1
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Li J, Duong D, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative role of PACT and ADAR1 in preventing aberrant PKR activation by self-derived double-stranded RNA. Nat Commun 2025; 16:3246. [PMID: 40185749 PMCID: PMC11971382 DOI: 10.1038/s41467-025-58412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that PACT-deficient cells hyperactivate PKR in response to different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexander Garcia
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Dana Duong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Dheva Setiaputra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA.
- Center for Virus Research, University of California Irvine, Irvine, California, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
2
|
Calakos N, Zech M. Emerging Molecular-Genetic Families in Dystonia: Endosome-Autophagosome-Lysosome and Integrated Stress Response Pathways. Mov Disord 2025; 40:7-21. [PMID: 39467044 PMCID: PMC11752985 DOI: 10.1002/mds.30037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Advances in genetic technologies and disease modeling have greatly accelerated the pace of introducing and validating molecular-genetic contributors to disease. In dystonia, there is a growing convergence across multiple distinct forms of the disease onto core biological processes. Here, we discuss two of these, the endosome-autophagosome-lysosome pathway and the integrated stress response, to highlight recent advances in the field. Using these two pathomechanisms as examples, we further discuss the opportunities that molecular-genetic grouping of dystonias present to transform dystonia care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of NeurobiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Michael Zech
- Institute of Human GeneticsTechnical University of Munich, School of Medicine and HealthMunichGermany
- Institute of NeurogenomicsHelmholtz MunichNeuherbergGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| |
Collapse
|
3
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative Role of PACT and ADAR1 in Preventing Aberrant PKR Activation by Self-Derived Double-Stranded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625712. [PMID: 39651230 PMCID: PMC11623655 DOI: 10.1101/2024.11.27.625712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that cells deficient for PACT hyperactivate PKR in response to several different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
|
5
|
Burnett SB, Culver AM, Simon TA, Rowson T, Frederick K, Palmer K, Murray SA, Davis SW, Patel RC. Mutation in Prkra results in cerebellar abnormality and reduced eIF2α phosphorylation in a model of DYT-PRKRA. Dis Model Mech 2024; 17:dmm050929. [PMID: 39512178 PMCID: PMC11625895 DOI: 10.1242/dmm.050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Variants in the PRKRA gene, which encodes PACT, cause the early-onset primary dystonia DYT-PRKRA, a movement disorder associated with disruption of coordinated muscle movements. PACT and its murine homolog RAX activate protein kinase R (PKR; also known as EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkralear-5J, exhibit progressive dystonia. In the present study, we investigated the biochemical and developmental consequences of the Prkralear-5J mutation. Our results indicated that the truncated PACT/RAX protein retains its ability to interact with PKR but inhibits PKR activation. Mice homozygous for the mutation showed abnormalities in cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation was noted in the cerebellum and Purkinje neurons of the homozygous Prkralear-5J mice. These findings indicate that PACT/RAX-mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from the Prkralear-5J mutation.
Collapse
Affiliation(s)
- Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Allison M. Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Tricia A. Simon
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor Rowson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kristina Palmer
- Genetic Resource Center, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Stephen A. Murray
- Genetic Resource Center, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Lockshin ER, Calakos N. The integrated stress response in brain diseases: A double-edged sword for proteostasis and synapses. Curr Opin Neurobiol 2024; 87:102886. [PMID: 38901329 PMCID: PMC11646490 DOI: 10.1016/j.conb.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Burnett SB, Culver AM, Simon TA, Rowson T, Frederick K, Palmer K, Murray SA, Davis SW, Patel RC. A frameshift mutation in the murine Prkra gene causes dystonia and exhibits abnormal cerebellar development and reduced eIF2α phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597421. [PMID: 38895245 PMCID: PMC11185611 DOI: 10.1101/2024.06.04.597421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in Prkra gene, which encodes PACT/RAX cause early onset primary dystonia DYT-PRKRA, a movement disorder that disrupts coordinated muscle movements. PACT/RAX activates protein kinase R (PKR, aka EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkra lear-5J exhibit progressive dystonia. In the present study, we investigate the biochemical and developmental consequences of the Prkra lear-5J mutation. Our results indicate that the truncated PACT/RAX protein retains its ability to interact with PKR, however, it inhibits PKR activation. Furthermore, mice homozygous for the mutation have abnormalities in the cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation is noted in the cerebellums and Purkinje neurons of the homozygous Prkra lear-5J mice. These results indicate that PACT/RAX mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from this mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Kristina Palmer
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
8
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
9
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
10
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
11
|
Chailertrit V, Panthum T, Kongkaew L, Chalermwong P, Singchat W, Ahmad SF, Kraichak E, Muangmai N, Duengkae P, Peyachoknagul S, Han K, Srikulnath K. Genome-wide SNP analysis provides insights into the XX/XY sex-determination system in silver barb (Barbonymus gonionotus). Genomics Inform 2023; 21:e47. [PMID: 38224714 PMCID: PMC10788355 DOI: 10.5808/gi.23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.
