1
|
Meyer J, Payr M, Duss O, Hennig J. Exploring the dynamics of messenger ribonucleoprotein-mediated translation repression. Biochem Soc Trans 2024; 52:2267-2279. [PMID: 39601754 PMCID: PMC11668304 DOI: 10.1042/bst20231240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Translational control is crucial for well-balanced cellular function and viability of organisms. Different mechanisms have evolved to up- and down-regulate protein synthesis, including 3' untranslated region (UTR)-mediated translation repression. RNA binding proteins or microRNAs interact with regulatory sequence elements located in the 3' UTR and interfere most often with the rate-limiting initiation step of translation. Dysregulation of post-transcriptional gene expression leads to various kinds of diseases, emphasizing the significance of understanding the mechanisms of these processes. So far, only limited mechanistic details about kinetics and dynamics of translation regulation are understood. This mini-review focuses on 3' UTR-mediated translational regulation mechanisms and demonstrates the potential of using single-molecule fluorescence-microscopy for kinetic and dynamic studies of translation regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Julia Meyer
- Department of Biochemistry IV – Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marco Payr
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Candidate for Joint PhD Degree From EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Olivier Duss
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Janosch Hennig
- Department of Biochemistry IV – Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Booy EP, Gussakovsky D, Brown M, Shwaluk R, Nachtigal MW, McKenna SA. lncRNA BC200 is processed into a stable Alu monomer. RNA (NEW YORK, N.Y.) 2024; 30:1477-1494. [PMID: 39179355 PMCID: PMC11482611 DOI: 10.1261/rna.080152.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
The noncoding RNA BC200 is elevated in human cancers and is implicated in translation regulation as well as cell survival and proliferation. Upon BC200 overexpression, we observed correlated expression of a second, smaller RNA species. This RNA is expressed endogenously and exhibits cell-type-dependent variability relative to BC200. Aptamer-tagged expression constructs confirmed that the RNA is a truncated form of BC200, and sequencing revealed a modal length of 120 nt; thus, we refer to the RNA fragment as BC120. We present a methodology for accurate and specific detection of BC120 and establish that BC120 is expressed in several normal human tissues and is also elevated in ovarian cancer. BC120 exhibits remarkable stability relative to BC200 and is resistant to knockdown strategies that target the 3' unique sequence of BC200. Combined knockdown of BC200 and BC120 exhibits greater phenotypic impacts than knockdown of BC200 alone, and overexpression of BC120 negatively impacts translation of a GFP reporter, providing insight into a potential translational regulatory role for this RNA. The presence of a novel, truncated, and stable form of BC200 adds complexity to the investigation of this noncoding RNA that must be considered in future studies of BC200 and other related Alu RNAs.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mira Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Rowan Shwaluk
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
3
|
Li J, Xin Y, Zhang S, Li Y, Jiang M, Zhang S, Yang L, Yang J, Cao P, Lu J. EIF4A3 is stabilized by the long noncoding RNA BC200 to regulate gene expression during Epstein-Barr virus infection. J Med Virol 2024; 96:e29955. [PMID: 39370864 DOI: 10.1002/jmv.29955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Epstein‒Barr virus (EBV) regulates the expression of host genes involved in functional pathways for viral infection and pathogenicity. Long noncoding RNAs (lncRNAs) have been found to be important regulators of cellular biology. However, how EBV affects host biological processes via lncRNAs remains elusive. Eukaryotic initiation factor 4A3 (EIF4A3) was recently identified as an essential controller of cell fate with an unknown role in EBV infection. Here, the expression of lncRNA brain cytoplasmic 200 (BC200) was shown to be significantly upregulated in EBV-infected cell lines. RNA immunoprecipitation and RNA pulldown assays confirmed that BC200 bound to EIF4A3. Moreover, BC200 promoted EIF4A3 expression at the protein level but not at the mRNA level. Mechanistically, BC200 stabilized the EIF4A3 protein by impeding the K48-linked polyubiquitination of the K195 and K198 residues of EIF4A3. In addition, RNA-seq analysis of EBV-positive cells with knockdown of either BC200 or EIF4A3 revealed that a broad range of cellular genes were differentially regulated, particularly those related to virus infection and immune response pathways. This study is the first to reveal the key residues involved in EIF4A3 polyubiquitination and elucidate the novel regulatory role of EBV in host gene expression via the BC200/EIF4A3 axis. These results have implications for the pathogenesis and treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Jing Li
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Siwei Zhang
