1
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
2
|
Rostami MR, Leopold PL, Vasquez JM, de Mulder Rougvie M, Al Shakaki A, Hssain AA, Robay A, Hackett NR, Mezey JG, Crystal RG. Predicted deleterious variants in the human genome relevant to gene therapy with adeno-associated virus vectors. Mol Ther Methods Clin Dev 2023; 31:101136. [PMID: 38089635 PMCID: PMC10711236 DOI: 10.1016/j.omtm.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/11/2023] [Indexed: 01/02/2025]
Abstract
Based on the observation that humans have variable responses of gene expression with the same dose of an adeno-associated vector, we hypothesized that there are deleterious variants in genes coding for processes required for adeno-associated virus (AAV)-mediated gene transfer/expression that may hamper or enhance the effectiveness of AAV-mediated gene therapy. To assess this hypothesis, we evaluated 69,442 whole genome sequences from three populations (European, African/African American, and Qatari) for predicted deleterious variants in 62 genes known to play a role in AAV-mediated gene transfer/expression. The analysis identified 5,564 potentially deleterious mutations of which 27 were classified as common based on an allele frequency ≥1% in at least one population studied. Many of these deleterious variants are predicated to prevent while others enhance effective AAV gene transfer/expression, and several are linked to known hereditary disorders. The data support the hypothesis that, like other drugs, human genetic variability contributes to the person-to-person effectiveness of AAV gene therapy and the screening for genetic variability should be considered as part of future clinical trials.
Collapse
Affiliation(s)
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenifer M. Vasquez
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Alya Al Shakaki
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | | | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Huang X, Wang X, Li L, Wang Q, Xu W, Wu W, Xie X, Diao Y. MiR133b-mediated inhibition of EGFR-PTK pathway promotes rAAV2 transduction by facilitating intracellular trafficking and augmenting second-strand synthesis. J Cell Mol Med 2023; 27:2714-2729. [PMID: 37469226 PMCID: PMC10494303 DOI: 10.1111/jcmm.17858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is an extremely attractive vector in the in vivo delivery of gene therapy as it is safe and its genome is simple. However, challenges including low permissiveness to specific cells and restricted tissue specificity have hindered its clinical application. Based on the previous studies, epidermal growth factor receptor-protein tyrosine kinase (EGFR-PTK) negatively regulated rAAV transduction, and EGFR-positive cells were hardly permissive to rAAV transduction. We constructed a novel rAAV-miRNA133b vector, which co-expressed miRNA133b and transgene, and investigated its in vivo and in vitro transduction efficiency. Confocal microscopy, live-cell imaging, pharmacological reagents and labelled virion tracking were used to analyse the effect of miRNA133b on rAAV2 transduction and the underlying mechanisms. The results demonstrated that miRNA133b could promote rAAV2 transduction and the effects were limited to EGFR-positive cells. The increased transduction was found to be a direct result of decreased rAAV particles degradation in the cytoplasm and enhanced second-strand synthesis. ss-rAAV2-miRNA133b vector specifically increased rAAV2 transduction in EGFR-positive cells or tissues, while ss-rAAV2-Fluc-miRNA133b exerted an antitumor effect. rAAV-miRNA133b vector might emerge as a promising platform for delivering various transgene to treat EGFR-positive cell-related diseases, such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Qizhao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yong Diao
- School of MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
4
|
Golm SK, Hübner W, Müller KM. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023; 15:v15051174. [PMID: 37243260 DOI: 10.3390/v15051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Research on adeno-associated virus (AAV) and its recombinant vectors as well as on fluorescence microscopy imaging is rapidly progressing driven by clinical applications and new technologies, respectively. The topics converge, since high and super-resolution microscopes facilitate the study of spatial and temporal aspects of cellular virus biology. Labeling methods also evolve and diversify. We review these interdisciplinary developments and provide information on the technologies used and the biological knowledge gained. The emphasis lies on the visualization of AAV proteins by chemical fluorophores, protein fusions and antibodies as well as on methods for the detection of adeno-associated viral DNA. We add a short overview of fluorescent microscope techniques and their advantages and challenges in detecting AAV.