Collapse
Affiliation(s)
- Visarut Chailertrit
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Pathum Thani Aquatic Animal Genetics Research and Development Center, Aquatic Animal Genetics Research and Development Division, Department of Fisheries, Pathum Thani 12120, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Piangjai Chalermwong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Surin Peyachoknagul
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan 31116, Korea
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources (CASTNAR), National Research University-Kasetsart University (NRU-KU), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Frederick K, Patel RC. Luteolin protects DYT- PRKRA cells from apoptosis by suppressing PKR activation. Front Pharmacol 2023; 14:1118725. [PMID: 36874028 PMCID: PMC9974672 DOI: 10.3389/fphar.2023.1118725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
DYT-PRKRA is a movement disorder caused by mutations in the PRKRA gene, which encodes for PACT, the protein activator of interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR. PACT brings about PKR's catalytic activation by a direct binding in response to stress signals and activated PKR phosphorylates the translation initiation factor eIF2α. Phosphorylation of eIF2α is the central regulatory event that is part of the integrated stress response (ISR), an evolutionarily conserved intracellular signaling network essential for adapting to environmental stresses to maintain healthy cells. A dysregulation of either the level or the duration of eIF2α phosphorylation in response to stress signals causes the normally pro-survival ISR to become pro-apoptotic. Our research has established that the PRKRA mutations reported to cause DYT-PRKRA lead to enhanced PACT-PKR interactions causing a dysregulation of ISR and an increased sensitivity to apoptosis. We have previously identified luteolin, a plant flavonoid, as an inhibitor of the PACT-PKR interaction using high-throughput screening of chemical libraries. Our results presented in this study indicate that luteolin is markedly effective in disrupting the pathological PACT-PKR interactions to protect DYT-PRKRA cells against apoptosis, thus suggesting a therapeutic option for using luteolin to treat DYT-PRKRA and possibly other diseases resulting from enhanced PACT-PKR interactions.
Collapse
Affiliation(s)
- Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
14
|
Molloy B, Jones ER, Linhares ND, Buckley PG, Leahy TR, Lynch B, Knerr I, King MD, Gorman KM. Uniparental disomy screen of Irish rare disorder cohort unmasks homozygous variants of clinical significance in the TMCO1 and PRKRA genes. Front Genet 2022; 13:945296. [PMID: 36186440 PMCID: PMC9515794 DOI: 10.3389/fgene.2022.945296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
A uniparental disomy (UPD) screen using whole genome sequencing (WGS) data from 164 trios with rare disorders in the Irish population was performed to identify large runs of homozygosity of uniparental origin that may harbour deleterious recessive variants. Three instances of whole chromosome uniparental isodisomy (UPiD) were identified: one case of maternal isodisomy of chromosome 1 and two cases of paternal isodisomy of chromosome 2. We identified deleterious homozygous variants on isodisomic chromosomes in two probands: a novel p (Glu59ValfsTer20) variant in TMCO1, and a p (Pro222Leu) variant in PRKRA, respectively. The overall prevalence of whole chromosome UPiD in our cohort was 1 in 55 births, compared to 1 in ∼7,500 births in the general population, suggesting a higher frequency of UPiD in rare disease cohorts. As a distinct mechanism underlying homozygosity compared to biallelic inheritance, the identification of UPiD has important implications for family planning and cascade testing. Our study demonstrates that UPD screening may improve diagnostic yields by prioritising UPiD chromosomes during WGS analysis.
Collapse
Affiliation(s)
- B. Molloy
- Genuity Science, Dublin, Ireland
- *Correspondence: B. Molloy,
| | | | | | | | - T. R. Leahy
- Department of Paediatric Immunology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Department of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland
| | - B. Lynch
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - I. Knerr
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - M. D. King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - K. M. Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Cheng X, Jiang Z, Feng Z, Sun Z, Lu S, Xu X, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) Trans-Activation-Responsive RNA-binding protein 2 (TARBP2) inhibits apoptosis by decreasing PKR phosphorylation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104425. [PMID: 35452690 DOI: 10.1016/j.dci.2022.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
PKR plays a significant role in IFN antiviral responses and in mediating apoptosis. Its activity is crucial for cellular antiviral and subsequent recovery. In mammalian cells, Protein Activator of the Interferon-induced Protein Kinase (PACT) and Trans-Activation-Responsive RNA-Binding Protein 2 (TARBP2) have the opposite effect on PKR activity in a dsRNA independent manner. There are some corresponding regulators of PKR in fish, too. In previous studies, we found that grass carp PACT can activate PKR in dsRNA independent manner. In this study, we tried to find out the effect of grass carp TARBP2 on PKR regulation. Grass carp TARBP2 expression is significantly increased at 6h post-poly I:C stimulation in CIK cells and grass carp tissues, indicating that it may play a role in poly I:C-mediated immune response. Then, we found that CiTARBP2 interacts with CiPKR and CiPACT, suggesting that it may regulate PKR activity by direct interaction with PKR or its regulators. Further, poly I:C promotes the phosphorylation of CiTARBP2 and enhances the interaction of CiTARBP2 and CiPKR. Finally, over-expression of CiTARBP2 decreases CiPKR phosphorylation and inhibits PKR-induced apoptosis. Therefore, our study reveals that CiTARBP2 can bind to CiPKR, CiPACT and CiTARBP2. The phosphorylated TARBP2 has stronger affinity to PKR, which results in the decrease of PKR phosphorylation and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Xining Cheng