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Laboratory Medicine Center, Zhuzhou Central Hospital/The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yang
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Nuclear Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Fu L, Wu Q, Fu J. Exploring the biological roles of DHX36, a DNA/RNA G-quadruplex helicase, highlights functions in male infertility: A comprehensive review. Int J Biol Macromol 2024; 268:131811. [PMID: 38677694 DOI: 10.1016/j.ijbiomac.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Li Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Junjiang Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Abstract
Long non-coding RNAs (lncRNAs) are significant contributors in maintaining genomic integrity through epigenetic regulation. LncRNAs can interact with chromatin-modifying complexes in both cis and trans pathways, drawing them to specific genomic loci and influencing gene expression via DNA methylation, histone modifications, and chromatin remodeling. They can also operate as building blocks to assemble different chromatin-modifying components, facilitating their interactions and gene regulatory functions. Deregulation of these molecules has been associated with various human diseases, including cancer, cardiovascular disease, and neurological disorders. Thus, lncRNAs are implicated as potential diagnostic indicators and therapeutic targets. This review discusses the current understanding of how lncRNAs mediate epigenetic control, genomic integrity, and their putative functions in disease pathogenesis.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- The LncRNA, Epigenetics, and Genome Organization Laboratory, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Gussakovsky D, Booy EP, Brown MJF, McKenna SA. Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression. RNA (NEW YORK, N.Y.) 2023; 29:1185-1200. [PMID: 37156570 PMCID: PMC10351891 DOI: 10.1261/rna.079649.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
8
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
9
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
10
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
11
|
Yang C, Yao J, Yi H, Huang X, Zhao W, Yang Z. To unwind the biological knots: The DNA/RNA G-quadruplex resolvase RHAU (DHX36) in development and disease. Animal Model Exp Med 2022; 5:542-549. [PMID: 35789129 PMCID: PMC9773310 DOI: 10.1002/ame2.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.
Collapse
Affiliation(s)
- Chensi Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Jie Yao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Huijuan Yi
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Xinyi Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Wukui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| |
Collapse
|
12
|
Lockd promotes myoblast proliferation and muscle regeneration via binding with DHX36 to facilitate 5' UTR rG4 unwinding and Anp32e translation. Cell Rep 2022; 39:110927. [PMID: 35675771 DOI: 10.1016/j.celrep.2022.110927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.
Collapse
|
13
|
Ghafouri-Fard S, Abak A, Baniahmad A, Hussen BM, Taheri M, Jamali E, Dinger ME. Interaction between non-coding RNAs, mRNAs and G-quadruplexes. Cancer Cell Int 2022; 22:171. [PMID: 35488342 PMCID: PMC9052686 DOI: 10.1186/s12935-022-02601-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
G-quadruplexes are secondary helical configurations established between guanine-rich nucleic acids. The structure is seen in the promoter regions of numerous genes under certain situations. Predicted G-quadruplex-forming sequences are distributed across the genome in a non-random way. These structures are formed in telomeric regions of the human genome and oncogenic promoter G-rich regions. Identification of mechanisms of regulation of stability of G-quadruplexes has practical significance for understanding the molecular basis of genetic diseases such as cancer. A number of non-coding RNAs such as H19, XIST, FLJ39051 (GSEC), BC200 (BCYRN1), TERRA, pre-miRNA-1229, pre-miRNA-149 and miR-1587 have been found to contain G-quadraplex-forming regions or affect configuration of these structures in target genes. In the current review, we outline the recent research on the interaction between G-quadruplexes and non-coding RNAs, other RNA transcripts and DNA molecules.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
16
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
17
|
Tseng YJ, Sandwith SN, Green KM, Chambers AE, Krans A, Raimer HM, Sharlow ME, Reisinger MA, Richardson AE, Routh ED, Smaldino MA, Wang YH, Vaughn JP, Todd PK, Smaldino PJ. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation. J Biol Chem 2021; 297:100914. [PMID: 34174288 PMCID: PMC8326427 DOI: 10.1016/j.jbc.2021.100914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36–G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length–dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Siara N Sandwith
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Eric D Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - James P Vaughn
- Division of Cancer Biology, NanoMedica LLC, Winston-Salem, North Carolina, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, Ann Arbor VA Medical Center, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
