1
|
D'Souza-Schorey C, Stahl PD. Resolving the two-body problem: A postulated role for the V0 sector of the V0V1-ATPase in exosome biogenesis and multivesicular body fate. Mol Biol Cell 2025; 36:pe1. [PMID: 39705591 PMCID: PMC11742106 DOI: 10.1091/mbc.e24-09-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase. The V0V1-ATPase participates in the acidification of intracellular compartments, although V0 can function separately from V1 and different V0 isoforms are endowed with membrane binding capabilities that allow the V0V1-ATPase to selectively localize to different endocytic compartments including early and late endosomes and lysosomes. We propose that V0, in collaboration with cholesterol and phosphoinositides, plays a central role in the early endosome as a nucleation center to direct the de novo assembly of an EXO-MVB scaffold. The EXO-MVB scaffold may play multiple roles-operating as an assembly platform, participating in membrane fission as well as providing downstream navigational queues necessary for exosome secretion. Thus, V0 may represent an influential nexus, a starting point, in exosome biogenesis.
Collapse
Affiliation(s)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Ye F, Yuan Z, Tang Y, Li J, Liu X, Sun X, Chen S, Ye X, Zeng Z, Zhang XK, Zhou H. Endocytic activation and exosomal secretion of matriptase stimulate the second wave of EGF signaling to promote skin and breast cancer invasion. Cell Rep 2024; 43:114002. [PMID: 38547126 DOI: 10.1016/j.celrep.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The dysfunction of matriptase, a membrane-anchored protease, is highly related to the progression of skin and breast cancers. Epidermal growth factor (EGF)-induced matriptase activation and cancer invasion are known but with obscure mechanisms. Here, we demonstrate a vesicular-trafficking-mediated interplay between matriptase and EGF signaling in cancer promotion. We found that EGF induces matriptase to undergo endocytosis together with the EGF receptor, followed by acid-induced activation in endosomes. Activated matriptase is then secreted extracellularly on exosomes to catalyze hepatocyte growth factor precursor (pro-HGF) cleavage, resulting in autocrine HGF/c-Met signaling. Matriptase-induced HGF/c-Met signaling represents the second signal wave of EGF, which promotes cancer cell scattering, migration, and invasion. These findings demonstrate a role of vesicular trafficking in efficient activation and secretion of membrane matriptase and a reciprocal regulation of matriptase and EGF signaling in cancer promotion, providing insights into the physiological functions of vesicular trafficking and the molecular pathological mechanisms of skin and breast cancers.
Collapse
Affiliation(s)
- Fang Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhikang Yuan
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Tang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiamei Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xingxing Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xuedi Sun
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuang Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
7
|
Wang XL, Li J, Bian YQ, Li JQ, Li XY. [Influence of pH value on tube formation of human dermal microvascular endothelial cells and its molecular mechanism]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:662-670. [PMID: 37805696 DOI: 10.3760/cma.j.cn501225-20220930-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Objective: To explore the influence of pH value on tube formation of human dermal microvascular endothelial cells (HDMECs) and study its molecular mechanism, so as to provide theoretical basis for the study of promoting angiogenesis in the process of wound healing. Methods: The experimental study methods were applied. HDMECs of 4 or 5 passages in the logarithmic growth phase were collected for experiments. Culture mediums with pH values of 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 7.8 were prepared, and the cells were adaptively cultured (the same culture method below) for 24 h before further experiments being carried out. After another 36 h of culture, the relative fluorescence value of cytoplasmic pH value was measured by flow cytometry, and the correlation analysis between the relative fluorescence value of cytoplasmic pH value and the medium pH value was carried out. After another 1.5, 2.5, 3.5, 4.5, and 5.5 days of culture, the cell proliferation activity was detected with cell counting kit 8. OrisTM cell migration detection kit was used to detect the remaining area of cell migration at 0 (immediately), 24, and 48 h after removing the cell seeding stopper. Three-dimensional stromal gel cell tube formation experiment was carried out to detect the lumen diameter of tube formed by cells after another 48 h of culture. The protein expressions of phosphorylation sites 473 and 308 of protein kinase B (Akt) were detected by Western blotting after another 48 