Collapse
Affiliation(s)
- Susanne K Golm
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
6
|
Huang X, Wang X, Ren Y, Gao P, Xu W, Xie X, Diao Y. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes. Virol J 2023; 20:2. [PMID: 36611172 PMCID: PMC9825130 DOI: 10.1186/s12985-023-01964-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent seminal studies have revealed that endosomal reactive oxygen species (ROS) promote rather than inhibit viral infection. Some ROS generators, including shikonin and H2O2, have the potential to enhance recombinant adeno-associated virus (rAAV) transduction. However, the impact of ROS on rAAV intracellular trafficking remains unclear. METHODS To understand the effects of ROS on the transduction of rAAV vectors, especially the rAAV subcellular distribution profiles, this study systematically explored the effect of ROS on each step of rAAV intracellular trafficking pathway using fluorescently-labeled rAAV and qPCR quantification determination. RESULTS The results showed promoted in-vivo and in-vitro rAAV transduction by ROS exposure, regardless of vector serotype or cell type. ROS treatment directed rAAV intracellular trafficking towards a more productive pathway by upregulating the expression of cathepsins B and L, accelerating the rAAV transit in late endosomes, and increasing the rAAV nucleus entry. CONCLUSIONS These data support that ROS generative drugs, such as shikonin, have the potential to promote rAAV vector transduction by promoting rAAV's escape from late endosomes, and enhancing its productive trafficking to the nucleus.
Collapse
Affiliation(s)
- Xiaoping Huang
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiao Wang
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Yanxuan Ren
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Pingzhang Gao
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Wentao Xu
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China.
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China.
| |
Collapse
|
7
|
Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020; 15:e0242599. [PMID: 33227033 PMCID: PMC7682903 DOI: 10.1371/journal.pone.0242599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Sensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV). However, AAV efficacy in transducing cochlear cells can vary for a number of reasons including serotype, species, and methodology, and oftentimes requires high multiplicity of infection which can damage the sensory cells. Reports in other systems suggest multiple approaches can be used to enhance AAV transduction including self-complementary vector design and pharmacological inhibition of degradation. Here we produced AAV to drive green fluorescent protein (GFP) expression in explanted neonatal mouse cochleae. Treatment with eeyarestatin I, tyrphostin 23, or lipofectamine 2000 did not result in increased transduction, however, self-complementary vector design resulted in significantly more GFP positive cells when compared to single-stranded controls. Similarly, self-complementary AAV2 vectors demonstrated enhanced transduction efficiency compared to single stranded AAV2 when injected via the posterior semicircular canal, in vivo. Self-complementary vectors for AAV1, 8, and 9 serotypes also demonstrated robust GFP transduction in cochlear cells in vivo, though these were not directly compared to single stranded vectors. These findings suggest that second-strand synthesis may be a rate limiting step in AAV transduction of cochlear tissues and that self-complementary AAV can be used to effectively target large numbers of cochlear cells in vitro and in vivo.
Collapse
|
8
|
Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends Mol Med 2020; 27:172-184. [PMID: 33071047 DOI: 10.1016/j.molmed.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
As adeno-associated virus (AAV)-based gene therapies are being increasingly approved for use in humans, it is important that we understand vector-host interactions in detail. With the advances in genome-wide genetic screening tools, a clear picture of AAV-host interactions is beginning to emerge. Understanding these interactions can provide insights into the viral life cycle. Accordingly, novel strategies to circumvent the current limitations of AAV-based vectors may be explored. Here, we summarize our current understanding of the various stages in the journey of the vector from the cell surface to the nucleus and contextualize the roles of recently identified host factors.