18
|
McRae EKS, Dupas SJ, Atefi N, McKenna SA. Monitoring Enzymatic RNA G-Quadruplex Unwinding Activities by Nuclease Sensitivity and Reverse Transcription Stop Assays. Methods Mol Biol 2021; 2209:163-173. [PMID: 33201469 DOI: 10.1007/978-1-0716-0935-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multiple different methods have been employed to investigate the unwinding of RNA G-quadruplexes by various helicase proteins. Each has their own pitfalls, namely, looking at non-native or chemically modified RNA sequences, biasing the unwinding process with competing trap nucleotides, and a lack of context sequence to the 5' and 3' of the RNA G-quadruplex structure. Herein we present two straightforward methods that allow for quadruplex unwinding to be monitored on native RNA sequences without the use of fluorescent modifications, specialized equipment, or trap nucleotides to be employed.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Negar Atefi
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada. .,Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Ghafouri-Fard S, Dashti S, Hussen BM, Farsi M, Taheri M. BCYRN1: An oncogenic lncRNA in diverse cancers. Pathol Res Pract 2021; 220:153385. [PMID: 33647864 DOI: 10.1016/j.prp.2021.153385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
Brain cytoplasmic 200 (BC200) or alternatively named as brain cytoplasmic RNA 1 (BCYRN1) is a long non-coding RNA (lncRNA) primarily identified in the neurons. In addition to its participation in the pathogenesis of neurodegenerative disorders, it partake in the carcinogenesis process. Numerous in vitro studies have reported elevation of expression of BCYRN1 in cancer cell lines. Short hairpin-RNA-mediated silencing of BCYRN1 has attenuated growth of tumors in the animal models. Independent studies in esophageal squamous cell cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and non-small cell lung cancer have demonstrated association between elevated BCYRN1 levels and poor survival of patients. Taken together, BCYRN1 is an appropriate candidate for targeted therapies in the field of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Booy EP, Gussakovsky D, Choi T, McKenna SA. The noncoding RNA BC200 associates with polysomes to positively regulate mRNA translation in tumor cells. J Biol Chem 2020; 296:100036. [PMID: 33410401 PMCID: PMC7949042 DOI: 10.1074/jbc.ra120.015775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BC200 is a noncoding RNA elevated in a broad spectrum of tumor cells that is critical for cell viability, invasion, and migration. Overexpression studies have implicated BC200 and the rodent analog BC1 as negative regulators of translation in both cell-based and in vitro translation assays. Although these studies are consistent, they have not been confirmed in knockdown studies and direct evidence for this function is lacking. Herein, we have demonstrated that BC200 knockdown is correlated with a decrease in global translation rates. As this conflicts with the hypothesis that BC200 is a translational suppressor, we overexpressed BC200 by transfection of in vitro transcribed RNA and transient expression from transfected plasmids. In this context BC200 suppressed translation; however, an innate immune response confounded the data. To overcome this, breast cancer cells stably overexpressing BC200 and various control RNAs were developed by selection for genomic incorporation of a plasmid coexpressing BC200 and the neomycin resistance gene. Stable overexpression of BC200 was associated with elevated translation levels in pooled stable cell lines and isolated single-cell clones. Cross-linking sucrose density gradient centrifugation demonstrated an association of BC200 and its reported binding partners SRP9/14, CSDE1, DHX36, and PABPC1 with both ribosomal subunits and polysomal RNA, an association not previously observed owing to the labile nature of the interactions. In summary, these data present a novel understanding of BC200 function as well as optimized methodology that has far reaching implications in the study of noncoding RNAs, particularly within the context of translational regulatory mechanisms.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Schult P, Paeschke K. The DEAH helicase DHX36 and its role in G-quadruplex-dependent processes. Biol Chem 2020; 402:581-591. [PMID: 33021960 DOI: 10.1515/hsz-2020-0292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
DHX36 is a member of the DExD/H box helicase family, which comprises a large number of proteins involved in various cellular functions. Recently, the function of DHX36 in the regulation of G-quadruplexes (G4s) was demonstrated. G4s are alternative nucleic acid structures, which influence many cellular pathways on a transcriptional and post-transcriptional level. In this review we provide an overview of the current knowledge about DHX36 structure, substrate specificity, and mechanism of action based on the available models and crystal structures. Moreover, we outline its multiple functions in cellular homeostasis, immunity, and disease. Finally, we discuss the open questions and provide potential directions for future research.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, D-53127Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, D-53127Bonn, Germany
