1
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
2
|
Yang RM, Song SY, Wu FY, Yang RF, Shen YT, Tu PH, Wang Z, Zhang JX, Cheng F, Gao GQ, Liang J, Guo MM, Yang L, Zhou Y, Zhao SX, Zhan M, Song HD. Myeloid cells interact with a subset of thyrocytes to promote their migration and follicle formation through NF-κB. Nat Commun 2023; 14:8082. [PMID: 38057310 PMCID: PMC10700497 DOI: 10.1038/s41467-023-43895-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.
Collapse
Affiliation(s)
- Rui-Meng Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Feng Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Ting Shen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Hui Tu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Guan-Qi Gao
- Department of Endocrinology, The Linyi People's Hospital, Linyi, Shandong Province, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Miao-Miao Guo
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Stoupa A, Kariyawasam D, Polak M, Carré A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr Investig 2022; 6:123-134. [PMID: 35774517 PMCID: PMC9218988 DOI: 10.1002/ped4.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and one of the most common preventable causes of intellectual disability in the world. CH may be due to developmental or functional thyroid defects (primary or peripheral CH) or be hypothalamic-pituitary in origin (central CH). In most cases, primary CH is caused by a developmental malformation of the gland (thyroid dysgenesis, TD) or by a defect in thyroid hormones synthesis (dyshormonogenesis, DH). TD represents about 65% of CH and a genetic cause is currently identified in fewer than 5% of patients. The remaining 35% are cases of DH and are explained with certainty at the molecular level in more than 50% of cases. The etiology of CH is mostly unknown and may include contributions from individual and environmental factors. In recent years, the detailed phenotypic description of patients, high-throughput sequencing technologies, and the use of animal models have made it possible to discover new genes involved in the development or function of the thyroid gland. This paper reviews all the genetic causes of CH. The modes by which CH is transmitted will also be discussed, including a new oligogenic model. CH is no longer simply a dominant disease for cases of CH due to TD and recessive for cases of CH due to DH, but a far more complex disorder.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Dulanjalee Kariyawasam
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Michel Polak
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
- Université de Paris CitéParisFrance
| | - Aurore Carré
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
| |
Collapse
|
4
|
Stoupa A, Kariyawasam D, Polak M, Carré A. [Genetic of congenital hypothyroidism]. Med Sci (Paris) 2022; 38:263-273. [PMID: 35333163 DOI: 10.1051/medsci/2022028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Dulanjalee Kariyawasam
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Michel Polak
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France - Université de Paris, Paris, France
| | - Aurore Carré
- Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France
| |
Collapse
|
5
|
Zhang X, Qi W, Xu Q, Li X, Zhou L, Ye L. Di(2-ethylhexyl) phthalate (DEHP) and thyroid: biological mechanisms of interference and possible clinical implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1634-1644. [PMID: 34677768 DOI: 10.1007/s11356-021-17027-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/10/2021] [Indexed: 05/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental endocrine disruptor. DEHP can be absorbed into the human body through the air, food, water, and skin. After entering the human body, DEHP is rapidly converted to mono(2-ethylhexyl) phthalate (MEHP) with greater toxicity than DEHP. An increasing number of studies indicates that DEHP or MEHP can damage the thyroid tissue and disrupt the function, but the mechanisms remain unclear. This article reviews the toxicity of DEHP on thyroid structures and functions and summarizes the potential mechanisms to provide evidence for preventing the thyroid-related diseases.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Zerillo L, Polvere I, Varricchio R, Madera JR, D'Andrea S, Voccola S, Franchini I, Stilo R, Vito P, Zotti T. Antibiofilm and repair activity of ozonated oil in liposome. Microb Biotechnol 2021; 15:1422-1433. [PMID: 34773386 PMCID: PMC9049609 DOI: 10.1111/1751-7915.13949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
The use of medical devices, such as contact lenses, represents a substantial risk of infection, as they can act as scaffolds for formation of microbial biofilms. Recently, the increasing emergency of antibiotic resistance has prompted the development of novel and effective antimicrobial drugs for biofilm treatment, such as oxidizing agents. The purpose of this study is to investigate the effects of Ozodrop® and Ozodrop® gel, commercial names of ozonated oil in liposomes plus hypromellose, on eradication and de novo formation of biofilms on different supports, such as plastic plates and contact lens. Our results demonstrate that ozonated liposomal sunflower oil plus hypromellose have an excellent inhibitory effect on bacterial viability and on both de novo formation and eradication of biofilms produced on plates and contact lens by Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, we show that Ozodrop® formulations stimulate expression of antimicrobial peptides and that Ozodrop® gel has a strong repair activity on human epithelial cells, suggesting further applications for the treatment of non‐healing infected wounds.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy
