8 might contribute to the promotion of breast cancer progression by allowing enhancement of ERα target gene expression. Our study describes RNF8 as a co-activator of ERα increases ERα stability via post-transcriptional pathway, and provides a new insight into mechanisms for RNF8 to promote cell growth of ERα-positive breast cancer.
Collapse
|
16
|
Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, Wang X, Meng S, Lei L, Xu L, Shao G. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:88. [PMID: 27259701 PMCID: PMC4893263 DOI: 10.1186/s13046-016-0363-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a crucial step for solid tumor progression and plays an important role in cancer invasion and metastasis. RNF8 is an ubiquitin E3 ligase with RING domain, and plays essential roles in DNA damage response and cell cycle regulation. However the role of RNF8 in the pathogenesis of breast cancer is still unclear. Methods The expression of RNF8 was examined in different types of breast cell lines by Western Blotting. EMT associated markers were examined by Immunofluorescence and Western Blotting in MCF-7 when RNF8 was ectopically overexpressed, or in MDA-MB-231 when RNF8 was depleted. Transwell and wound healing assays were performed to assess the effect of RNF8 on cell mobility. The xenograft model was done with nude mice to investigate the role of RNF8 in tumor metastasis in vivo. Breast tissue arrays were used to examine the expression of RNF8 by immunohistochemistry. Kaplan-Meier survival analysis for the relationship between survival time and RNF8 signature in breast cancer was done with an online tool (http://kmplot.com/analysis/). Results RNF8 is overexpressed in highly metastatic breast cancer cell lines. Overexpression of RNF8 in MCF-7 significantly promoted EMT phenotypes and facilitated cell migration. On the contrary, silencing of RNF8 in MDA-MB-231 induced MET phenotypes and inhibited cell migration. Furthermore, we proved that these metastatic behavior promoting effects of RNF8 in breast cancer was associated with the inactivation of GSK-3β and activation of β-catenin signaling. With nude mice xenograft model, we found that shRNA mediated-downregulation of RNF8 reduced tumor metastasis in vivo. In addition, we found that RNF8 expression was higher in malignant breast cancer than that of the paired normal breast tissues, and was positively correlated with lymph node metastases and poor survival time. Conclusions RNF8 induces EMT in the breast cancer cells and promotes breast cancer metastasis, suggesting that RNF8 could be used as a potential therapeutic target for the prevention and treatment of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0363-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Yuxuan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yongjie Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Shucong Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liandi Lei
- Lab of Molecular Imaging, Health Science Analysis Center, Peking University, Beijing, 100191, China
| | - Luzheng Xu
- Lab of Molecular Imaging, Health Science Analysis Center, Peking University, Beijing, 100191, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
17
|
TRIMming p53's anticancer activity. Oncogene 2016; 35:5577-5584. [PMID: 26898759 DOI: 10.1038/onc.2016.33] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
Several TRIM proteins control abundance and activity of p53. Along this route, TRIM proteins have a serious impact on carcinogenesis and prognosis for cancer patients. In the past years, a significant increase has been made in our understanding of how the TRIM protein family controls p53 activity.
Collapse
|
18
|
Hatakeyama S. Early evidence for the role of TRIM29 in multiple cancer models. Expert Opin Ther Targets 2016; 20:767-70. [DOI: 10.1517/14728222.2016.1148687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|