| |
Collapse
|
22
|
Su YK, Lin JW, Shih JW, Chuang HY, Fong IH, Yeh CT, Lin CM. Targeting BC200/miR218-5p Signaling Axis for Overcoming Temozolomide Resistance and Suppressing Glioma Stemness. Cells 2020; 9:cells9081859. [PMID: 32784466 PMCID: PMC7463574 DOI: 10.3390/cells9081859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Glioblastoma (GB) is one of the most common (~30%) and lethal cancers of the central nervous system. Although new therapies are emerging, chemoresistance to treatment is one of the major challenges in cancer treatment. Brain cytoplasmic 200 (BC200) RNA, also known as BCYRN1, is a long noncoding RNA (lncRNA) that has recently emerged as one of the crucial members of the lncRNA family. BC200 atypical expression is observed in many human cancers. BC200 expression is higher in invasive cancers than in benign tumors. However, the clinical significance of BC200 and its effect on GB multiforme is still unexplored and remains unclear. Methods: BC200 expression in GB patients and cell lines were investigated through RT-qPCR, immunoblotting, and immunohistochemistry analysis. The biological importance of BC200 was investigated in vitro and in vivo through knockdown and overexpression. Bioinformatic analysis was performed to determine miRNAs associated with BC200 RNA. Results: Our findings revealed that in GB patients, BC200 RNA expression was higher in blood and tumor tissues than in normal tissues. BC200 RNA expression have a statistically significant difference between the IDH1 and P53 status. Moreover, the BC200 RNA expression was higher than both p53, a prognostic marker of glioma, and Ki-67, a reliable indicator of tumor cell proliferation activity. Overexpression and silencing of BC200 RNA both in vitro and in vivo significantly modulated the proliferation, self-renewal, pluripotency, and temozolomide (TMZ) chemo-resistance of GB cells. It was found that the expressions of BC200 were up-regulated and that of miR-218-5p were down-regulated in GB tissues and cells. miR-218-5p inhibited the expression of BC200. Conclusions: This study is the first to show that the molecular mechanism of BC200 promotes GB oncogenicity and TMZ resistance through miR-218-5p expression modulation. Thus, the noncoding RNA BC200/miR-218-5p signaling circuit is a potential clinical biomarker or therapeutic target for GB.
Collapse
Affiliation(s)
- Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Jia Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Jing-Wen Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao-Yu Chuang
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan 70965, Taiwan;
| | - Iat-Hang Fong
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: ; Tel.:+886-2-2490088 (ext. 8881)
| |
Collapse
|
23
|
General and Target-Specific DExD/H RNA Helicases in Eukaryotic Translation Initiation. Int J Mol Sci 2020; 21:ijms21124402. [PMID: 32575790 PMCID: PMC7352612 DOI: 10.3390/ijms21124402] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Collapse
|
24
|
McRae EKS, Dupas SJ, Booy EP, Piragasam RS, Fahlman RP, McKenna SA. An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21. RNA (NEW YORK, N.Y.) 2020; 26:44-57. [PMID: 31653714 PMCID: PMC6913123 DOI: 10.1261/rna.072199.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2R7
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| |
Collapse
|
25
|
Tan N, Zhu B, Shu H, Tao YF, Wu JR, Fang M, Li CR, Chen ZQ, Ou C. Effect of lncRNA‑BC200 on proliferation and migration of liver cancer cells in vitro and in vivo. Oncol Rep 2019; 43:461-470. [PMID: 31894342 PMCID: PMC6967153 DOI: 10.3892/or.2019.7447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
In recent years, the important role of long non‑coding RNAs (lncRNAs) in the development of liver cancer has received increasing attention. The abnormal expression level of long non‑coding RNAs has been associated with the occurrence and development of liver cancer. However, the role and molecular mechanisms of lncRNAs in the development and progression of liver cancer are not fully understood. The present study aimed to clarify the function and molecular mechanism of lncRNA brain cytoplasmic 200 (BC200) in liver cancer. In the present study, it was found that BC200 expression level was higher in hepatocellular carcinoma (HCC) tissues than that in adjacent tissues. Cell function was examined by constructing BC200 knockout (KO) and BC200‑overexpression in vitro models. It was found that BC200 affected the proliferation and migration of HepG2 cells. Interestingly, it was found that BC200 affected the expression of c‑Myc protein but did not affect the mRNA expression level of c‑MYC. BC200 KO cells exhibited a reduced protein expression level of Bax protein and an increased protein expression level of Bcl‑xL. Conversely, BC200 overexpression reduced the expression of Bcl‑xL protein and increased the expression of Bax protein. Importantly, it was found that BC200 affected the formation of subcutaneous tumors in nude mice. In conclusion, the present results suggested that lncRNA BC200 may play an important role in liver cancer.
