1
|
Zwaan W, Duvivier BMFM, Savelberg HHCM, Popeijus HE, Konings MCJM, Mensink RP, Plat J. Effects of replacing sitting with standing and walking on cholesterol metabolism and inflammation in men and women who are overweight or obese. Atherosclerosis 2025; 403:119143. [PMID: 40010069 DOI: 10.1016/j.atherosclerosis.2025.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND AIMS Reducing sedentary behaviour changes serum lipid and lipoprotein concentrations. However, detailed insights into effects on lipid and lipoprotein subclasses and functionalities, and markers of inflammation and endothelial dysfunction are lacking. METHODS In this randomised cross-over study, 24 sedentary overweight/obese individuals followed two 4-day activity regimens under free-living conditions. The "Sit" regimen involved 13.5 h/day sitting, 1.4 h/day standing, and 0.7 h/day self-perceived light-intensity walking. During the "SitLess" regimen these activities lasted respectively 7.6, 4.0, and 4.3 h/day. Blood samples collected after each regimen were analysed for markers of lipid and lipoprotein metabolism, inflammation, and endothelial dysfunction. RESULTS Compared to the Sit regimen, SitLess increased serum cholesterol concentrations in HDL (0.06 mmol/l, p = 0.002), large HDL A (0.05 mmol/l, p < 0.001), medium HDL B (0.02 mmol/l, p < 0.001) and small HDL C (0.09 mmol/l, p < 0.001), LHDL particles concentrations (999 nmol/l, p < 0.001) and HDL size (0.2 nm, p < 0.001). ApoA-I, pro-ApoA-I, and HDL functionality remained unchanged. Triglyceride (-0.49 mmol/l, p < 0.001), ApoB100 (-0.68 g/l, p = 0.007), and particle concentrations of LVLDL (-2.2 nmol/l, p = 0.002), SLDL (-58 nmol/l, p = 0.024) and LDL (-86 nmol/l, p = 0.006) decreased. Cholesterol concentrations in VLDL (-0.15 mmol/l, p < 0.001), IDL (-0.11 mmol/l, p = 0.001) and small LDL C (-0.04 mmol/l, p < 0.001) decreased, while large LDL A cholesterol (0.07 mmol/l, p = 0.031) and LDL particle size (0.1 nm, p = 0.004) increased. CRP concentrations (0.95 mg/dl, p = 0.003) rose. CONCLUSIONS Substituting sitting with standing and self-perceived light walking in free-living conditions, translates into lower CVD risk lipid and lipoprotein profiles in individuals who are overweight/obese. CRP significantly increased after the SitLess regimen.
Collapse
Affiliation(s)
- Willem Zwaan
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bernard M F M Duvivier
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Hans H C M Savelberg
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Herman E Popeijus
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Maurice C J M Konings
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Niemelä A, Koivuniemi A. Systematic evaluation of lecithin:cholesterol acyltransferase binding sites in apolipoproteins via peptide based nanodiscs: regulatory role of charged residues at positions 4 and 7. PLoS Comput Biol 2024; 20:e1012137. [PMID: 38805510 PMCID: PMC11161081 DOI: 10.1371/journal.pcbi.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and β-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT β-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.
Collapse
Affiliation(s)
- Akseli Niemelä
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
4
|
O’Hagan R, Berg AR, Hong CG, Parel PM, Mehta NN, Teague HL. Systemic consequences of abnormal cholesterol handling: Interdependent pathways of inflammation and dyslipidemia. Front Immunol 2022; 13:972140. [PMID: 36091062 PMCID: PMC9459038 DOI: 10.3389/fimmu.2022.972140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic conditions such as obesity and associated comorbidities are increasing in prevalence worldwide. In chronically inflamed pathologies, metabolic conditions are linked to early onset cardiovascular disease, which remains the leading cause of death despite decades of research. In recent years, studies focused on the interdependent pathways connecting metabolism and the immune response have highlighted that dysregulated cholesterol trafficking instigates an overactive, systemic inflammatory response, thereby perpetuating early development of cardiovascular disease. In this review, we will discuss the overlapping pathways connecting cholesterol trafficking with innate immunity and present evidence that cholesterol accumulation in the bone marrow may drive systemic inflammation in chronically inflamed pathologies. Lastly, we will review the current therapeutic strategies that target both inflammation and cholesterol transport, and how biologic therapy restores lipoprotein function and mitigates the immune response.