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhichao Sun
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Shina Lu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
16
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
17
|
Dong Y, Jiang X, Chen F, Wang D, Zhang Z. Inhibiting the aberrant PACT-p53 axis activation ameliorates spinal cord ischaemia-reperfusion injury in rats. Int Immunopharmacol 2022; 108:108745. [PMID: 35421805 DOI: 10.1016/j.intimp.2022.108745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord ischaemia-reperfusion injury (SCII) induces multiple molecular and cellular changes, resulting in dyskinesia. Recently, it is reported that the p53 network plays a vital role in SCII. However, the roles of the PACT/PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A)-p53 axis in SCII are still unclear. The aim of this study was to elucidate the roles of the PACT-p53 axis in SCII. A Sprague-Dawley rat model of SCII was established by subjecting rats to a 14-min occlusion of the aortic arch. The Tarlov criteria, Western blotting, double immunofluorescence staining, haematoxylin and eosin (HE) staining, and transferase dUTP nick end labelling (TUNEL) assay were performed after SCII. Here, spinal cord ischaemia-reperfusion (SCI) caused hindlimb motor functional deficits as assessed by the Tarlov criteria. The protein expression of PACT was substantially upregulated at 48 h after SCII. Increased PACT fluorescence was mainly localized to neurons. Si-PACT pretreatment improved hindlimb motor function, ameliorated histological changes, and attenuated cell apoptosis after SCII. Si-PACT pretreatment reduced the protein expression of PACT, p53, Caspase-8 and IL-1β and the number of double-labelled PACT and p53. Taken together, inhibiting the aberrant PACT-p53 axis activation by si-PACT pretreatment ameliorates SCI-induced neuroapoptosis and neuroinflammation in rats. Silencing PACT expression is promising new therapeutic strategy for SCII.
Collapse
Affiliation(s)
- Yan Dong
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Xuan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China.
| |
Collapse
|
18
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
19
|
ADAR1 entraps sinister cellular dsRNAs, thresholding antiviral responses. Trends Immunol 2021; 42:953-955. [PMID: 34642093 DOI: 10.1016/j.it.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/29/2023]
Abstract
ADAR1 edits adenosines to inosines in cellular double-stranded (ds)RNA, thereby preventing aberrant activation of antiviral dsRNA sensors, as well as interferon (IFN) induction in Aicardi-Goutières syndrome (AGS) encephalopathy. Recently, Nakahama et al., Tang et al., Maurano et al., and de Reuver et al. demonstrated that Adar1 Zα domain-mutant mice show aberrant MDA5 and PKR activation, developing encephalopathies; short Z-RNA patches within cellular dsRNA are unexpectedly crucial in causing aberrant antiviral responses.
Collapse
|
20
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
21
|
Caffall ZF, Wilkes BJ, Hernández-Martinez R, Rittiner JE, Fox JT, Wan KK, Shipman MK, Titus SA, Zhang YQ, Patnaik S, Hall MD, Boxer MB, Shen M, Li Z, Vaillancourt DE, Calakos N. The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Sci Transl Med 2021; 13:13/607/eabd3904. [PMID: 34408078 DOI: 10.1126/scitranslmed.abd3904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.
Collapse
Affiliation(s)
- Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Jennifer T Fox
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kanny K Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,Department of Neurology, Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
22
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Ukhueduan B, Chukwurah E, Patel RC. Regulation of PKR activation and apoptosis during oxidative stress by TRBP phosphorylation. Int J Biochem Cell Biol 2021; 137:106030. [PMID: 34174402 DOI: 10.1016/j.biocel.2021.106030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) originally identified as a pro-viral cellular protein in human immunodeficiency virus (HIV) replication is also a regulator of microRNA biogenesis and cellular stress response. TRBP inhibits the catalytic activity of interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress thereby regulating stress-induced signaling pathways. During cellular stress, PKR is catalytically activated transiently by its protein activator PACT and TRBP inhibits PKR to bring about a timely cellular recovery. We have previously established that TRBP phosphorylated after oxidative stress binds to and inhibits PKR more efficiently promoting cell survival. In this study, we investigated if phosphorylation of TRBP enhances its interaction with PACT to bring about additional PKR inhibition. Our data establishes that phosphorylation of TRBP has no effect on PACT-TRBP interaction and TRBP's inhibitory actions on PKR are mediated exclusively by its enhanced interaction with PKR. Cells lacking TRBP are more sensitive to apoptosis in response to oxidative stress and show persistent PKR activation. These results establish that PKR inhibition by stress-induced TRBP phosphorylation occurs by its direct binding to PKR and is important for preventing apoptosis due to sustained PKR activation.