Collapse
Affiliation(s)
- Ni Tan
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bo Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Shu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Feng Tao
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun-Rong Wu
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min Fang
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun-Rong Li
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhong-Qing Chen
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
26
|
Booy EP, McRae EK, Ezzati P, Choi T, Gussakovsky D, McKenna SA. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res 2019; 46:11575-11591. [PMID: 30247708 PMCID: PMC6265466 DOI: 10.1093/nar/gky860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3′ DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5′ Alu-domain, 3′ A-rich or 3′ C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Tippana R, Chen MC, Demeshkina NA, Ferré-D'Amaré AR, Myong S. RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 2019; 10:1855. [PMID: 31015431 PMCID: PMC6478676 DOI: 10.1038/s41467-019-09802-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
DHX36 is a DEAH-box helicase that resolves parallel G-quadruplex structures formed in DNA and RNA. The recent co-crystal structure of DHX36 bound G4-DNA revealed an intimate contact, but did not address the role of ATP hydrolysis in G4 resolving activity. Here, we demonstrate that unlike on G4-DNA, DHX36 displays ATP-independent unfolding of G4-RNA followed by ATP-dependent refolding, generating a highly asymmetric pattern of activity. Interestingly, DHX36 refolds G4-RNA in several steps, reflecting the discrete steps in forming the G4 structure. We show that the ATP-dependent activity of DHX36 arises from the RNA tail rather than the G4. Mutations that perturb G4 contact result in quick dissociation of the protein from RNA upon ATP hydrolysis, while mutations that interfere with binding the RNA tail induce dysregulated activity. We propose that the ATP-dependent activity of DHX36 may be useful for dynamically resolving various G4-RNA structures in cells.
Collapse
Affiliation(s)
- Ramreddy Tippana
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael C Chen
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1TN, UK.,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Natalia A Demeshkina
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
28
|
RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs. Nat Struct Mol Biol 2018; 25:1070-1076. [DOI: 10.1038/s41594-018-0155-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023]
|
29
|
Prediction of secondary and tertiary structures of human BC200 RNA (BCYRN1) based on experimental and bioinformatic cross-validation. Biochem J 2018; 475:2727-2748. [PMID: 30072491 DOI: 10.1042/bcj20180239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Based on experimental and bioinformatic approaches, we present the first empirically established complete secondary structure of human BC200 RNA. BC200 RNA is a brain-specific non-messenger RNA with a confirmed regulatory role in dendritic translation in neurons. Although the involvement of human BC200 RNA in various types of tumour and Alzheimer's disease has been repeatedly confirmed, the exact secondary structure remains not fully elucidated. To determine the secondary structure of BC200 RNA in vitro, we performed partial hydrolysis with sequence-specific nucleases and lead-induced cleavage. We also examined the availabilities of putative single-stranded regions and base-pairing interactions via specific DNAzymes and RNase H assay. To determine the complete spatial folding of BC200 RNA, we used experimental data as constraints in structure prediction programs and performed a comparison of results obtained by several algorithms using different criteria. Based on the experimental-derived secondary structure of BC200 RNA, we also predicted the tertiary structure of BC200 RNA. The presented combination of experimental and bioinformatic approaches not only enabled the determination of the most reliable secondary and tertiary structures of human BC200 RNA (largely in agreement with the previous phylogenetic model), but also verified the compatibility and potential disadvantages of utilizing in silico structure prediction programs.
