1
|
Bengs BD, Nde J, Dutta S, Li Y, Sardiu ME. Integrative approaches for predicting protein network perturbations through machine learning and structural characterization. J Proteomics 2025; 316:105439. [PMID: 40228603 DOI: 10.1016/j.jprot.2025.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Chromatin remodeling complexes, such as the Saccharomyces cerevisiae INO80 complex, exemplify how dynamic protein interaction networks govern cellular function through a balance of conserved structural modules and context-dependent functional partnerships, as revealed by integrative machine learning and structural mapping approaches. In this study, we explored the INO80 complex using machine learning to predict network changes caused by genetic deletions. Tree-based models outperformed linear approaches, highlighting non-linear relationships within the interaction network. Feature selection identified key INO80 components (e.g., Arp5, Arp8) and cross-compartment features from other remodeling complexes like SWR1 and NuA4, emphasizing shared functional pathways. Perturbation patterns aligned with biological modules, particularly those linked to telomere maintenance and aging, underscoring the functional coherence of these networks. Structural mapping revealed that not all interactions are predictable through proximity alone, particularly with Arp5 and Yta7. By combining structural insights with machine learning, we enhanced predictions of genetic perturbation effects, providing a template for analyzing cross-species homologs (e.g., human INO80) and their disease-associated variants. This integrative approach bridges the gap between static structural data and dynamic functional networks, offering a pathway to disentangle conserved mechanisms from context-dependent adaptations in chromatin biology. SIGNIFICANCE: By leveraging an innovative, integrative machine learning approach, we have successfully predicted and analyzed perturbations in the INO80 network with good accuracy and depth. Our novel combination of machine learning, perturbation analysis, and structural investigation approach has provided crucial insights into the complex's structure-function relationships, shedding new light on its pivotal roles in affected pathways such as telomere maintenance. Our findings not only enhance our understanding of the INO80 complex but also establish a powerful framework for future studies in chromatin biology and beyond. This work represents a step forward in our understanding of chromatin remodeling complexes and their diverse cellular functions, laying the groundwork for future studies that can further refine our computational approaches and experimental techniques in this field.
Collapse
Affiliation(s)
- Bethany D Bengs
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Jules Nde
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, USA
| | - Sreejata Dutta
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA; University of Kansas Cancer Center, Kansas City, USA; Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas, USA.
| |
Collapse
|
2
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Huang Y, Fu L, Gan Y, Qi G, Hao L, Xin T, Xu W, Song J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int J Mol Sci 2024; 25:8172. [PMID: 39125741 PMCID: PMC11312406 DOI: 10.3390/ijms25158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.
Collapse
Affiliation(s)
- Yuanhao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lianguo Fu
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
4
|
Guan H, Wang P, Zhang P, Ruan C, Ou Y, Peng B, Zheng X, Lei J, Li B, Yan C, Li H. Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S. Nature 2023; 620:669-675. [PMID: 37468628 PMCID: PMC10432269 DOI: 10.1038/s41586-023-06349-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.
Collapse
Affiliation(s)
- Haipeng Guan
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Chun Ruan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutian Ou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Bo Peng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Xiangdong Zheng
- Research Center of Basic Medicine, Academy of Medical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
- Technology Center for Protein Sciences, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, MOE Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Gong F, Zhang K, Wen J, Yu S, Li W, Du G, Wu C, Zhu K, Xu Y. Rice OsMRG702 and Its Partner OsMRGBP Control Flowering Time through H4 Acetylation. Int J Mol Sci 2023; 24:ijms24119219. [PMID: 37298171 DOI: 10.3390/ijms24119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
MORF-RELATED GENE702 (OsMRG702) regulates flowering time genes in rice, but how it controls transcription is not well known. Here, we found that OsMRGBP can directly interact with OsMRG702. Both Osmrg702 and Osmrgbp mutants show the delayed flowering phenotype with the reduction in the transcription of multiple key flowering time genes, including Ehd1 and RFT1. Chromatin immunoprecipitation study showed that both OsMRG702 and OsMRGBP bind to the Ehd1 and RFT1 loci and the absence of either OsMRG702 or OsMRGBP leads to a decrease of H4K5 acetylation at these loci, indicating OsMRG702 and OsMRGBP cooperatively together to promote the H4K5 acetylation. In addition, whilst Ghd7 are upregulated in both Osmrg702 and Osmrgbp mutants, only OsMRG702 binds to the loci, together with the global increased and Ghd7 locus-specific increased H4K5ac levels in Osmrg702 mutants, suggesting an additional negative effect of OsMRG702 on H4K5 acetylation. In summary, OsMRG702 controls flowering gene regulation by altering H4 acetylation in rice; it works either together with OsMRGBP to enhance transcription by promoting H4 acetylation or with other unknown mechanisms to dampen transcription by preventing H4 acetylation.