Collapse
Affiliation(s)
- Benedicth Ukhueduan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
24
|
Blalock WL. Opposing forces fight over the same ground to regulate interferon signaling. Biochem J 2021; 478:1853-1859. [PMID: 34003254 DOI: 10.1042/bcj20210110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
The current SARS-CoV-2 pandemic has spurred new interest in interferon signaling in response to viral pathogens. Much of what we know about the signaling molecules and associated signal transduction induced during the host cellular response to viral pathogens has been gained from research conducted from the 1990's to the present day, but certain intricacies of the mechanisms involved, still remain unclear. In a recent study by Vaughn et al. the authors examine one of the main mechanisms regulating interferon induction following viral infection, the RIG-I/MAVS/IRF3 pathway, and find that similar to PKR both DICER interacting proteins, PACT and TRBP, regulate RIG-I signaling in an opposing manner. More specifically, the reported findings demonstrate, like others, that PACT stimulates RIG-I-mediated signaling in a manner independent of PACT dsRNA-binding ability or phosphorylation at sites known to be important for PACT-dependent PKR activation. In contrast, they show for the first time that TRBP inhibits RIG-I-mediated signaling. RIG-I inhibition by TRBP did not require phosphorylation of sites shown to be important for inhibiting PKR, nor did it involve PACT or PKR, but it did require the dsRNA-binding ability of TRBP. These findings open the door to a complex co-regulation of RIG-I, PKR, MDA5, miRNA processing, and interferon induction.
Collapse
Affiliation(s)
- William L Blalock
- 'Luigi Luca Cavalli-Sforza' Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
25
|
Masnada S, Martinelli D, Correa-Vela M, Agolini E, Baide-Mairena H, Marcé-Grau A, Parazzini C, Veggiotti P, Perez-Duenas B, Tonduti D. PRKRA-Related Disorders: Bilateral Striatal Degeneration in Addition to DYT16 Spectrum. Mov Disord 2021; 36:1038-1040. [PMID: 33606314 DOI: 10.1002/mds.28492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Silvia Masnada
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Correa-Vela
- Paediatric Neurology Research Group, Valld'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Heidy Baide-Mairena
- Paediatric Neurology Research Group, Valld'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Paediatric Neurology Research Group, Valld'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilia Parazzini
- Paediatric Radiology and Neuroradiology Department, COALA (Center for Diagnosis and Treatment of Leukodystrophies)-V. Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, L. Sacco, University of Milan, Milan, Italy
| | - Belen Perez-Duenas
- Department of Child Neurology, Hospital Valld'Hebron-Institut de Recerca (VHIR), Barcelona, Spain
- CIBERER, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
- Faculty of Medicine, Universitat Autònoma de Barcelona, UnitatDocentValld'Hebrón, Barcelona, Spain
| | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
26
|
Vaughn LS, Chukwurah E, Patel RC. Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling. Biochem J 2021; 478:493-510. [PMID: 33459340 PMCID: PMC7919947 DOI: 10.1042/bcj20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biology, University of South Carolina, Columbia, SC 29210
| | | | - Rekha C Patel
- Department of Biology, University of South Carolina, Columbia, SC 29210
| |
Collapse
|
27
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
28
|
Kuipers DJS, Mandemakers W, Lu CS, Olgiati S, Breedveld GJ, Fevga C, Tadic V, Carecchio M, Osterman B, Sagi-Dain L, Wu-Chou YH, Chen CC, Chang HC, Wu SL, Yeh TH, Weng YH, Elia AE, Panteghini C, Marotta N, Pauly MG, Kühn AA, Volkmann J, Lace B, Meijer IA, Kandaswamy K, Quadri M, Garavaglia B, Lohmann K, Bauer P, Mencacci NE, Lubbe SJ, Klein C, Bertoli-Avella AM, Bonifati V. EIF2AK2 Missense Variants Associated with Early Onset Generalized Dystonia. Ann Neurol 2020; 89:485-497. [PMID: 33236446 PMCID: PMC7986743 DOI: 10.1002/ana.25973] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Objective The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. Methods Methods consisted of genome‐wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. Results We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR‐mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon‐inducible double‐stranded RNA‐dependent protein kinase activator A), the product of another gene causing monogenic dystonia. Interpretation We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485–497
Collapse
Affiliation(s)
- Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vera Tadic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Miryam Carecchio
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.,Department of Neuroscience, University of Padua, Padua, Italy
| | - Bradley Osterman
- Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yah-Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiung C Chen
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chen Chang
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department Neurology, Changhua Christian Hospital, Chunghua, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsin Weng
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Antonio E Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Marotta
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität of Berlin and Humboldt, Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Baiba Lace
- Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | - Inge A Meijer
- Department of Neurosciences and Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | | | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Weissbach A, Saranza G, Domingo A. Combined dystonias: clinical and genetic updates. J Neural Transm (Vienna) 2020; 128:417-429. [PMID: 33099685 DOI: 10.1007/s00702-020-02269-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