Collapse
|
30
|
Samson J, Cronin S, Dean K. BC200 (BCYRN1) - The shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res 2018; 3:131-143. [PMID: 30175286 PMCID: PMC6114260 DOI: 10.1016/j.ncrna.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been linked to neurodegenerative disease and several types of cancer. Here we summarise what is known about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along with its possible clinical utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | - K. Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
The rs13388259 Intergenic Polymorphism in the Genomic Context of the BCYRN1 Gene Is Associated with Parkinson's Disease in the Hungarian Population. PARKINSONS DISEASE 2018; 2018:9351598. [PMID: 29850016 PMCID: PMC5903343 DOI: 10.1155/2018/9351598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, and muscle rigidity. To date, approximately 50 genes have been implicated in PD pathogenesis, including both Mendelian genes with rare mutations and low-penetrance genes with common polymorphisms. Previous studies of low-penetrance genes focused on protein-coding genes, and less attention was given to long noncoding RNAs (lncRNAs). In this study, we aimed to investigate the susceptibility roles of lncRNA gene polymorphisms in the development of PD. Therefore, polymorphisms (n=15) of the PINK1-AS, UCHL1-AS, BCYRN1, SOX2-OT, ANRIL and HAR1A lncRNAs genes were genotyped in Hungarian PD patients (n=160) and age- and sex-matched controls (n=167). The rare allele of the rs13388259 intergenic polymorphism, located downstream of the BCYRN1 gene, was significantly more frequent among PD patients than control individuals (OR = 2.31; p=0.0015). In silico prediction suggested that this polymorphism is located in a noncoding region close to the binding site of the transcription factor HNF4A, which is a central regulatory hub gene that has been shown to be upregulated in the peripheral blood of PD patients. The rs13388259 polymorphism may interfere with the binding affinity of transcription factor HNF4A, potentially resulting in abnormal expression of target genes, such as BCYRN1.
Collapse
|
32
|
Sloan KE, Bohnsack MT. Unravelling the Mechanisms of RNA Helicase Regulation. Trends Biochem Sci 2018; 43:237-250. [PMID: 29486979 DOI: 10.1016/j.tibs.2018.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022]
Abstract
RNA helicases are critical regulators at the nexus of multiple pathways of RNA metabolism, and in the complex cellular environment, tight spatial and temporal regulation of their activity is essential. Dedicated protein cofactors play key roles in recruiting helicases to specific substrates and modulating their catalytic activity. Alongside individual RNA helicase cofactors, networks of cofactors containing evolutionarily conserved domains such as the G-patch and MIF4G domains highlight the potential for cross-regulation of different aspects of gene expression. Structural analyses of RNA helicase-cofactor complexes now provide insight into the diverse mechanisms by which cofactors can elicit specific and coordinated regulation of RNA helicase action. Furthermore, post-translational modifications (PTMs) and long non-coding RNA (lncRNA) regulators have recently emerged as novel modes of RNA helicase regulation.
Collapse
Affiliation(s)
- Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Center for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
33
|
Peng J, Hou F, Feng J, Xu SX, Meng XY. Long non-coding RNA BCYRN1 promotes the proliferation and metastasis of cervical cancer via targeting microRNA-138 in vitro and in vivo. Oncol Lett 2018; 15:5809-5818. [PMID: 29552212 DOI: 10.3892/ol.2018.8015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Cervical cancer is one of the most malignant types of tumor and the fourth leading cause of cancer-associated mortality in females worldwide. High expression of brain cytoplasmic RNA 1 (BCYRN1) has been detected in various tumors. The present study aimed to investigate the effect of BCYRN1 in the viability and motility of cervical cancer, and the relevant mechanism. The results demonstrated that BCYRN1 was upregulated in cervical cancer tissues compared with normal tissues. Elevated levels of BCYRN1 were also detected in three human cervical cancer cell lines (SiHa, HeLa and CaSki) compared with non-cancerous ectocervical epithelial cell line (Ect1/E6E7). The expression of BCYRN1 was suppressed following transfection with small interfering RNA (siRNA) in HeLa cells. The silence of BCYRN1 significantly reduced cell viability and motility. Furthermore, microRNA (miR)-138 was predicted as a direct target of BCYRN1 and the expression of miR-138 was elevated in HeLa cells transfected with BCYRN1 siRNA. Subsequently, elevated levels of miR-138 were suppressed by transfection with miR-138 inhibitor in HeLa cells pretreated with BCYRN1 siRNA. The targeting association between BCYRN1 and miR-138 was supported by luciferase reporter assays. Additionally, BCYRN1 siRNA partially counteracted the effect of miR-138 inhibitor on promoting cell viability and mobility in HeLa cells. Finally, the in vivo experiment verified that BCYRN1 siRNA was able to prevent tumor growth, and reduced the expression of migration marker proteins metalloproteinase 2 and vascular endothelial cell growth factor, with enhanced expression levels of miR-138. These results suggest that lncRNA BCYRN1 promotes the proliferation and invasion of cervical cancer via targeting miR-138.