| | - Immacolata Polvere
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy
| | | | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy
| | - Silvia D'Andrea
- Genus Biotech, Università degli Studi del Sannio, Benevento, Italy
| | - Serena Voccola
- Genus Biotech, Università degli Studi del Sannio, Benevento, Italy.,Consorzio Sannio Tech, Apollosa, Italy
| | | | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy.,Genus Biotech, Università degli Studi del Sannio, Benevento, Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini, Benevento, 82100, Italy.,Genus Biotech, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
7
|
Choukair D, Eberle B, Vick P, Hermanns P, Weiss B, Paramasivam N, Schlesner M, Lornsen K, Roeth R, Klutmann C, Kreis J, Hoffmann GF, Pohlenz J, Rappold GA, Bettendorf M. Identification of Transient Receptor Potential Channel 4-Associated Protein as a Novel Candidate Gene Causing Congenital Primary Hypothyroidism. Horm Res Paediatr 2021; 93:16-29. [PMID: 32428920 DOI: 10.1159/000507114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Congenital primary hypothyroidism (CH) is the most common endocrine disorder in neonates. METHODS To identify novel genes, we performed whole exome sequencing (WES) in 6 patients with CH due to thyroid dysgenesis (TD). The potential effects of the most relevant variants were analyzed using in silico prediction tools. The most promising candidate gene, transient receptor potential channel 4-associated protein (TRPC4AP), was sequenced in 179 further patients with TD. Expression of TRPC4AP in human thyroid was investigated using RT-PCR. Trpc4ap- functional analysis was performed in Xenopus laevis using Morpholino (MO) antisense oligomers. RESULTS WES identified a likely damaging mutation in TRPC4AP leading to a de novo stop codon p.Q552*. Targeted sequencing of TRPC4AP demonstrated gene variants with predicted damaging potential in 5 patients resulting each in an amino acid exchange (p.P706S, p.F729L, p.S777C, and p.N229S). We demonstrated that TRPC4AP is expressed in human thyroid gland tissue. Using Xenopus laevis, we showed that the volume of the tadpole thyroid anlage was reduced by 20% in Trpc4ap MO knockdowns compared to controls and by 41% in "Clustered Regularly Interspaced Short Palindromic Repeats"/Cas9-mediated gene knockout experiments. DISCUSSION A recognized interaction of TRPC4AP and the NF-kappa-B-essential-modulator encoded by IKBKG gene was identified by IPA analysis. IKBKG plays a role in activation of the NF-κB-signaling pathway and regulates genes involved in proliferation and survival of thyrocytes and expression of key enzymes of thyroid hormone synthesis. CONCLUSION TRPC4AP was identified as a novel candidate gene in TD, but further studies are needed to validate its role in thyroid function.
Collapse
Affiliation(s)
- Daniela Choukair
- Division of Paediatric Endocrinology, Children's Hospital, University of Heidelberg, Heidelberg, Germany,
| | - Birgit Eberle
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Philipp Vick
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Pia Hermanns
- Division of Paediatric Endocrinology, Children's Hospital, University of Mainz, Mainz, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Theoretical Bioinformatics Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Lornsen
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Carina Klutmann
- Division of Paediatric Endocrinology, Children's Hospital, University of Mainz, Mainz, Germany
| | - Jennifer Kreis
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Georg F Hoffmann
- Division of Paediatric Endocrinology, Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Joachim Pohlenz
- Division of Paediatric Endocrinology, Children's Hospital, University of Mainz, Mainz, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Paediatric Endocrinology, Children's Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
9
|
Geysels RC, Peyret V, Martín M, Nazar M, Reale C, Bernal Barquero CE, Miranda L, Martí MA, Vito P, Masini-Repiso AM, Nicola JP. The Transcription Factor NF-κB Mediates Thyrotropin-Stimulated Expression of Thyroid Differentiation Markers. Thyroid 2021; 31:299-314. [PMID: 32935630 DOI: 10.1089/thy.2020.0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation. Methods: Fisher rat-derived thyroid cell lines and primary cultures of NF-κB essential modulator (NEMO)-deficient mice thyrocytes were used as models. Signaling pathways leading to the activation of NF-κB were investigated by using chemical inhibitors and phospho-specific antibodies. Luciferase reporter gene assays and site-directed mutagenesis were used to monitor NF-κB-dependent gene transcriptional activity and the expression of thyroid differentiation markers was assessed by reverse transcription quantitative polymerase chain reaction and Western blot, respectively. Chromatin immunoprecipitation (ChIP) was carried out to investigate NF-κB subunit p65 DNA binding, and small interfering RNA (siRNA)-mediated gene knockdown approaches were used for studying gene function. Results: Using thyroid cell lines, we observed that TSH treatment leads to protein kinase C (PKC)-mediated canonical NF-κB p65 subunit nuclear expression. Moreover, TSH stimulation phosphorylated the kinase TAK-1, and its knockdown abolished TSH-induced NF-κB transcriptional activity. TSH induced the transcriptional activity of the NF-κB subunit p65 in a protein kinase A (PKA)-dependent phosphorylation at Ser-276. In addition, p65 phosphorylation at Ser-276 induced acetyl