The genetic combined dystonias are a clinically and genetically heterogeneous group of neurologic disorders defined by the overlap of dystonia and other movement disorders such as parkinsonism or myoclonus. The number of genes associated with combined dystonia syndromes has been increasing due to the wider recognition of clinical features and broader use of genetic testing. Nevertheless, these diseases are still rare and represent only a small subgroup among all dystonias. Dopa-responsive dystonia (DYT/PARK-GCH1), rapid-onset dystonia-parkinsonism (DYT/PARK-ATP1A3), X-linked dystonia-parkinsonism (XDP, DYT/PARK-TAF1), and young-onset dystonia-parkinsonism (DYT/PARK-PRKRA) are monogenic combined dystonias accompanied by parkinsonian features. Meanwhile, MYC/DYT-SGCE and MYC/DYT-KCTD17 are characterized by dystonia in combination with myoclonus. In the past, common molecular pathways between these syndromes were the center of interest. Although the encoded proteins rather affect diverse cellular functions, recent neurophysiological evidence suggests similarities in the underlying mechanism in a subset. This review summarizes recent developments in the combined dystonias, focusing on clinico-genetic features and neurophysiologic findings. Disease-modifying therapies remain unavailable to date; an overview of symptomatic therapies for these disorders is also presented.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol Dis 2020; 146:105135. [PMID: 33049316 DOI: 10.1016/j.nbd.2020.105135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Dystonia 16 (DYT16) is caused by mutations in PACT, the protein activator of interferon-induced double-stranded RNA-activated protein kinase (PKR). PKR regulates the integrated stress response (ISR) via phosphorylation of the translation initiation factor eIF2α. This post-translational modification attenuates general protein synthesis while concomitantly triggering enhanced translation of a few specific transcripts leading either to recovery and homeostasis or cellular apoptosis depending on the intensity and duration of stress signals. PKR plays a regulatory role in determining the cellular response to viral infections, oxidative stress, endoplasmic reticulum (ER) stress, and growth factor deprivation. In the absence of stress, both PACT and PKR are bound by their inhibitor transactivation RNA-binding protein (TRBP) thereby keeping PKR inactive. Under conditions of cellular stress these inhibitory interactions dissociate facilitating PACT-PACT interactions critical for PKR activation. While both PACT-TRBP and PKR-TRBP interactions are pro-survival, PACT-PACT and PACT-PKR interactions are pro-apoptotic. In this study we evaluate if five DYT16 substitution mutations alter PKR activation and ISR. Our results indicate that the mutant DYT16 proteins show stronger PACT-PACT interactions and enhanced PKR activation. In DYT16 patient derived lymphoblasts the enhanced PACT-PKR interactions and heightened PKR activation leads to a dysregulation of ISR and increased apoptosis. More importantly, this enhanced sensitivity to ER stress can be rescued by luteolin, which disrupts PACT-PKR interactions. Our results not only demonstrate the impact of DYT16 mutations on regulation of ISR and DYT16 etiology but indicate that therapeutic interventions could be possible after a further evaluation of such strategies.
Collapse
|
31
|
Hu Z, Du H, Lin G, Han K, Cheng X, Feng Z, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) PACT induces cell apoptosis and activates NF-кB via PKR. FISH & SHELLFISH IMMUNOLOGY 2020; 103:377-384. [PMID: 32454210 DOI: 10.1016/j.fsi.2020.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
As a dsRNA-dependent and interferon-induced protein kinase, PKR is involved in antiviral immune response and apoptosis mediated by various cytokines. In mammalian cells, PKR can also be activated in the absence of dsRNA. A PKR activator, PACT (PKR activating protein), also referred to as RAX (PKR-associated protein X) plays an important role. In recent years, with the increasing recognition of fish interferon system, PKR and PACT have been gradually revealed in fish. However, the function of fish PACT is unclear. In our previous work, we suggested that grass carp (Ctenopharyngodon idella) PACT must be involved in IRF2 and ATF4-mediated stress response pathways. In the present study, we found that the expression of C. idella PACT (CiPACT) and CiPKR were significantly up-regulated under the stimulation of LPS. It indicated that CiPACT and CiPKR may play an important role in response to LPS stimulation. In addition, the response time of CiPACT to LPS is earlier than that of CiPKR. It has also shown that overexpression of CiPACT in CIK cells can significantly enhance the level of p-eIF2α, induces apoptosis and translocation of Cip65 to nucleus from cytoplasm. To further understand the mechanism, we carried out the co-immunoprecipitation assay. It proved that the interaction of CiPACT and CiPKR made the phosphorylation of CiPKR. Overexpression of CiPACT induced the down-regulation of intracellular expression of bcl-2 and up-regulation of bax. However, in CiPKR knocked-down cells the expression of bcl-2 and bax were just the opposite. Therefore, the mechanism of fish PACT induces apoptosis and activates NF-кB is dependent on PKR.
Collapse
Affiliation(s)
- Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xining Cheng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
32
|
Pinto MJ, Oliveira A, Rosas MJ, Massano J. Imaging Evidence of Nigrostriatal Degeneration in DYT-PRKRA. Mov Disord Clin Pract 2020; 7:472-474. [PMID: 32373670 DOI: 10.1002/mdc3.12941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 11/07/2022] Open
Abstract
https://onlinelibrary.wiley.com/page/journal/23301619/homepage/mdc312941-sup-v001.htm.
