1
|
Aggarwal S, Tanwar N, Singh A, Munde M. Formation of Protamine and Zn-Insulin Assembly: Exploring Biophysical Consequences. ACS OMEGA 2022; 7:41044-41057. [PMID: 36406544 PMCID: PMC9670714 DOI: 10.1021/acsomega.2c04419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The insulin-protamine interaction is at the core of the mode of action in many insulin formulations (Zn + insulin + protamine) and to treat diabetes, in which protamine is added to the stable form of hexameric insulin (Zn-insulin). However, due to the unavailability of quantitative data and a high-resolution structure, the binding mechanism of the insulin-protamine complex remains unknown. In this study, it was observed that Zn-insulin experiences destabilization as observed by the loss of secondary structure in circular dichroism (CD), and reduction in thermal stability in melting study, upon protamine binding. In isothermal titration calorimetry (ITC), it was found that the interactions were mostly enthalpically driven. This is in line with the positive ΔC m value (+880 cal mol-1), indicating the role of hydrophilic interactions in the complex formation, with the exposure of hydrophobic residues to the solvent, which was firmly supported by the 8-anilino-1-naphthalene sulfonate (ANS) binding study. The stoichiometry (N) value in ITC suggests the multiple insulin molecules binding to the protamine chain, which is consistent with the picture of the condensation of insulin in the presence of protamine. Atomic force microscopy (AFM) suggested the formation of a heterogeneous Zn-insulin-protamine complex. In fluorescence, Zn-insulin experiences strong Tyr quenching, suggesting that the location of the protamine-binding site is near Tyr, which is also supported by the molecular docking study. Since Tyr is critical in the stabilization of insulin self-assembly, its interaction with protamine may impair insulin's self-association ability and thermodynamic stability while at the same time promoting its flexible conformation desired for better biological activity.
Collapse
|
2
|
Van Doren SR. MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 2022; 50:839-851. [PMID: 35343563 PMCID: PMC10443904 DOI: 10.1042/bst20210640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.
Collapse
Affiliation(s)
- Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
3
|
Xinqiang S, Erqin D, Yu Z, Hongtao D, Lei W, Ningning Y. Potential mechanisms of action of celastrol against rheumatoid arthritis: Transcriptomic and proteomic analysis. PLoS One 2020; 15:e0233814. [PMID: 32726313 PMCID: PMC7390347 DOI: 10.1371/journal.pone.0233814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
The clinical efficacy for treating of celastrol rheumatoid arthritis (RA) has been well-documented, but its mechanism of action remains unclear. Here we explored through what proteins and processes celastrol may act in activated fibroblast-like synoviocytes (FLS) from RA patients. Differential expression of genes and proteins after celastrol treatment of FLS was examined using RNA sequencing, label-free relatively quantitative proteomics and molecular docking. In this paper, expression of 26,565 genes and 3,372 proteins was analyzed. Celastrol was associated with significant changes in genes that respond to oxidative stress and oxygen levels, as well as genes that stabilize or synthesize components of the extracellular matrix. These results identify several potential mechanisms through which celastrol may inhibit inflammation in RA.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- Cells, Cultured
- Chromatography, Liquid
- Gene Expression Regulation/drug effects
- Gene Ontology
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Pentacyclic Triterpenes
- Proteomics/methods
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Spectrometry, Mass, Electrospray Ionization
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Tandem Mass Spectrometry
- Transcriptome/drug effects
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Song Xinqiang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- * E-mail: (SX); (YN)
| | - Dai Erqin
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Zhang Yu
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Du Hongtao
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Wang Lei
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Yang Ningning
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
- * E-mail: (SX); (YN)