Collapse
Affiliation(s)
- Feng Gong
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Kaixin Zhang
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Jing Wen
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Shenbo Yu
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Wenjin Li
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Gaofeng Du
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Cui Wu
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Kangjing Zhu
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agriculture University, Nanjing 210014, China
| |
Collapse
|
6
|
Biochemical Characterization of the TINTIN Module of the NuA4 Complex Reveals Allosteric Regulation of Nucleosome Interaction. Mol Cell Biol 2022; 42:e0017022. [PMID: 36190236 PMCID: PMC9670870 DOI: 10.1128/mcb.00170-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) is an integral module of the essential yeast lysine acetyltransferase complex NuA4 that plays key roles in transcription regulation and DNA repair. Composed of Eaf3, Eaf5, and Eaf7, TINTIN mediates targeting of NuA4 to chromatin through the chromodomain-containing subunit Eaf3 that is shared with the Rpd3S histone deacetylase complex. How Eaf3 mediates chromatin interaction in the context of TINTIN and how is it different from what has been observed in Rpd3S is unclear. Here, we reconstituted recombinant TINTIN and its subassemblies and characterized their biochemical and structural properties. Our coimmunoprecipitation, AlphaFold2 modeling, and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses revealed that the Eaf3 MRG domain contacts Eaf7 and this binding induces conformational changes throughout Eaf3. Nucleosome-binding assays showed that Eaf3 and TINTIN interact non-specifically with the DNA on nucleosomes. Furthermore, integration into TINTIN enhances the affinity of Eaf3 toward nucleosomes and this improvement is a result of allosteric activation of the Eaf3 chromodomain. Negative stain electron microscopy (EM) analysis revealed that TINTIN binds to the edge of nucleosomes with increased specificity in the presence of H3K36me3. Collectively, our work provides insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
Collapse
|
7
|
Lu PYT, Kirlin AC, Aristizabal MJ, Brewis HT, Lévesque N, Setiaputra DT, Avvakumov N, Benschop JJ, Groot Koerkamp M, Holstege FCP, Krogan NJ, Yip CK, Côté J, Kobor MS. A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 2022; 222:iyac136. [PMID: 36066422 PMCID: PMC9630986 DOI: 10.1093/genetics/iyac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The NuA4 lysine acetyltransferase complex acetylates histone and nonhistone proteins and functions in transcription regulation, cell cycle progression, and DNA repair. NuA4 harbors an interesting duality in that its catalytic module can function independently and distinctly as picNuA4. At the molecular level, picNuA4 anchors to its bigger brother via physical interactions between the C-terminus of Epl1 and the HSA domain of Eaf1, the NuA4 central scaffolding subunit. This is reflected at the regulatory level, as picNuA4 can be liberated genetically from NuA4 by disrupting the Epl1-Eaf1 interaction. As such, removal of either Eaf1 or the Epl1 C-terminus offers a unique opportunity to elucidate the contributions of Eaf1 and Epl1 to NuA4 biology and in turn their roles in balancing picNuA4 and NuA4 activities. Using high-throughput genetic and gene expression profiling, and targeted functional assays to compare eaf1Δ and epl1-CΔ mutants, we found that EAF1 and EPL1 had both overlapping and distinct roles. Strikingly, loss of EAF1 or its HSA domain led to a significant decrease in the amount of picNuA4, while loss of the Epl1 C-terminus increased picNuA4 levels, suggesting starkly opposing effects on picNuA4 regulation. The eaf1Δ epl1-CΔ double mutants resembled the epl1-CΔ single mutants, indicating that Eaf1's role in picNuA4 regulation depended on the Epl1 C-terminus. Key aspects of this regulation were evolutionarily conserved, as truncating an Epl1 homolog in human cells increased the levels of other picNuA4 subunits. Our findings suggested a model in which distinct aspects of the Epl1-Eaf1 interaction regulated picNuA4 amount and activity.