Collapse
|
9
|
Zhang X, Chai Z, Samulski RJ, Li C. Bound Protein- and Peptide-Based Strategies for Adeno-Associated Virus Vector-Mediated Gene Therapy: Where Do We Stand Now? Hum Gene Ther 2020; 31:1146-1154. [PMID: 32940063 DOI: 10.1089/hum.2020.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have become one of the most promising and efficacious delivery vehicles for human gene therapy; however, low infectivity remains a major ongoing obstacle in the clinical application of rAAV vectors. Multiple strategies, including rAAV capsid modification and the application of pharmacological reagents, have been explored to enhance rAAV vector gene delivery. Recently, a new strategy using native proteins or various peptides has shown promise for increasing rAAV transduction locally or globally. This review summarizes the current status of protein- and peptide-based strategies and mechanisms to modulate rAAV transduction. We also provide a potential insight regarding the design of effective approaches for rAAV transduction enhancement in future clinical studies.
Collapse
Affiliation(s)
- Xintao Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of
| | - Zheng Chai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of.,Pharmacology and
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of.,Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
11
|
Bieńkowska A, Ducher M, Orzechowska M, Słyk Ż, Ciepiela O, Jaworowski J, Małecki M. Increased temperature-related adeno-associated virus vectors transduction of ovarian cancer cells - essential signatures of AAV receptor and heat shock proteins. Exp Ther Med 2019; 18:4718-4732. [PMID: 31772643 PMCID: PMC6861878 DOI: 10.3892/etm.2019.8112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are becoming more commonly used in clinical trials involving gene therapy. Additionally AAV-based drugs have already been registered. Gene therapy aims to increase transduction efficiency, increase in vivo selectivity and reduce side effects. One approach to achieve this is the use of physical factors, such as temperature or more specifically, hyperthermia, which is already utilized in oncology. The aim of the present study was to investigate the effect of hyperthermic conditions (40°C and 43°C) on the rAAV transduction efficiency of ovarian cancer cells (Caov-3 and NIH:OVCAR-3) and non-cancerous cells (AAV-293). The present study was designed to identify functional associations between the level of gene transfer and the expression of representative genes for rAAV transmission (AAVR (AAV receptor), heparan sulfate proteoglycan (HSPG) 1 and HSPG2) and heat shock proteins (HSPs). The expressions of selected genes were measured via reverse transcription-quantitative PCR and cell adhesion/invasion chamber tests were also performed. The results revealed that ovarian cancer cell lines were more efficiently transduced with rAAV vectors at an elevated temperature. Additionally, the expression patterns of AAVR, HSPG1 and HSPG2 genes were different between the tested lines. The expression of certain receptors in ascites-derived NIH:OVCAR-3 ovarian cancer cells was higher compared with tumor-derived Caov-3 cells at 37, 40 and 43°C, which indicates a higher transduction efficiency in the formerly mentioned cells. Ascites-derived ovarian cancer cells were characterized by high expressions of HSP40, HSP90 and HSP70 families. Lower levels of HSP expression were demonstrated in less-effectively transduced Caov-3 cells. Furthermore, expressions of the examined genes changed with increasing temperature. The results indicated that temperature-dependent transduction is associated with the expression of the rAAV receptor and HSP genes. The results of the current study may aid the design of effective protocols for ovarian cancer gene therapy.