Collapse
Affiliation(s)
- Jie Peng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Fang Hou
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jun Feng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Shui-Xian Xu
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Xiao-Yan Meng
- Department of Obstetrics and Gynecology, Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| |
Collapse
|
34
|
Nanoscale Assembly of High-Mobility Group AT-Hook 2 Protein with DNA Replication Fork. Biophys J 2018; 113:2609-2620. [PMID: 29262356 DOI: 10.1016/j.bpj.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 01/31/2023] Open
Abstract
High mobility group AT-hook 2 (HMGA2) protein is composed of three AT-hook domains. HMGA2 expresses at high levels in both embryonic stem cells and cancer cells, where it interacts with and stabilizes replication forks (RFs), resulting in elevated cell proliferation rates. In this study, we demonstrated that HMGA2 knockdown reduces cell proliferation. To understand the features required for interaction between HMGA2 and RFs, we studied the solution structure of HMGA2, free and in complex with RFs, using an integrated host of biophysical techniques. Circular dichroism and NMR experiments confirmed the disordered state of unbound HMGA2. Dynamic light scattering and sedimentation velocity experiments demonstrated that HMGA2 and RF are monodisperse in solution, and form an equimolar complex. Small-angle x-ray scattering studies revealed that HMGA2 binds in a side-by-side orientation to RF where 3 AT-hooks act as a clamp to wrap around a distorted RF. Thus, our data provide insights into how HMGA2 interacts with stalled RFs and the function of the process.
Collapse
|
35
|
McRae EKS, Booy EP, Moya-Torres A, Ezzati P, Stetefeld J, McKenna SA. Human DDX21 binds and unwinds RNA guanine quadruplexes. Nucleic Acids Res 2017; 45:6656-6668. [PMID: 28472472 PMCID: PMC5499804 DOI: 10.1093/nar/gkx380] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Guanine quadruplexes (G4s) are an important structure of nucleic acids (DNA and RNA) with roles in several cellular processes. RNA G4s require specialized unwinding enzymes, of which only two have been previously identified. We describe the results of a simple and specific mass spectrometry guided method used to screen HEK293T cell lysate for G4 binding proteins. From these results, we validated the RNA helicase protein DDX21. DDX21 is an established RNA helicase, but has not yet been validated as a G4 binding protein. Through biochemical techniques, we confirm that DDX21-quadruplex RNA interactions are direct and mediated via a site of interaction at the C-terminus of the protein. Furthermore, through monitoring changes in nuclease sensitivity we show that DDX21 can unwind RNA G4. Finally, as proof of principle, we demonstrate the ability of DDX21 to suppress the expression of a protein with G4s in the 3΄ UTR of its mRNA.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Kwok CK, Merrick CJ. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol 2017; 35:997-1013. [PMID: 28755976 DOI: 10.1016/j.tibtech.2017.06.012] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
Guanine (G)-rich sequences in nucleic acids can assemble into G-quadruplex structures that involve G-quartets linked by loop nucleotides. The structural and topological diversity of G-quadruplexes have attracted great attention for decades. Recent methodological advances have advanced the identification and characterization of G-quadruplexes in vivo as well as in vitro, and at a much higher resolution and throughput, which has greatly expanded our current understanding of G-quadruplex structure and function. Accumulating knowledge about the structural properties of G-quadruplexes has helped to design and develop a repertoire of molecular and chemical tools for biological applications. This review highlights how these exciting methods and findings have opened new doors to investigate the potential functions and applications of G-quadruplexes in basic and applied biosciences.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, UK.