Collapse
Affiliation(s)
- Phoebe Y T Lu
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Alyssa C Kirlin
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hilary T Brewis
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Dheva T Setiaputra
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Avvakumov
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Joris J Benschop
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, The Netherlands
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacques Côté
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
8
|
Zukin SA, Marunde MR, Popova IK, Soczek KM, Nogales E, Patel AB. Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. eLife 2022; 11:e81400. [PMID: 36263929 PMCID: PMC9643008 DOI: 10.7554/elife.81400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The NuA4 protein complex acetylates histones H4 and H2A to activate both transcription and DNA repair. We report the 3.1-Å resolution cryo-electron microscopy structure of the central hub of NuA4, which flexibly tethers the histone acetyltransferase (HAT) and Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) modules. The hub contains the large Tra1 subunit and a core that includes Swc4, Arp4, Act1, Eaf1, and the C-terminal region of Epl1. Eaf1 stands out as the primary scaffolding factor that interacts with the Tra1, Swc4, and Epl1 subunits and contributes the conserved HSA helix to the Arp module. Using nucleosome-binding assays, we find that the HAT module, which is anchored to the core through Epl1, recognizes H3K4me3 nucleosomes with hyperacetylated H3 tails, while the TINTIN module, anchored to the core via Eaf1, recognizes nucleosomes that have hyperacetylated H2A and H4 tails. Together with the known interaction of Tra1 with site-specific transcription factors, our data suggest a model in which Tra1 recruits NuA4 to specific genomic sites then allowing the flexible HAT and TINTIN modules to select nearby nucleosomes for acetylation.
Collapse
Affiliation(s)
- Stefan A Zukin
- College of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | | | - Irina K Popova
- EpiCypher, Inc, Research Triangle ParkDurhamUnited States
| | - Katarzyna M Soczek
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cellular Biology, University of CaliforniaBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Eva Nogales
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cellular Biology, University of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Avinash B Patel
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Chen Y, Zeng W, Ma W, Ma W, Zhou J. Chromatin Regulators Ahc1p and Eaf3p Positively Influence Nitrogen Metabolism in Saccharomyces cerevisiae. Front Microbiol 2022; 13:883934. [PMID: 35620110 PMCID: PMC9127870 DOI: 10.3389/fmicb.2022.883934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
There is a complex regulatory network of nitrogen metabolism in Saccharomyces cerevisiae, and many details of this regulatory network have not been revealed. This study explored the global regulation of nitrogen metabolism in S. cerevisiae from an epigenetic perspective. Comparative transcriptome analysis of S. cerevisiae S288C treated with 30 nitrogen sources identified nine chromatin regulators (CRs) that responded significantly to different nitrogen sources. Functional analysis showed that among the CRs identified, Ahc1p and Eaf3p promoted the utilization of non-preferred nitrogen sources through global regulation of nitrogen metabolism. Ahc1p regulated nitrogen metabolism through amino acid transport, nitrogen catabolism repression (NCR), and the Ssy1p-Ptr3p-Ssy5p signaling sensor system. Eaf3p regulated nitrogen metabolism via amino acid transport and NCR. The regulatory mechanisms of the effects of Ahc1p and Eaf3p on nitrogen metabolism depended on the function of their histone acetyltransferase complex ADA and NuA4. These epigenetic findings provided new insights for a deeper understanding of the nitrogen metabolism regulatory network in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjian Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67:695-705. [PMID: 34089069 DOI: 10.1007/s00294-021-01196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023]
Abstract
Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.
Collapse
Affiliation(s)
- Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Vivane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
12
|
Abstract
Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post-recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases.
Collapse
|
13
|
An Z, Yin L, Liu Y, Peng M, Shen WH, Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1010-1024. [PMID: 32324922 DOI: 10.1111/tpj.14780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.