Collapse
Affiliation(s)
- Alicja Bieńkowska
- Department of Applied Pharmacy, Faculty of Pharmacy with Laboratory Medicine, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Magdalena Ducher
- Department of Applied Pharmacy, Faculty of Pharmacy with Laboratory Medicine, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Magdalena Orzechowska
- Department of Applied Pharmacy, Faculty of Pharmacy with Laboratory Medicine, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy with Laboratory Medicine, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Olga Ciepiela
- Department of Laboratory Diagnostics, Faculty of Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | | | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy with Laboratory Medicine, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
12
|
McDougald DS, Duong TT, Palozola KC, Marsh A, Papp TE, Mills JA, Zhou S, Bennett J. CRISPR Activation Enhances In Vitro Potency of AAV Vectors Driven by Tissue-Specific Promoters. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:380-389. [PMID: 31024980 PMCID: PMC6477656 DOI: 10.1016/j.omtm.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
Validation of gene transfer vectors containing tissue-specific promoters in cell-based functional assays poses a formidable challenge for gene therapy product development. Here, we describe a novel approach based on CRISPR/dCas9 transcriptional activation to achieve robust transgene expression from transgene cassettes containing tissue or cell type-specific promoters after infection with AAV vectors in cell-based systems. Guide RNA sequences targeting two promoters that are highly active within mammalian photoreceptors were screened in a novel promoter activation assay. Using this screen, we generated and characterized stable cell lines that co-express dCas9.VPR and top-performing guide RNA candidates. These cells exhibit potent activation of proviral plasmids after transfection or after infection with AAV vectors delivering transgene cassettes carrying photoreceptor-specific promoters. In addition, we interrogated mechanisms to optimize this platform through the addition of multiple guide RNA sequences and co-expression of the universal adeno-associated virus receptor (AAVR). Collectively, this investigation identifies a rapid and broadly applicable strategy to enhance in vitro expression and to evaluate potency of AAV vectors that rely upon cell or tissue-specific regulatory elements.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thu T Duong
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine C Palozola
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anson Marsh
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shangzhen Zhou
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Lopes-Pacheco M, Kitoko JZ, Morales MM, Petrs-Silva H, Rocco PRM. Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Exp Cell Res 2018; 372:99-107. [PMID: 30244179 DOI: 10.1016/j.yexcr.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vector platforms have shown considerable therapeutic success in gene therapy for inherited disorders. In cystic fibrosis (CF), administration of first-generation rAAV2 was safe, but clinical benefits were not clearly demonstrated. Therefore, next-generation vectors that overcome rate-limiting steps in rAAV transduction are needed to obtain successful gene therapy for this devastating disease. In this study, we evaluated the effects of single-strand or self-complementary (sc) rAAV vectors containing single or multiple tyrosine-to-phenylalanine (Y-F) mutations in capsid surface-exposed residues on serotypes 2, 8 or 9. For this purpose, CF bronchial epithelial (CFBE) cells were transduced with rAAV vectors, and the transgene expression of enhanced green fluorescence protein (eGFP) was analyzed at different time points. The effects of vectors on the cell viability, host cell cycle and in association with co-adjuvant drugs that modulate intracellular vector trafficking were also investigated. Six rAAV vectors demonstrated greater percentage of eGFP+ cells compared to their counterparts at days 4, 7 and 10 post-transduction: rAAV2 Y(272,444,500,730)F, with 1.95-, 3.5- and 3.06-fold increases; rAAV2 Y(252,272,444,500,704,730)F, with 1.65-, 2.12-, and 2-fold increases; scrAAV2 WT, with 1.69-, 2.68-, and 2.32-fold increases; scrAAV8 Y773F, with 57-, 6.06-, and 7-fold increases; scrAAV9 WT, with 7.47-, 4.64-, and 3.66-fold increases; and scrAAV9 Y446F, with 8.39-, 4.62-, and 4.4-fold increases. At days 15, 20, and 30 post-transduction, these vectors still demonstrated higher transgene expression than transfected cells. Although the percentage of eGFP+ cells reduced during the time-course analysis, the delta mean fluorescence intensity increased. These vectors also led to increased percentage of cells in G1-phase without eliciting any cytotoxicity. Prior administration of bortezomib or genistein did not increase eGFP expression in cells transduced with either rAAV2 Y(272,444,500,730)F or rAAV2 Y(252,272,444,500,704,730)F. In conclusion, self-complementary and tyrosine capsid mutations on rAAV serotypes 2, 8, and 9 led to more efficient transduction than their counterparts in CFBE cells by overcoming the intracellular trafficking and second-strand DNA synthesis limitations.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Sun J, Shao W, Chen X, Merricks EP, Wimsey L, Abajas YL, Niemeyer GP, Lothrop CD, Monahan PE, Samulski RJ, Nichols TC, Li C. An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:257-267. [PMID: 30140713 PMCID: PMC6104583 DOI: 10.1016/j.omtm.2018.