Collapse
|
5
|
Takeda T, Ide T, Okuda D, Kuroda M, Asada S, Kirinashizawa M, Yamamoto M, Miyoshi J, Yokote K, Mizutani N. A novel homozygous frameshift mutation in the APOA1 gene associated with marked high-density lipoprotein deficiency. J Clin Lipidol 2022; 16:423-433. [DOI: 10.1016/j.jacl.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
|
6
|
Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y, Graham LM, Cameron SJ, DiDonato JA, Crabb JW, Hazen SL. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta. J Biol Chem 2022; 298:101832. [PMID: 35304099 PMCID: PMC9010765 DOI: 10.1016/j.jbc.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO−) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN−), yielding CNO− and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO− pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
Collapse
Affiliation(s)
- Shawna Battle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ying Huang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Linda M Graham
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Scott J Cameron
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - John W Crabb
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
7
|
Popeijus HE, Zwaan W, Tayyeb JZ, Plat J. Potential Contribution of Short Chain Fatty Acids to Hepatic Apolipoprotein A-I Production. Int J Mol Sci 2021; 22:ijms22115986. [PMID: 34206021 PMCID: PMC8199098 DOI: 10.3390/ijms22115986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) is the major protein of high density lipoprotein (HDL) particles and has a crucial role in reverse cholesterol transport (RCT). It has been postulated that elevating production of de novo ApoA-I might translate into the formation of new functional HDL particles that could lower cardiovascular disease (CVD) risk via RCT. During inflammation, serum ApoA-I concentrations are reduced, which contributes to the development of dysfunctional HDL particles as Serum Amyloid A (SAA) overtakes the position of ApoA-I within the HDL particles. Therefore, instead of elevating serum HDL cholesterol concentrations, rescuing lower serum ApoA-I concentrations could be beneficial in both normal and inflamed conditions. Several nutritional compounds, amongst others short chain fatty acids (SCFAs), have shown their capacity to modulate hepatic lipoprotein metabolism. In this review we provide an overview of HDL and more specific ApoA-I metabolism, SCFAs physiology and the current knowledge regarding the influence of SCFAs on ApoA-I expression and synthesis in human liver cells. We conclude that the current evidence regarding the effect of SCFAs on ApoA-I transcription and secretion is promising, however there is a need to investigate which dietary fibres could lead to increased SCFAs formation and consequent elevated ApoA-I concentrations.
Collapse
Affiliation(s)
- Herman E. Popeijus
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
- Correspondence: ; Tel.: +31-620991115
| | - Willem Zwaan
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
| | - Jehad Z. Tayyeb
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
| |
Collapse
|
8
|
Jang HS, Gu X, Cooley RB, Porter JJ, Henson RL, Willi T, DiDonato JA, Hazen SL, Mehl RA. Efficient Site-Specific Prokaryotic and Eukaryotic Incorporation of Halotyrosine Amino Acids into Proteins. ACS Chem Biol 2020; 15:562-574. [PMID: 31994864 DOI: 10.1021/acschembio.9b01026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-translational modifications (PTMs) of protein tyrosine (Tyr) residues can serve as a molecular fingerprint of exposure to distinct oxidative pathways and are observed in abnormally high abundance in the majority of human inflammatory pathologies. Reactive oxidants generated during inflammation include hypohalous acids and nitric oxide-derived oxidants, which oxidatively modify protein Tyr residues via halogenation and nitration, respectively, forming 3-chloroTyr, 3-bromoTyr, and 3-nitroTyr. Traditional methods for generating oxidized or halogenated proteins involve nonspecific chemical reactions that result in complex protein mixtures, making it difficult to ascribe observed functional changes to a site-specific PTM or to generate antibodies sensitive to site-specific oxidative PTMs. To overcome these challenges, we generated a system to efficiently and site-specifically incorporate chloroTyr, bromoTyr, and iodoTyr, and to a lesser extent nitroTyr, into proteins in both bacterial and eukaryotic expression systems, relying on a novel amber stop codon-suppressing mutant synthetase (haloTyrRS)/tRNA pair derived from the Methanosarcina barkeri pyrrolysine synthetase system. We used this system to study the effects of oxidation on HDL-associated protein paraoxonase 1 (PON1), an enzyme with important antiatherosclerosis and antioxidant functions. PON1 forms a ternary complex with HDL and myeloperoxidase (MPO) in vivo. MPO oxidizes PON1 at tyrosine 71 (Tyr71), resulting in a loss of PON1 enzymatic function, but the extent to which chlorination or nitration of Tyr71 contributes to this loss of activity is unclear. To better understand this biological process and to demonstrate the utility of our GCE system, we generated PON1 site-specifically modified at Tyr71 with chloroTyr and nitroTyr in Escherichia coli and mammalian cells. We demonstrate that either chlorination or nitration of Tyr71 significantly reduces PON1 enzymatic activity. This tool for site-specific incorporation of halotyrosine will be critical to understanding how exposure of proteins to hypohalous acids at sites of inflammation alters protein function and cellular physiology. In addition, it will serve as a powerful tool for generating antibodies that can recognize site-specific oxidative PTMs.