Collapse
Affiliation(s)
- Maria João Pinto
- Movement Disorders and Functional Surgery Unit, Department of Neurology, Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Ana Oliveira
- Movement Disorders and Functional Surgery Unit, Department of Neurology, Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Maria José Rosas
- Movement Disorders and Functional Surgery Unit, Department of Neurology, Centro Hospitalar Universitário de São João Porto Portugal
| | - João Massano
- Movement Disorders and Functional Surgery Unit, Department of Neurology, Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| |
Collapse
|
33
|
Farabaugh KT, Krokowski D, Guan BJ, Gao Z, Gao XH, Wu J, Jobava R, Ray G, de Jesus TJ, Bianchi MG, Chukwurah E, Bussolati O, Kilberg M, Buchner DA, Sen GC, Cotton C, McDonald C, Longworth M, Ramakrishnan P, Hatzoglou M. PACT-mediated PKR activation acts as a hyperosmotic stress intensity sensor weakening osmoadaptation and enhancing inflammation. eLife 2020; 9:e52241. [PMID: 32175843 PMCID: PMC7145421 DOI: 10.7554/elife.52241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth T Farabaugh
- Department of Pharmacology, Case Western Reserve UniversityClevelandUnited States
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
- Department of Molecular Biology, Maria Curie-Sklodowska UniversityLublinPoland
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Xing-Huang Gao
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Raul Jobava
- Department of Biochemistry, Case Western Reserve UniversityClevelandUnited States
| | - Greeshma Ray
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Tristan J de Jesus
- Department of Pathology, Case Western Reserve UniversityClevelandUnited States
| | | | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Universita degli Studi di ParmaParmaItaly
| | - Michael Kilberg
- Department of Biochemistry and Molecular Biology, University of FloridaGainesvilleUnited States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
- Department of Biochemistry, Case Western Reserve UniversityClevelandUnited States
| | - Ganes C Sen
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Calvin Cotton
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Christine McDonald
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | - Michelle Longworth
- Department of Inflammation and Immunity, Cleveland Clinic FoundationClevelandUnited States
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
34
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
35
|
Burnett SB, Vaughn LS, Strom JM, Francois A, Patel RC. A truncated PACT protein resulting from a frameshift mutation reported in movement disorder DYT16 triggers caspase activation and apoptosis. J Cell Biochem 2019; 120:19004-19018. [PMID: 31246344 DOI: 10.1002/jcb.29223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 01/21/2023]
Abstract
Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions.
Collapse
Affiliation(s)
- Samuel B Burnett
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Lauren S Vaughn
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Joelle M Strom
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Ashley Francois
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Rekha C Patel
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
36
|
Kuo YP, Ma CP, Chen HW, Chen YT, Lai YH, Liu H, Kuo RL, Chin-Ming Tan B. A novel antisense RNA ASPACT confers multi-level suppression of PACT and associated signalling. RNA Biol 2019; 16:1263-1274. [PMID: 31135270 DOI: 10.1080/15476286.2019.1624471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-β-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.
Collapse
Affiliation(s)
- Yu-Ping Kuo
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Chung-Pei Ma
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Wen Chen
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Tung Chen
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Lai
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hsuan Liu
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,e Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Rei-Lin Kuo
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,f Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,g Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,h Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Bertrand Chin-Ming Tan
- a Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Department of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,g Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,i Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
37
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
38
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
39
|
Gu L, Ge Z, Wang Y, Shen M, Zhao P, Chen W. Double-stranded RNA-dependent kinase PKR activates NF-κB pathway in acute pancreatitis. Biochem Biophys Res Commun 2018; 503:1563-1569. [PMID: 30031606 DOI: 10.1016/j.bbrc.2018.07.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/04/2023]
Abstract
The activation of transcription factor nuclear factor kappa B (NF-κB) occurs early in acute pancreatitis (AP) simultaneously with intracellular trypsinogen activation. Double-stranded RNA-dependent kinase (PKR) promotes the activation of NF-κB and the production of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). The rat and rat pancreatic AR42J cells were treated by cerulein to establish AP models, showing PKR increased. TNF-α, IL-6 and lactate dehydrogenase (LDH) in AP pancreatic tissues and cerulein-treated AR42J cells increased, while PKR knockdown in AR42J cells reversed cerulein-induced inflammatory response and pancreatic cell injury. In addition, inhibitor of kappa B kinase α (IKKα), phosphorylated P65 (p-P65), P65 increased in cerulein-treated AR42J cells. Meanwhile, in cerulein-treated AR42J cells, interaction between PKR and IKKα, as well as the co-localization and nuclear accumulation of PKR and P65, were detected. Furthermore, cerulein induced the phosphorylation and nuclear translocation of P65, which indicated the activation of NF-κB, while PKR knockdown hindered NF-κB activation to alleviate pancreatic cell injury. In summary, PKR might promote NF-κB activation via facilitating its phosphorylation and nuclear translocation, thus accelerated inflammatory response and pancreatic cell injury in AP, implying a novel molecular target for the treatment of AP.