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Adeno-associated virus (AAV) vectors have been successfully applied in hemophilia clinical trials. However, this approach is limited to patients without AAV-neutralizing antibodies (NAbs). In this study, we explored the feasibility of AAV re-administration in hemophilia A dogs treated initially 8 years ago with AAV8.canine FVIII. After the re-administration in two NAb-negative dogs with AAV8 vectors carrying human factor VIII (hFVIII), along with the proteasome inhibitor bortezomib, we observed a phenotypic improvement in both dogs that persisted in one dog. Phenotypic improvement disappeared at 59 days after re-administration in the other dog, and specific cytotoxic T lymphocytes (CTLs) to the capsid were detected at day 17, but not to hFVIII. hFVIII inhibitors were observed at day 59 and gradually increased. Mechanistic studies demonstrated an increase in pro-inflammatory cytokines, a decrease in immunomodulatory cytokines, as well as lower Tregs after re-administration. These results suggest that hFVIII inhibitor development may contribute to the therapeutic failure via immune response activation. Interestingly, it takes about 30–50 days for AAV NAb titers to decrease by half. Collectively, this study suggests that re-administration of the same AAV serotype after long-term follow-up is feasible and that the study of AAV NAb kinetics will provide important information for predicating the efficacy of re-administration.
Collapse
Affiliation(s)
- Junjiang Sun
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wenwei Shao
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaojing Chen
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren Wimsey
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasmina L Abajas
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn P Niemeyer
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clinton D Lothrop
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul E Monahan
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Jude Samulski
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengwen Li
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
LL-37 disrupts the Kaposi's sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antiviral Res 2018; 158:25-33. [PMID: 30076864 DOI: 10.1016/j.antiviral.2018.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Oral epithelial cells (OECs) represent the first line of defense against viruses that are spread via saliva, including Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of humans by KSHV and viral pathogenesis begins by infecting OECs. One method OECs use to limit viral infections in the oral cavity is the production of antimicrobial peptides (AMPs), or host defense peptides (HDPs). However, no studies have investigated the antiviral activities of any HDP against KSHV. The goal of this study was to determine the antiviral activity of one HDP, LL-37, against KSHV in the context of infecting OECs. Our results show that LL-37 significantly decreased KSHV's ability to infect OECs in both a structure- and dose-dependent manner. However, this activity does not stem from affecting OECs, but instead the virions themselves. We found that LL-37 exerts its antiviral activity against KSHV by disrupting the viral envelope, which can inhibit viral entry into OECs. Our data suggest that LL-37 exhibits a marked antiviral activity against KSHV during infection of oral epithelial cells, which can play an important role in host defense against oral KSHV infection. Thus, we propose that inducing LL-37 expression endogenously in oral epithelial cells, or potentially introducing as a therapy, may help restrict oral KSHV infection and ultimately KSHV-associated diseases.
Collapse
|
16
|
Strategy to detect pre-existing immunity to AAV gene therapy. Gene Ther 2017; 24:768-778. [PMID: 29106404 PMCID: PMC5746592 DOI: 10.1038/gt.2017.95] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Gene therapy may offer a new treatment option, particularly for patients with severe hemophilia, based on recent research. However, individuals with pre-existing immunity to adeno-associated viruses (AAVs) may be less likely to benefit from AAV vector-based therapies. To study pre-existing AAV5 immunity in humans, we validated two complementary, sensitive, and scalable in vitro assays to detect AAV5 total antibodies and transduction inhibition (TI). Using these two assays, we found that 53% of samples from 100 healthy male individuals were negative in both assays, 18% were positive in both assays, 5% were positive for total antibodies but negative for TI and, of interest, 24% were negative for total antibodies but positive for TI activity, suggesting the presence of non-antibody-based neutralizing factors in human plasma. Similar findings were obtained with 24 samples from individuals with hemophilia A. On the basis of these results, we describe the development of a dual-assay strategy to identify individuals without total AAV5 antibodies or neutralizing factors who may be more likely to respond to AAV5-directed gene therapy. These assays offer a universal, transferrable platform across laboratories to assess the global prevalence of AAV5 antibodies and neutralizing factors in large patient populations to help inform clinical development strategies.