| |
Collapse
|
37
|
Booy EP, McRae EK, Koul A, Lin F, McKenna SA. The long non-coding RNA BC200 (BCYRN1) is critical for cancer cell survival and proliferation. Mol Cancer 2017. [PMID: 28651607 PMCID: PMC5483959 DOI: 10.1186/s12943-017-0679-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BC200 is a long non-coding RNA expressed at high levels in the brain and elevated in a variety of tumour types. BC200 has a hypothesized role in translational regulation; however, to date the functional role of BC200 in both normal and diseased states remains poorly characterized. METHODS Detailed BC200 expression analyses were performed in tumor cell lines, primary and non-tumorigenic cultured breast and lung cells, and a panel of normal human tissues by quantitative real-time PCR and confirmed by northern blot. Subcellular fractionation was performed to assess BC200 distribution and efficient knock-down of BC200 was established using both locked nucleic acid (LNA) GapmeRs and conventional siRNAs. Cell viability following BC200 knockdown and overexpression was assessed by MTT assay and induction of apoptosis was monitored by Annexin V/PI staining and flow cytometry. Cell cycle arrest and synchronization were performed using serum withdrawal as well as the specific inhibitors Lovastatin, Thymidine, RO3306 and Nocodazole. Synchronization was monitored by fluorescent analysis of cellular DNA content by flow cytometry RESULTS: BC200 expression was substantially upregulated in brain and elevated expression was also observed in testes, small intestine and ovary. Expression in cultured tumour cells was dramatically higher than corresponding normal tissue; however, expression in cultured primary cells was similar to that in immortalized and cancer cell lines. BC200 knockdown resulted in a dramatic loss of viability through growth arrest and induction of apoptosis that could be partially rescued by overexpression of wild-type BC200 but not an siRNA-resistant sequence mutant. A substantial decrease in BC200 expression was observed upon cell confluence or serum deprivation, as well as drug induced cell cycle arrest in G1 or G2 but not S- or M-phases. Upon release from cell cycle arrest, BC200 expression was recovered as cells entered S-phase, but did not follow a periodic expression pattern during synchronized progression through the cell cycle. This elevated expression was critical for the survival of proliferating cancerous and non-cancerous cells, but is dispensable upon senescence or cell cycle arrest. CONCLUSIONS BC200 expression is elevated in proliferating cultured cells regardless of origin. In primary cells, expression is dramatically reduced upon cell cycle arrest by confluence, serum deprivation or chemical inhibition. The lethality of BC200 knockdown is restricted to actively proliferating cells, making it a promising therapeutic target for a broad spectrum of cancers.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Amit Koul
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Francis Lin
- Department of Immunology, University of Manitoba, 750 McDermot Ave, Winnipeg, R3E 0T5, MB, Canada.,Department of Physics & Astronomy, University of Manitoba, Allen Building, Winnipeg, R3T 2N2, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Room 380 Parker Building, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada. .,Department of Biochemistry & Medical Genetics, University of Manitoba, 745 Bannatyne Ave, Winnipeg, R3E 0J9, MB, Canada.
| |
Collapse
|
38
|
Jang S, Shin H, Lee J, Kim Y, Bak G, Lee Y. Regulation of BC200 RNA-mediated translation inhibition by hnRNP E1 and E2. FEBS Lett 2017; 591:393-405. [PMID: 28027391 DOI: 10.1002/1873-3468.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
The long noncoding RNA BC200 (brain cytoplasmic RNA, 200 nucleotides) acts as a translational modulator of local protein synthesis at dendrites. BC200 RNA has been shown to inhibit translation in vitro, but it remains unknown how this translation inhibition might be controlled in a cell. Here, we performed yeast three-hybrid screening and identified hnRNP E1 and hnRNP E2 as BC200 RNA-interacting proteins. We found that: these hnRNA proteins could restore BC200 RNA-inhibited translation; BC200 RNA interacts with hnRNP E1 and E2 mainly through its unique 3' C-rich domain; and the RNA binding specificities and modes of the two proteins differed somewhat. Our results offer new insights into the regulation of BC200 RNA-mediated translation inhibition.
Collapse
Affiliation(s)
| | | | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | |
Collapse
|
39
|
Rouleau S, Jodoin R, Garant JM, Perreault JP. RNA G-Quadruplexes as Key Motifs of the Transcriptome. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:1-20. [PMID: 28382477 DOI: 10.1007/10_2017_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-Quadruplexes are non-canonical secondary structures that can be adopted under physiological conditions by guanine-rich DNA and RNA molecules. They have been reported to occur, and to perform multiple biological functions, in the genomes and transcriptomes of many species, including humans. This chapter focuses specifically on RNA G-quadruplexes and reviews the most recent discoveries in the field, as well as addresses the upcoming challenges researchers studying these structures face.
Collapse
Affiliation(s)
- Samuel Rouleau
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Rachel Jodoin
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Michel Garant
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8.
| |
Collapse
|