Collapse
Affiliation(s)
- Liugen Gu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhenming Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yamin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Meiqin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ping Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
40
|
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14:e1007169. [PMID: 29364887 PMCID: PMC5798844 DOI: 10.1371/journal.pgen.1007169] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/05/2018] [Accepted: 12/25/2017] [Indexed: 12/14/2022] Open
Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. Dystonia is a brain disorder that causes disabling involuntary muscle contractions and abnormal postures. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. In this study, we sought to determine the effects of Thap1C54Y and ΔExon2 alleles on the gene transcription signatures at postnatal day 1 (P1) in the mouse striatum and cerebellum in order to correlate function with specific genes or pathways. Our unbiased transcriptomics approach showed that Thap1 mutants revealed multiple signaling pathways involved in neuronal plasticity, axonal guidance, and oxidative stress response, which are also present in other forms of dystonia, particularly DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia.
Collapse
|
41
|
Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci Rep 2018; 8:1020. [PMID: 29348664 PMCID: PMC5773696 DOI: 10.1038/s41598-018-19360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) initially identified to play an important role in human immunodeficiency virus (HIV) replication also has emerged as a regulator of microRNA biogenesis. In addition, TRBP functions in signaling pathways by negatively regulating the interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress. During cellular stress, PKR is activated and phosphorylates the α subunit of the eukaryotic translation factor eIF2, leading to the cessation of general protein synthesis. TRBP inhibits PKR activity by direct interaction as well as by binding to PKR’s two known activators, dsRNA and PACT, thus preventing their interaction with PKR. In this study, we demonstrate for the first time that TRBP is phosphorylated in response to oxidative stress and upon phosphorylation, inhibits PKR more efficiently promoting cell survival. These results establish that PKR regulation through stress-induced TRBP phosphorylation is an important mechanism ensuring cellular recovery and preventing apoptosis due to sustained PKR activation.
Collapse
|
42
|
Chukwurah E, Willingham V, Singh M, Castillo-Azofeifa D, Patel RC. Contribution of the two dsRBM motifs to the double-stranded RNA binding and protein interactions of PACT. J Cell Biochem 2018; 119:3598-3607. [PMID: 29231267 DOI: 10.1002/jcb.26561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022]
Abstract
PACT is a stress-modulated activator of protein kinase PKR (protein kinase, RNA activated), which is involved in antiviral innate immune responses and stress-induced apoptosis. Stress-induced phosphorylation of PACT is essential for PACT's increased association with PKR leading to PKR activation, phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. PACT-induced PKR activation is negatively regulated by TRBP (transactivation response element RNA-binding protein), which dissociates from PACT after PACT phosphorylation in response to stress signals. The conserved double-stranded RNA binding motifs (dsRBMs) in PKR, PACT, and TRBP mediate protein-protein interactions, and the stress-dependent phosphorylation of PACT changes the relative strengths of PKR-PACT, PACT-TRBP, and PACT-PACT interactions to bring about a timely and transient PKR activation. This regulates the general kinetics as well as level of eIF2α phosphorylation, thereby influencing the cellular response to stress either as recovery and survival or elimination by apoptosis. In the present study, we evaluated the effect of specific mutations within PACT's two evolutionarily conserved dsRBMs on dsRNA-binding, and protein-protein interactions between PKR, PACT, and TRBP. Our data show that the two motifs contribute to varying extents in dsRNA binding, and protein interactions. These findings indicate that although the dsRBM motifs have high sequence conservation, their functional contribution in the context of the whole proteins needs to be determined by mutational analysis. Furthermore, using a PACT mutant that is deficient in PACT-PACT interaction but competent for PACT-PKR interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Victoria Willingham
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Madhurima Singh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | | | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
43
|
Dos Santos CO, da Silva-Júnior FP, Puga RD, Barbosa ER, Azevedo Silva SMC, Borges V, Limongi JCP, Rocha MSG, Ferraz HB, de Carvalho Aguiar P. The prevalence of PRKRA mutations in idiopathic dystonia. Parkinsonism Relat Disord 2017; 48:93-96. [PMID: 29279192 DOI: 10.1016/j.parkreldis.2017.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION DYT-PRKRA (DYT16) is considered a rare cause of dystonia-parkinsonism. The significance of this gene as a cause of dystonia and its phenotypical characterization must be determined in larger cohorts. We aimed to investigate the role of PRKRA in patients with dystonia. METHODS We sequenced PRKRA in 153 unrelated Brazilian patients with idiopathic dystonia. The frequency of novel missense variants was investigated in healthy Brazilian controls and in public databases. Homozygosity in the PRKRA region was assessed through polymorphic markers. RESULTS PRKRA variants were identified in seven probands with isolated dystonia, including a novel c.C795A variant in compound heterozygosity with the previously described c.C665T variant. Heterozygosity in the gene region was observed in two probands who were homozygous for c.C665T, indicating that this mutation originated from independent events, suggesting a hotspot. CONCLUSION PRKRA is not an unusual cause of idiopathic dystonia. In this cohort, it was responsible for 4.5% of the total of cases (4.9% of the isolated dystonia cases). The most common phenotype was early-onset isolated focal dystonia followed by generalization, parkinsonism was not observed. This is first report of PRKRA causing adulthood-onset dystonia. Screenings of large cohorts are recommended to investigate the role of this gene in isolated dystonia, as well as in dystonia-parkinsonism cases worldwide.