| |
Collapse
|
4
|
Liu X, Wei Y, Bai X, Li M, Li H, Wang L, Zhang S, Li X, Zhao T, Liu Y, Geng R, Cui H, Chen H, Xu R, Liu H, Zhang Y, Yang B. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm Sin B 2020; 10:812-824. [PMID: 32528829 PMCID: PMC7276697 DOI: 10.1016/j.apsb.2020.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Peritoneal adhesions are fibrous tissues that tether organs to one another or to the peritoneal wall and represent the major cause of postsurgical morbidity. Enterolysis at repeat surgeries induces adhesion reformation that is more difficult to prevent than primary adhesion. Here we studied the preventive effects of different approaches of berberine treatment for primary adhesion, and its effects on adhesion reformation compared to Interceed. We found the primary adhesion was remarkably prevented by berberine through intraperitoneal injection 30 min before abrasive surgery (pre-berberine) or direct addition into injured cecum immediately after the surgery (inter-berberine). Rats with adhesion reformation had a more deteriorative collagen accumulation and tissue injury in abrasive sites than rats with primary adhesion. The dysregulated TIMP-1/MMP balance was observed in patients after surgery, as well as adhesion tissues from primary adhesion or adhesion reformation rats. Inter-berberine treatment had a better effect for adhesion reformation prevention than Interceed. Berberine promoted the activation of MMP-3 and MMP-8 by directly blocking TIMP-1 activation core, which was reversed by TIMP-1 overexpression in fibroblasts. In conclusion, this study suggests berberine as a reasonable approach for preventing primary adhesion formation and adhesion reformation.
Collapse
Key Words
- ABSO, adhesive small bowel obstruction
- Adhesion reformation
- BBR, berberine
- Berberine
- ECM, extracellular matrix
- EDC, 1-ethyl-3-(3-dimethylpropyl)-carbodiimide
- FSP-1, fibroblasts specific protein 1
- H&E, hemotoxylin and eosin
- HPX, hemopexin-like
- ICAM-1, intercellular cell adhesion molecule-1
- LSPR, localized surface plasmon resonance
- MMP-3, matrix metallopeptidase 3
- MMP-8, matrix metallopeptidase 8
- NHS, N-hydroxysuccinimide
- NMR, nuclear magnetic resonance
- PEG, polyethylene glycol
- Peritoneal adhesion
- SPR, surface plasmon resonance
- TIMP-1
- TIMP-1, tissue inhibitor of metalloproteinases 1
- Vegfα, vascular endothelial growth factor α
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
| | - Yunwei Wei
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingqi Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Huimin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shuqian Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Rui Geng
- Department of Oncological and Laparoscopic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ranchen Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Heng Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Corresponding authors.
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and HealthSciences University of Melbourne, Melbourne VIC 3010, Australia
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Corresponding authors.
| |
Collapse
|
5
|
Sánchez-Pozo J, Baker-Williams AJ, Woodford MR, Bullard R, Wei B, Mollapour M, Stetler-Stevenson WG, Bratslavsky G, Bourboulia D. Extracellular Phosphorylation of TIMP-2 by Secreted c-Src Tyrosine Kinase Controls MMP-2 Activity. iScience 2018; 1:87-96. [PMID: 30227959 PMCID: PMC6135941 DOI: 10.1016/j.isci.2018.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase. As a consequence, phosphorylation at Y90 significantly enhances TIMP-2 potency as an MMP-2 inhibitor and weakens the catalytic action of the active enzyme. TIMP-2 phosphorylation also appears to be essential for its interaction with the latent enzyme proMMP-2 in vivo. Absence of the kinase or non-phosphorylatable Y90 abolishes TIMP-2 binding to the latent enzyme, ultimately hampering proMMP-2 activation. Together, TIMP-2 phosphorylation by secreted c-Src represents a critical extracellular regulatory mechanism that controls the proteolytic function of MMP-2. c-Src tyrosine kinase phosphorylates TIMP-2 Secreted c-Src phosphorylates TIMP-2 extracellularly TIMP-2 Y90 phosphorylation promotes extracellular interaction with proMMP-2 Tyrosine phosphorylation of TIMP-2 regulates proMMP-2 processing and MMP-2 activity
Collapse
Affiliation(s)
- Javier Sánchez-Pozo
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|