Collapse
|
17
|
Grimm D, Büning H. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Hum Gene Ther 2017; 28:1075-1086. [DOI: 10.1089/hum.2017.172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dirk Grimm
- Heidelberg University Hospital, Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
TFEB-mediated activation of the lysosome-autophagy system affects the transduction efficiency of adeno-associated virus 2. Virology 2017; 510:1-8. [PMID: 28688268 DOI: 10.1016/j.virol.2017.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV)-mediated gene transfer is an appealing therapeutic option due to AAV's safety profile. Effective delivery of AAV's genetic cargo to the nucleus, however, requires evasion of host cell barriers, including cellular clearance mechanisms mediated by the lysosome-autophagy system. We used AAV serotype 2 to monitor the autophagic response to cellular internalization of AAV and to characterize the effect of AAV-induced activation of autophagy on transgene expression. We found AAV2 internalization to induce activation of transcription factor EB, a master regulator of autophagy and lysosomal biogenesis, and upregulation of the lysosome-autophagy system. We showed that AAV2-induced activation of autophagy parallels a reduction in transgene expression, but also an increase in autophagic clearance of protein aggregates. These results can inform the design of AAV vectors with autophagy-modulating properties for applications ranging from the design of efficient gene delivery vectors to the treatment of diseases characterized by accumulation of autophagic cargo.
Collapse
|
19
|
Hösel M, Huber A, Bohlen S, Lucifora J, Ronzitti G, Puzzo F, Boisgerault F, Hacker UT, Kwanten WJ, Klöting N, Blüher M, Gluschko A, Schramm M, Utermöhlen O, Bloch W, Mingozzi F, Krut O, Büning H. Autophagy determines efficiency of liver-directed gene therapy with adeno-associated viral vectors. Hepatology 2017; 66:252-265. [PMID: 28318036 PMCID: PMC5518300 DOI: 10.1002/hep.29176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Use of adeno-associated viral (AAV) vectors for liver-directed gene therapy has shown considerable success, particularly in patients with severe hemophilia B. However, the high vector doses required to reach therapeutic levels of transgene expression caused liver inflammation in some patients that selectively destroyed transduced hepatocytes. We hypothesized that such detrimental immune responses can be avoided by enhancing the efficacy of AAV vectors in hepatocytes. Because autophagy is a key liver response to environmental stresses, we characterized the impact of hepatic autophagy on AAV infection. We found that AAV induced mammalian target of rapamycin (mTOR)-dependent autophagy in human hepatocytes. This cell response was critically required for efficient transduction because under conditions of impaired autophagy (pharmacological inhibition, small interfering RNA knockdown of autophagic proteins, or suppression by food intake), recombinant AAV-mediated transgene expression was markedly reduced, both in vitro and in vivo. Taking advantage of this dependence, we employed pharmacological inducers of autophagy to increase the level of autophagy. This resulted in greatly improved transduction efficiency of AAV vectors in human and mouse hepatocytes independent of the transgene, driving promoter, or AAV serotype and was subsequently confirmed in vivo. Specifically, short-term treatment with a single dose of torin 1 significantly increased vector-mediated hepatic expression of erythropoietin in C57BL/6 mice. Similarly, coadministration of rapamycin with AAV vectors resulted in markedly enhanced expression of human acid-α-glucosidase in nonhuman primates. CONCLUSION We identified autophagy as a pivotal cell response determining the efficiency of AAVs intracellular processing in hepatocytes and thus the outcome of liver-directed gene therapy using AAV vectors and showed in a proof-of-principle study how this virus-host interaction can be employed to enhance efficacy of this vector system. (Hepatology 2017;66:252-265).