Collapse
Affiliation(s)
- Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universitè de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
14
|
Leung CS, Douglass SM, Morselli M, Obusan MB, Pavlyukov MS, Pellegrini M, Johnson TL. H3K36 Methylation and the Chromodomain Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly. Cell Rep 2020; 27:3760-3769.e4. [PMID: 31242410 PMCID: PMC6904931 DOI: 10.1016/j.celrep.2019.05.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the eukaryotic cell, spliceosomes assemble onto pre-mRNA cotranscriptionally. Spliceosome assembly takes place in the context of the chromatin environment, suggesting that the state of the chromatin may affect splicing. The molecular details and mechanisms through which chromatin affects splicing, however, are still unclear. Here, we show a role for the histone methyltransferase Set2 and its histone modification, H3K36 methylation, in pre-mRNA splicing through high-throughput sequencing. Moreover, the effect of H3K36 methylation on pre-mRNA splicing is mediated through the chromodomain protein Eaf3. We find that Eaf3 is recruited to intron-containing genes and that Eaf3 interacts with the splicing factor Prp45. Eaf3 acts with Prp45 and Prp19 after formation of the precatalytic B complex around the time of splicing activation, thus revealing the step in splicing that is regulated by H3K36 methylation. These studies support a model whereby H3K36 facilitates recruitment of an "adapter protein" to support efficient, constitutive splicing.
Collapse
Affiliation(s)
- Calvin S Leung
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen M Douglass
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Obusan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracy L Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
16
|
Bicocca VT, Ormsby T, Adhvaryu KK, Honda S, Selker EU. ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin. eLife 2018; 7:41497. [PMID: 30468429 PMCID: PMC6251624 DOI: 10.7554/elife.41497] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me), a widely-distributed chromatin mark, largely results from association of the lysine methyltransferase (KMT) SET-2 with RNA polymerase II (RNAPII), but most eukaryotes also have additional H3K36me KMTs that act independently of RNAPII. These include the orthologs of ASH1, which are conserved in animals, plants, and fungi but whose function and control are poorly understood. We found that Neurospora crassa has just two H3K36 KMTs, ASH1 and SET-2, and were able to explore the function and distribution of each enzyme independently. While H3K36me deposited by SET-2 marks active genes, inactive genes are modified by ASH1 and its activity is critical for their repression. ASH1-marked chromatin can be further modified by methylation of H3K27, and ASH1 catalytic activity modulates the accumulation of H3K27me2/3 both positively and negatively. These findings provide new insight into ASH1 function, H3K27me2/3 establishment, and repression in facultative heterochromatin. Not all genes in a cell’s DNA are active all the time. There are several ways to control this activity. One is by altering how the DNA is packaged into cells. DNA strands are wrapped around proteins called histones to form nucleosomes. Nucleosomes can then be packed together tightly, to restrict access to the DNA at genes that are not active, or loosely to allow access to the DNA of active genes. Chemical marks, such as methyl groups, can be attached to particular sites on histones to influence how they pack together. One important site for such marks is known as position 36 on histone H3, or H3K36 for short. Correctly adding methyl groups to this site is critical for normal development, and when this process goes wrong it can lead to diseases like cancer. An enzyme called SET-2 oversees the methylation of H3K36 in fungi, plants and animals. However, many species have several other enzymes that can also add methyl groups to H3K36, and their roles are less clear. A type of fungus called Neurospora crassa contains just two enzymes that can add methyl groups to H3K36: SET-2, and another enzyme called ASH1. By performing experiments that inactivated SET-2 and ASH1 in this fungus, Bicocca et al. found that each enzyme works on a different set of genes. Genes in regions marked by SET-2 were accessible for the cell to use, while genes marked by ASH1 were inaccessible. ASH1 also affects whether a methyl group is added to another site on histone H3. This mark is important for controlling the activity of genes that are critical for development. ASH1 is found in many other organisms, including humans. The results presented by Bicocca et al. could therefore be built upon to understand the more complicated systems for regulating H3K36 methylation in other species. From there, we can investigate how to intervene when things go wrong during developmental disorders and cancer.
Collapse
Affiliation(s)
- Vincent T Bicocca
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Tereza Ormsby
- Department of Biochemistry Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|