transferase p300 recruitment, leading to its acetylation on Lys-310 and thereby enhancing its transcriptional activity. Evaluation of the role played by NF-κB in thyroid physiology demonstrated that the canonical NF-κB inhibitor BAY 11-7082 reduced TSH-induced expression of thyroid differentiation markers. The involvement of NF-κB signaling in thyroid physiology was confirmed by assessing the TSH-induced gene expression in primary cultures of NEMO-deficient mice thyrocytes. ChIP and the knockdown experiments revealed that p65 is a nuclear effector of TSH actions, inducing the transcripcional expression of thyroid differentiation markers. Conclusions: Taken together, our results point to NF-κB being a pivotal mediator in the TSH-induced thyroid follicular cell differentiation, a relevant finding with potential physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Magalí Nazar
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Carla Reale
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Lucas Miranda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Pasquale Vito
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
Han SJ, Williams RM, Kim M, Heller DA, D'Agati V, Schmidt-Supprian M, Lee HT. Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight 2020; 5:139246. [PMID: 32941183 PMCID: PMC7566738 DOI: 10.1172/jci.insight.139246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
We determined that renal proximal tubular (PT) NF-κB essential modulator (NEMO) plays a direct and critical role in ischemic acute kidney injury (AKI) using mice lacking renal PT NEMO and by targeted renal PT NEMO inhibition with mesoscale nanoparticle-encapsulated NEMO binding peptide (NBP MNP). We subjected renal PT NEMO-deficient mice, WT mice, and C57BL/6 mice to sham surgery or 30 minutes of renal ischemia and reperfusion (IR). C57BL/6 mice received NBP MNP or empty MNP before renal IR injury. Mice treated with NBP MNP and mice deficient in renal PT NEMO were protected against ischemic AKI, having decreased renal tubular necrosis, inflammation, and apoptosis compared with control MNP-treated or WT mice, respectively. Recombinant peptidylarginine deiminase type 4 (rPAD4) targeted kidney PT NEMO to exacerbate ischemic AKI in that exogenous rPAD4 exacerbated renal IR injury in WT mice but not in renal PT NEMO-deficient mice. Furthermore, rPAD4 upregulated proinflammatory cytokine mRNA and NF-κB activation in freshly isolated renal proximal tubules from WT mice but not from PT NEMO-deficient mice. Taken together, our studies suggest that renal PT NEMO plays a critical role in ischemic AKI by promoting renal tubular inflammation, apoptosis, and necrosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Li X, Liu X, Zhang Y, Zhang Y, Liu S, Zhang N, Li Y, Wang D. Protective effect of Gloeostereum incarnatum on ulcerative colitis via modulation of Nrf2/NF‑κB signaling in C57BL/6 mice. Mol Med Rep 2020; 22:3418-3428. [PMID: 32945507 PMCID: PMC7453623 DOI: 10.3892/mmr.2020.11420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic non-specific inflammatory cell infiltration of the colon is generally considered to be the cause of ulcerative colitis (UC). Gloeostereum incarnatum (GI), a fungus rich in amino acids and fatty acids, exhibits a variety of biological functions. In the present study, GI was identified to contain 15 fatty acids, 17 amino acids and 11 metallic elements. The protective effect of GI against UC was investigated in C57BL/6 mice with UC induced by free drinking 3.5% dextran sulfate sodium (DSS). After a 21-day oral administration, GI prevented weight loss, enhancement of the disease activity index and colonic pathological alterations in mice with UC. GI reduced the levels of pro-inflammatory factors including interleukin (IL)-1β, IL-2, IL-6 and IL-12, tumor necrosis factor α and -β, interferon α and -γ, and pro-oxidative factors including reactive oxygen species and nitric oxide. In addition, it enhanced the levels of immunological factors including immunoglobulin (Ig)A, IgM and IgG, and antioxidative factors including superoxide dismutase and catalase in the serum and/or colon tissues. GI enhanced the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins and suppressed the phosphorylation of NF-κB signaling in colon tissues. Together, GI was shown to alleviate the physiological and pathological state of DSS-induced UC in mice via its antioxidant and anti-inflammatory functions, which may be associated with its modulation of the activation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Xiao Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Nan Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
12
|
Boufraqech M, Nilubol N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers (Basel) 2019; 11:E1988. [PMID: 31835496 PMCID: PMC6966476 DOI: 10.3390/cancers11121988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advances in high-throughput molecular and multi-omics technologies have improved our understanding of the molecular changes associated with thyroid cancer initiation and progression. The translation into clinical use based on molecular profiling of thyroid tumors has allowed a significant improvement in patient risk stratification and in the identification of targeted therapies, and thereby better personalized disease management and outcome. This review compiles the following: (1) the major molecular alterations of the genome, epigenome, transcriptome, proteome, and metabolome found in all subtypes of thyroid cancer, thus demonstrating the complexity of these tumors and (2) the great translational potential of multi-omics studies to improve patient outcome.