Collapse
Affiliation(s)
- Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xiaodong Gu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph J. Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rachel L. Henson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Taylor Willi
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph A. DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
Lecitina colesterol aciltransferasa en mujeres postmenopáusicas y su relación con factores bioquímicos y antropométricos asociados a riesgo cardiovascular. REVISTA COLOMBIANA DE CARDIOLOGÍA 2019. [DOI: 10.1016/j.rccar.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Exploring lipid and apolipoprotein levels in chronic hepatitis C patients according to their response to antiviral treatment. Clin Biochem 2018; 60:17-23. [PMID: 30030979 DOI: 10.1016/j.clinbiochem.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus is known to be highly dependent of lipid metabolism to infect new cells and replicate. AIMS To investigate lipid and apolipoprotein profile in chronic HCV patients according to treatment response. METHODS Patients recruited from the Hepatitis Treatment Center at Niteroi (Brazil) who received interferon (IFN)-based therapies were separated into two groups, those who achieved sustained virological response (SVR) or not (non-SVR). Another group of patients treated with IFN-free direct-acting antiviral (DAA) therapies was followed from before starting the treatment until one year after therapy. Triglycerides, total cholesterol and fractions were determined by colorimetric and/or electrophoresis techniques. Lecithin cholesterol acyltransferase (LCAT) activity and serum levels of apolipoproteins A1, A2, B, C2, C3 and E were assessed by enzymatic and multiplex assays, respectively. RESULTS We studied 114 patients, and SVR was reached in 28 (39.4%) patients treated with IFN-therapy and in all (100%) patients who received DAA. Non-SVR patients (n = 43) presented altered liver parameters post-treatment. Levels of total cholesterol, LDL-C, VLDL-C and triglycerides were significant higher in SVR group. In contrast, LCAT activity and HDL-C levels were elevated in non-SVR patients. Only apolipoproteins B, C2 and C3 levels were increased in SVR group. The follow-up of SVR-DAA patients (n = 43) revealed a significant and progressive increase in serum levels of total cholesterol, LDL-C, VLDL-C and triglycerides. CONCLUSIONS After a successful treatment, chronic hepatitis C patients experienced a reestablishment of lipid metabolism. Our results suggest that the monitoring of serum lipids could be a practical and routine laboratory tool to be applied during the treatment follow-up.
Collapse
|
11
|
Cooke AL, Morris J, Melchior JT, Street SE, Jerome WG, Huang R, Herr AB, Smith LE, Segrest JP, Remaley AT, Shah AS, Thompson TB, Davidson WS. A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 2018; 59:1244-1255. [PMID: 29773713 DOI: 10.1194/jlr.m085332] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Indexed: 01/28/2023] Open
Abstract
APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.