Collapse
Affiliation(s)
| | | | | | - Egberto Reis Barbosa
- Department of Neurology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia Maria Cesar Azevedo Silva
- Hospital do Servidor Público Estadual, Sao Paulo, SP, Brazil; Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanderci Borges
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Henrique Ballalai Ferraz
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil; Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
44
|
Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci 2017; 36:10245-10256. [PMID: 27707963 DOI: 10.1523/jneurosci.0669-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.
Collapse
|
45
|
Li Y, Xiao J, Tan Y, Wang J, Zhang Y, Deng X, Luo Y. Inhibition of PKR ameliorates lipopolysaccharide-induced acute lung injury by suppressing NF-κB pathway in mice. Immunopharmacol Immunotoxicol 2017; 39:165-172. [PMID: 28511573 DOI: 10.1080/08923973.2017.1303839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) is characterized by dramatic lung inflammation and alveolar epithelial cell death. Although protein kinase R (PKR) (double-stranded RNA-activated serine/threonine kinase) has been implicated in inflammatory response to bacterial cell wall components, whether it plays roles in lipopolysaccharide (LPS)-induced ALI remains unclear. This study was aimed to reveal whether and how PKR was involved in LPS-induced ALI pathology and the potential effects of its specific inhibitor, C16 (C13H8N4OS). During the experiment, mice received C16 (100 or 500 ug/kg) intraperitoneally 1 h before intratracheal LPS instillation. Then, whole lung lavage was collected for analysis of total protein levels and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. The lungs were tested for Western blot, transferase-mediated dUTP nick-end labeling (TUNEL) stain and immunohistochemistry. Results showed that PKR phosphorylation increased significantly after LPS instillation. Furthermore, PKR specific inhibition attenuated LPS-induced lung injury (hematoxylin and eosin stain), reduced lung protein permeability (total protein levels in whole lung lavage) and suppressed proinflammatory cytokines (TNF-α, IL-1β and IL-6) and lung apoptosis (TUNEL stain and caspase3 activation). Moreover, mechanism-study showed that C16 significantly suppressed I kappa B kinase (IKK)/I kappa B alpha (IκBα)/NF-κB signaling pathway after LPS challenge. These findings suggested that PKR inhibition ameliorated LPS-induced lung inflammation and apoptosis in mice by suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yinjiao Li
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jinglei Xiao
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yongchang Tan
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Wang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Zhang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoming Deng
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Luo
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
46
|
Abstract
The ability to appropriately respond to proteotoxic stimuli is a major determinant of longevity and involves induction of various heat shock response (HSR) genes, which are essential to cope with cellular and organismal insults throughout lifespan. The activity of NAD+-dependent deacetylase Sir2, originally discovered in yeast, is known to be essential for effective HSR and longevity. Our previous work on HSR inDaphnia pulicaria indicated a drastic reduction of the HSR in older organisms. In this report we investigate the role of Sir2 in regulating HSR during the lifespan of D. pulicaria. We cloned Daphnia Sir2 open reading frame (ORF) to characterize the enzyme activity and confirmed that the overall function of Sir2 was conserved in Daphnia. The Sir2 mRNA levels increased while the enzyme activity declined with age and considering that Sir2 activity regulates HSR, this explains the previously observed age-dependent decline in HSR. Finally, we tested the effect of Sir2 knockdown throughout adult life by using our new RNA interference (RNAi) method by feeding. Sir2 knockdown severely reduced both the median lifespan as well as significantly increased mortality following heat shock. Our study provides the first characterization and functional study of Daphnia Sir2.
Collapse
|
47
|
Rittiner JE, Caffall ZF, Hernández-Martinez R, Sanderson SM, Pearson JL, Tsukayama KK, Liu AY, Xiao C, Tracy S, Shipman MK, Hickey P, Johnson J, Scott B, Stacy M, Saunders-Pullman R, Bressman S, Simonyan K, Sharma N, Ozelius LJ, Cirulli ET, Calakos N. Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron 2016; 92:1238-1251. [PMID: 27939583 DOI: 10.1016/j.neuron.2016.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - James L Pearson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Department of RNAi Screening Facility, Duke University, Durham, NC 27708, USA
| | | | - Anna Y Liu
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Changrui Xiao
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Samantha Tracy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Patrick Hickey
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Julia Johnson
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Burton Scott
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Mark Stacy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth T Cirulli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Nicole Calakos
- Department of Neurology, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
48
|
Camargos S, Cardoso F. Understanding dystonia: diagnostic issues and how to overcome them. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:921-936. [DOI: 10.1590/0004-282x20160140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 03/05/2025]
Abstract
ABSTRACT The diagnosis and treatment of dystonia are challenging. This is likely due to gaps in the complete understanding of its pathophysiology, lack of animal models for translational studies, absence of a consistent pathological substrate and highly variable phenotypes and genotypes. The aim of this review article is to provide an overview of the clinical, neurophysiological and genetic features of dystonia that can help in the identification of this movement disorder, as well as in the differential diagnosis of the main forms of genetic dystonia. The variation of penetrance, age of onset, and topographic distribution of the disease in carriers of the same genetic mutation indicates that other factors – either genetic or environmental – might be involved in the development of symptoms. The growing knowledge of cell dysfunction in mutants may give insights into more effective therapeutic targets.
Collapse
|