Collapse
Affiliation(s)
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA;
| |
Collapse
|
13
|
Genetic background and window of exposure contribute to thyroid dysfunction promoted by low-dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Sci Rep 2018; 8:16324. [PMID: 30397221 PMCID: PMC6218492 DOI: 10.1038/s41598-018-34427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Genetic and environmental factors contribute to thyroid diseases. Although still debated, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to induce thyroid dysfunction in humans and rodents. The data here reported point out the contribution of the exposure window and genetic background in mediating the low-dose TCDD effects on thyroid. Indeed, early (from E0.5 to PND30) and low-dose (0,001 μg/kg/day) TCDD exposure reduced the circulating fT4 and altered the expression of thyroid specific transcripts. The role of genetic components was estimated monitoring the same markers in Pax8+/- and Nkx2-1+/- mice, susceptible to thyroid dysfunction, exposed to 0, 1 μg/kg/day TCDD from E15.5 to PND60. Haploinsufficiency of either Pax8 or Nkx2-1 genes exacerbated the effects of the exposure impairing the thyroid enriched mRNAs in sex dependent manner. Such effect was mediated by mechanisms involving the Nkx2-1/p53/p65/IĸBα pathway in vitro and in vivo. Foetal exposure to TCDD impaired both thyroid function and genes expression while thyroid development and differentiation did not appear significantly affected. In mouse, stronger effects were related to earlier exposure or specific genetic background such as either Pax8 or Nkx2-1 haploinsufficiency, both associated to hypothyroidism in humans. Furthermore, our data underline that long exposure time are needed to model in vitro and in vivo results.
Collapse
|
14
|
Iervolino A, De La Motte LR, Petrillo F, Prosperi F, Alvino FM, Schiano G, Perna AF, Di Matteo D, De Felice M, Capasso G, Trepiccione F. Integrin Beta 1 Is Crucial for Urinary Concentrating Ability and Renal Medulla Architecture in Adult Mice. Front Physiol 2018; 9:1273. [PMID: 30271355 PMCID: PMC6147158 DOI: 10.3389/fphys.2018.01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Integrins are heterodimers anchoring cells to the surrounding extracellular matrix (ECM), an active and complex process mediating a series of inside-out and outside-in stimuli regulating cellular turn-over, tissue growth and architecture. Itgb1 is the main subunit of the renal integrins and it is critical for renal development. This study aims to investigate the role of Itgb1 in the adult renal epithelial cells by knocking down Itgb1 in PAX8 expressing cells. Itgb1-Pax8 cKO mice develop a progressively worsening proteinuria and renal abnormalities leading to severe renal failure and hypertension. This phenotype is also associated with severe dysfunction of distal nephron and polyuria. To further investigate whether distal nephron involvement was primarily related to Itgb1 suppression or secondary to renal failure, an Itgb1-AQP2 cKO mouse model was generated. These mice lack Itgb1 expression in AQP2 expressing cells. They do not show any developmental alteration, but 1 month old mice are resistant to dDAVP administration and finally, at 2 months of age, they develop overt polyuria. This phenotype is due to primary collecting duct (CD) cells anoikis. The entire architecture of the outer medulla is altered, with loss of the typical organization pattern of vascular and tubular bundles alternation. Indeed, even though not primarily affected by genetic ablation, the TAL is secondarily affected in this model. It is sufficient to suppress Itgb1 expression in the CD in order to stimulate proliferation and then disappearance of neighboring TAL cells. This study shows that cell to cell interaction through the ECM is critical for architecture and function maintenance of the outer medulla and that Itgb1 is crucial for this process.