Collapse
Affiliation(s)
- Allison L Cooke
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Jamie Morris
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - John T Melchior
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - W Gray Jerome
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rong Huang
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Andrew B Herr
- Division of Immunobiology and Center for Systems Immunology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Loren E Smith
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jere P Segrest
- Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas B Thompson
- Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45237
| | - W Sean Davidson
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
12
|
Molecular dynamics simulations of lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2094-2107. [PMID: 29729280 DOI: 10.1016/j.bbamem.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
A lipid nanodisc is a discoidal lipid bilayer stabilized by proteins, peptides, or polymers on its edge. Nanodiscs have two important connections to structural biology. The first is associated with high-density lipoprotein (HDL), a particle with a variety of functionalities including lipid transport. Nascent HDL (nHDL) is a nanodisc stabilized by Apolipoprotein A-I (APOA1). Determining the structure of APOA1 and its mimetic peptides in nanodiscs is crucial to understanding pathologies related to HDL maturation and designing effective therapies. Secondly, nanodiscs offer non-detergent membrane-mimicking environments and greatly facilitate structural studies of membrane proteins. Although seemingly similar, natural and synthetic nanodiscs are different in that nHDL is heterogeneous in size, due to APOA1 elasticity, and gradually matures to become spherical. Synthetic nanodiscs, in contrast, should be homogenous, stable, and size-tunable. This report reviews previous molecular dynamics (MD) simulation studies of nanodiscs and illustrates convergence and accuracy issues using results from new multi-microsecond atomistic MD simulations. These new simulations reveal that APOA1 helices take 10-20 μs to rearrange on the nanodisc, while peptides take 2 μs to migrate from the disc surfaces to the edge. These systems can also become kinetically trapped depending on the initial conditions. For example, APOA1 was trapped in a biologically irrelevant conformation for the duration of a 10 μs trajectory; the peptides were similarly trapped for 5 μs. It therefore remains essential to validate MD simulations of these systems with experiments due to convergence and accuracy issues. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
|
13
|
Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins. Proc Natl Acad Sci U S A 2018; 115:5163-5168. [PMID: 29712830 DOI: 10.1073/pnas.1721181115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the function of high-density lipoprotein (HDL) requires detailed knowledge of the structure of its primary protein, apolipoprotein A-I (APOA1). However, APOA1 flexibility and HDL heterogeneity have confounded decades of efforts to determine high-resolution structures and consistent models. Here, molecular dynamics simulations totaling 30 μs on two nascent HDLs, each with 2 APOA1 and either 160 phospholipids and 24 cholesterols or 200 phospholipids and 20 cholesterols, show that residues 1-21 of the N-terminal domains of APOA1 interact via strong salt bridges. Residues 26-43 of one APOA1 in the smaller particle form a hinge on the disc edge, which displaces the C-terminal domain of the other APOA1 to the phospholipid surface. The proposed structures are supported by chemical cross-linking, Rosetta modeling of the N-terminal domain, and analysis of the lipid-free ∆185APOA1 crystal structure. These structures provide a framework for understanding HDL maturation and revise all previous models of nascent HDL.
Collapse
|
14
|
Tanaka S, Haketa A, Sakimoto T, Abe M. A case of apolipoprotein A-I deficiency due to carboxyl-terminal truncation. J Clin Lipidol 2018; 12:511-514. [DOI: 10.1016/j.jacl.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
15
|
Casteleijn MG, Parkkila P, Viitala T, Koivuniemi A. Interaction of lecithin:cholesterol acyltransferase with lipid surfaces and apolipoprotein A-I-derived peptides. J Lipid Res 2018; 59:670-683. [PMID: 29438987 PMCID: PMC5880497 DOI: 10.1194/jlr.m082685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
LCAT is an enzyme responsible for the formation of cholesteryl esters from unesterified cholesterol (UC) and phospholipid (PL) molecules in HDL particles. However, it is poorly understood how LCAT interacts with lipoproteins and how apoA-I activates it. Here we have studied the interactions between LCAT and lipids through molecular simulations. In addition, we studied the binding of LCAT to apoA-I-derived peptides, and their effect on LCAT lipid association-utilizing experiments. Results show that LCAT anchors itself to lipoprotein surfaces by utilizing nonpolar amino acids located in the membrane-binding domain and the active site tunnel opening. Meanwhile, the membrane-anchoring hydrophobic amino acids attract cholesterol molecules next to them. The results also highlight the role of the lid-loop in the lipid binding and conformation of LCAT with respect to the lipid surface. The apoA-I-derived peptides from the LCAT-activating region bind to LCAT and promote its lipid surface interactions, although some of these peptides do not bind lipids individually. The transfer free-energy of PL from the lipid bilayer into the active site is consistent with the activation energy of LCAT. Furthermore, the entry of UC molecules into the active site becomes highly favorable by the acylation of SER181.
Collapse
Affiliation(s)
- Marco G Casteleijn
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Petteri Parkkila
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Manthei KA, Ahn J, Glukhova A, Yuan W, Larkin C, Manett TD, Chang L, Shayman JA, Axley MJ, Schwendeman A, Tesmer JJG. A retractable lid in lecithin:cholesterol acyltransferase provides a structural mechanism for activation by apolipoprotein A-I. J Biol Chem 2017; 292:20313-20327. [PMID: 29030428 PMCID: PMC5724016 DOI: 10.1074/jbc.m117.802736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/15/2017] [Indexed: 12/12/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed.