Collapse
Affiliation(s)
- Marianna Hösel
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany
| | - Anke Huber
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany
| | - Susanne Bohlen
- Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL)University of LyonLyonFrance
| | | | | | | | - Ulrich T. Hacker
- University Medicine LeipzigUniversity Cancer Center Leipzig (UCCL)LeipzigGermany
| | - Wilhelmus J. Kwanten
- Laboratory of Experimental Medicine and Pediatrics (LEMP)University of AntwerpAntwerpBelgium
| | - Nora Klöting
- IFB Adiposity DiseasesUniversity of LeipzigLeipzigGermany
| | | | - Alexander Gluschko
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Michael Schramm
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Olaf Utermöhlen
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport MedicineGerman Sport University CologneCologneGermany
| | - Federico Mingozzi
- Genethon and INSERM U951EvryFrance,University Pierre and Marie CurieParisFrance
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and HygieneUniversity of CologneCologneGermany
| | - Hildegard Büning
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany,German Center for Infection Research (DZIF), Partner sites Bonn‐Cologne and Hannover‐BraunschweigGermany,Institute of Experimental Hematology, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
20
|
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120:63-80. [PMID: 26905292 PMCID: PMC5929167 DOI: 10.1016/j.neuropharm.2016.02.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Neurological disorders - disorders of the brain, spine and associated nerves - are a leading contributor to global disease burden with a shockingly large associated economic cost. Various treatment approaches - pharmaceutical medication, device-based therapy, physiotherapy, surgical intervention, among others - have been explored to alleviate the resulting extent of human suffering. In recent years, gene therapy using viral vectors - encoding a therapeutic gene or inhibitory RNA into a "gutted" viral capsid and supplying it to the nervous system - has emerged as a clinically viable option for therapy of brain disorders. In this Review, we provide an overview of the current state and advances in the field of viral vector-mediated gene therapy for neurological disorders. Vector tools and delivery methods have evolved considerably over recent years, with the goal of providing greater and safer genetic access to the central nervous system. Better etiological understanding of brain disorders has concurrently led to identification of improved therapeutic targets. We focus on the vector technology, as well as preclinical and clinical progress made thus far for brain cancer and various neurodegenerative and neurometabolic disorders, and point out the challenges and limitations that accompany this new medical modality. Finally, we explore the directions that neurological gene therapy is likely to evolve towards in the future. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eloise Hudry
- Alzheimer's Disease Research Unit, Harvard Medical School & Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Casey A Maguire
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA.
| |
Collapse
|
21
|
Abstract
The binding and internalization of adeno-associated virus (AAV) is an important determinant of viral infectivity and tropism. The ability to dissect these two tightly connected cellular processes would allow better understanding and provide insight on virus entry and trafficking. In the following protocol, we describe a quantitative PCR (qPCR) based method to determine the amount of vector bound to the cell surface and the amount of subsequent virus internalization based on viral genome quantification. This protocol is optimized for studying AAV. Nevertheless, it can serve as a backbone for studying other viruses with careful modification.
Collapse
Affiliation(s)
- Garrett E Berry
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V Tse
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 2016; 21:54-60. [PMID: 27544821 DOI: 10.1016/j.coviro.2016.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are regarded as promising vehicles for therapeutic gene delivery. Continued development and new strategies are essential to improve the potency of AAV vectors and reduce the effective dose needed for clinical efficacy. In this regard, many studies have focused on understanding the cellular transduction mechanisms of rAAV, often with the goal of exploiting this knowledge to increase gene transfer efficiency. Here, we provide an overview of our evolving understanding of rAAV cellular trafficking pathways through the host cell, beginning with cellular entry and ending with transcription of the vector genome. Strategies to exploit this information for improving rAAV transduction are discussed.
Collapse
|