Collapse
Affiliation(s)
- Anna Iervolino
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy
| | - Luigi R De La Motte
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Petrillo
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Prosperi
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Guglielmo Schiano
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy
| | - Alessandra F Perna
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Danilo Di Matteo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario De Felice
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Biogem Scarl, Istituto di Ricerche Gaetano Salvatore, Ariano Irpino, Italy.,Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Giuliani C, Bucci I, Napolitano G. The Role of the Transcription Factor Nuclear Factor-kappa B in Thyroid Autoimmunity and Cancer. Front Endocrinol (Lausanne) 2018; 9:471. [PMID: 30186235 PMCID: PMC6110821 DOI: 10.3389/fendo.2018.00471] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that is involved in inflammatory and immune responses, as well as in regulation of expression of many other genes related to cell survival, proliferation, and differentiation. In mammals, NF-κB comprises five subunits that can bind to promoter regions of target genes as homodimers or heterodimers. The most common dimer is the p50/p65 heterodimer. The several combinations of dimers that can be formed contribute to the heterogeneous regulation of NF-κB target genes, and this heterogeneity is further increased by interactions of the NF-κB dimers with other transcription factors, such as steroid hormone receptors, activator protein-1 (AP-1), and cAMP response element binding protein (CREB). In the thyroid, several studies have demonstrated the involvement of NF-κB in thyroid autoimmunity, thyroid cancer, and thyroid-specific gene regulation. The role of NF-κB in thyroid autoimmunity was hypothesized more than 20 years ago, after the finding that the binding of distinct NF-κB heterodimers to the major histocompatibility complex class I gene is hormonally regulated. Further studies have shown increased activity of NF-κB in thyroid autoimmune diseases and in thyroid orbitopathy. Increased activity of NF-κB has also been observed in thyroid cancer, where it correlates with a more aggressive pattern. Of particular interest, mutation of some oncogenes or tumor suppressor genes involved in thyroid carcinogenesis results in constitutive activation of the NF-κB pathway. More recently, it has been shown that NF-κB also has a role in thyroid physiology, as it is fundamental for the expression of the main thyroid-specific genes, such as sodium iodide symporter, thyroid peroxidase, thyroglobulin, Pax8, and TTF-1 (NKX2-1).
Collapse
|
16
|
Fiumara CV, Scumaci D, Iervolino A, Perri AM, Concolino A, Tammè L, Petrillo F, Capasso G, Cuda G. Unraveling the Mechanistic Complexity of the Glomerulocystic Phenotype in Dicer Conditional KO Mice by 2D Gel Electrophoresis Coupled Mass Spectrometry. Proteomics Clin Appl 2017; 12:e1700006. [PMID: 29159954 DOI: 10.1002/prca.201700006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/31/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Dicer, an RNase III type endonuclease, is a key enzyme involved in miRNA biogenesis. It has been shown that this enzyme is essential for several aspects of postnatal kidney functions and homeostasis. In this study, we have examined conditional knockout (cKO) mice for Dicer in Pax8 (Paired-box gene 8) expressing cells to investigate the kidney protein profile. This specific model develops a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria, and severe renal failure. EXPERIMENTAL DESIGN Proteomic analysis was performed on kidney tissue extracts from cKO and control (Ctr) mice by 2D Gel Electrophoresis coupled with mass spectrometry. RESULTS The analysis highlighted 120 protein spots differentially expressed in Dicer cKO tissue compared with control; some of these proteins were validated by Western blotting. Ingenuity Pathway Analysis led to the identification of some interesting networks; among them, the one having ERK as a central hub may explain, through the modulation of the expression of a number of identified protein targets, the metabolic and structural alterations occurring during kidney cyst development in Dicer cKO mouse model. CONCLUSIONS AND CLINICAL RELEVANCE Our results contribute to gain new insights into molecular mechanisms through which Dicer endonuclease controls kidney development and physiological functions.
Collapse
Affiliation(s)
- Claudia Vincenza Fiumara
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Anna Iervolino
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Angela Mena Perri
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Antonio Concolino
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Laura Tammè
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Federica Petrillo
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovambattista Capasso
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
17
|
The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology. VITAMINS AND HORMONES 2017; 106:195-210. [PMID: 29407436 DOI: 10.1016/bs.vh.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.
Collapse
|
18
|
Takano APC, Munhoz CD, Moriscot AS, Gupta S, Barreto-Chaves MLM. S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone. J Mol Med (Berl) 2017; 95:671-682. [DOI: 10.1007/s00109-017-1511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|