Collapse
Affiliation(s)
- Kelly A Manthei
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Joomi Ahn
- MedImmune, Gaithersburg, Maryland 20878
| | - Alisa Glukhova
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Taylor D Manett
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Louise Chang
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Anna Schwendeman
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
17
|
Brisbois CA, Lee JC. Apolipoprotein C-III Nanodiscs Studied by Site-Specific Tryptophan Fluorescence. Biochemistry 2016; 55:4939-48. [PMID: 27529357 DOI: 10.1021/acs.biochem.6b00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Apolipoprotein C-III (ApoC-III) is found on high-density lipoproteins (HDLs) and remodels 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles into HDL-like particles known as nanodiscs. Using single-Trp-containing ApoC-III mutants, we have studied local side chain environments and interactions in nanodiscs at positions W42, W54, and W65. Using transmission electron microscopy and circular dichroism spectroscopy, nanodiscs were characterized at the ultrastructural and secondary conformational levels, respectively. Nearly identical particles (15 ± 2 nm) were produced from all proteins containing approximately 25 ± 4 proteins per particle with an average helicity of 45-51% per protein. Distinct residue-specific fluorescence properties were observed with W54 residing in the most hydrophobic environment followed by W42 and W65. Interestingly, time-resolved anisotropy measurements revealed that Trp side chain mobility is uncorrelated to the polarity of its surroundings. W54 is the most mobile compared to W65 and W42, which are more immobile in a nanodisc-bound state. On the basis of Trp spectral comparisons of ApoC-III in micellar and vesicle environments, ApoC-III binding within nanodiscs more closely resembles a bilayer-bound state. Despite the nanodiscs being structurally similar, we found marked differences during nanodisc formation by the Trp variants as a function of temperature, with W42 behaving the most like the wild-type protein. Our data suggest that despite the modest mutations of Trp to Phe at two of the three native sites, the interfacial location of W42 is important for lipid binding and nanodisc assembly, which may be biologically meaningful as of the three Trp residues, only W42 is invariant among mammals.
Collapse
Affiliation(s)
- Chase A Brisbois
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Mata DG, Sabnekar P, Watson CA, Rezk PE, Chilukuri N. Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents. Chem Biol Interact 2016; 259:233-241. [PMID: 27083144 DOI: 10.1016/j.cbi.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023]
Abstract
We evaluated the ability of evolved paraoxonase-1 (PON1) to afford broad spectrum protection against G-type nerve agents when produced in mammalian cells via an adenovirus expression system. The PON1 variants G3C9, VII-D11, I-F11, VII-D2 and II-G1 were screened in vitro for their ability to hydrolyze G-agents, as well as for their preference towards hydrolysis of the more toxic P(-) isomer. I-F11, with catalytic efficiencies of (1.1 ± 0.1) × 106 M-1 min-1, (2.5 ± 0.1) × 106 M-1 min-1, (2.3 ± 0.5) × 107 M-1 min-1and (9.2 ± 0.1) × 106 M-1 min-1 against tabun (GA), sarin (GB), soman (GD) and cyclosarin (GF), respectively, was found to be a leading candidate for further evaluation. To demonstrate the broad spectrum efficacy of I-F11 against G-agents, a sequential 5 × LD50 dose of GD, GF, GB and GA was administered to ten mice expressing I-F11 on days 3, 4, 5 and 6 following virus injection, respectively. At the conclusion of the experiment, 80% of the animals survived exposure to all four G-agents. Using the concept of stoichiometric efficacy, we determined that I-F11 affords protection from lethality against an administered dose of 10, 15, 90 and 80 molar equivalents of GA, GB, GD and GF, respectively, relative to the molar equivalents of I-F11 in circulation. It also appears that I-F11 can associate with high density lipoprotein in circulation, suggesting that I-F11 retained this function of native PON1. This combination of attractive attributes demonstrates that I-F11 is an attractive candidate for development as a broad-therapeutic against G-type nerve agent exposure.
Collapse
Affiliation(s)
- David G Mata
- Physiology & Immunology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| | - Praveena Sabnekar
- Physiology & Immunology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| | - Cetara A Watson
- Physiology & Immunology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| | - Peter E Rezk
- Physiology & Immunology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| | - Nageswararao Chilukuri
- Physiology & Immunology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|