h of culture. The sample number was 3. Data were statistically analyzed with Pearson correlation analysis, one-way analysis of variance, analysis of variance for factorial design, analysis of variance for repeated measurement, and Bonferroni correction. Results: After another 36 h of culture, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 6.8-7.8 mediums were significantly higher than the level in pH 6.4 medium (P<0.05); compared with those in pH 6.6-7.0 mediums, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.4-7.8 mediums were significantly increased (P<0.05), and the relative fluorescence value of cytoplasmic pH value of cells cultured in pH 6.6 medium was significantly lower than that in pH 7.0 or 7.2 mediun (with P values all <0.05); the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.6 and 7.8 mediums were significantly higher than those in pH 7.2 and 7.4 mediums (P<0.05). The relative fluorescence value of cytoplasmic pH value was significantly positively correlated with the medium pH value (r=0.99, P<0.05). The proliferation activity was similar among cells cultured in 8 mediums of different pH values for another 1.5 days (P>0.05). After another 2.5 days of culture, the proliferation activity of cells cultured in pH 6.4-6.8 mediums was significantly decreased compared with that in pH 7.6 medium (P<0.05). After another 3.5 days of culture, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly higher than that in pH 6.4-6.8 mediums (P<0.05); compared with that in pH 7.6 medium, the proliferation activity of cells cultured in pH 7.0-7.4 and 7.8 mediums was significantly decreased (P<0.05). After another 4.5 or 5.5 days of culture, the proliferation activity of cells cultured in pH 6.8-7.8 mediums was significantly higher than that in pH 6.4 medium (P<0.05); compared with that in pH 6.6 and 6.8 mediums, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly increased (P<0.05). After another 4.5 days of culture, the proliferation activity of cells cultured in pH 7.6 medium was significantly higher than that in pH 7.0 medium (P<0.05). After another 5.5 days of culture, the proliferation activity of cells cultured in pH 7.2-7.6 mediums was significantly increased compared with that in pH 7.0 medium (P<0.05); the proliferation activity of cells cultured in pH 7.2 and 7.4 mediums was significantly lower than that in pH 7.6 medium (with P values all <0.05) but significantly higher than that in pH 7.6 medium (with P values all <0.05). Immediately after removing the cell seeding stopper, the remaining migration areas were similar among cells cultured in 8 mediums of different pH values (P>0.05). At 24 h after removing the cell seeding stopper, the remaining migration areas of cells cultured in pH 6.6-7.8 mediums were significantly smaller than the area in pH 6.4 medium (P<0.05); compared with those in pH 6.6 and 6.8 mediums, the remaining migration areas of cells cultured in pH 7.0 to 7.6 mediums were significantly reduced (P<0.05). At 48 h after removing the cell seeding stopper, compared with those in pH 6.4 and 6.6 mediums, the remaining migration areas of cells cultured in pH 7.0-7.8 mediums were significantly reduced (P<0.05); the remaining migration areas of cells cultured in pH 7.2 and 7.4 mediums were significantly smaller than those in pH 6.8, 7.0, and 7.8 mediums (P<0.05) but significantly larger than the area in pH 7.6 medium (P<0.05); the remaining migration area of cells cultured in pH 7.6 medium was significantly smaller than that in pH 6.8 or 7.8 medium (with P values all <0.05). After another 48 h of culture, the lumen diameters of tubes formed by cells cultured in pH 7.0, 7.2, 7.4, 7.6, and 7.8 mediums were (5.0±0.5), (7.6±0.9), (8.5±0.7), (11.0±0.8), and (5.3±0.8) μm, respectively, which were significantly longer than (2.8±0.8) μm in pH 6.4 medium (P<0.05); the lumen diameters of tubes formed by cells cultured in pH 6.6 ((4.2±0.3) μm), 6.8 ((4.5±0.6) μm), 7.0, and 7.8 mediums were significantly shorter than the diameter in pH 7.6 medium (P<0.05). After another 48 h of culture, compared with those in pH 6.4 and 6.6 mediums, the protein expressions of Akt phosphorylation sites 473 and 308 of cells cultured in pH 6.8 to 7.8 mediums were significantly increased (P<0.05). Moreover, the protein expression of Akt phosphorylation site 308 of cells cultured in pH 6.6 medium was significantly higher than that in pH 6.4 medium (P<0.05); compared with the expression in pH 6.8 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0 and 7.4-7.8 mediums were significantly increased (P<0.05); compared with the expression in pH 7.6 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0-7.4 and 7.8 mediums were significantly decreased (P<0.05); compared with the expression in pH 7.8 medium, the protein expressions of Akt phosphorylation site 308 of cells cultured in pH 7.0 to 7.6 mediums were significantly increased (P<0.05). Conclusions: pH value can regulate the lumen diameter of HDMEC-formed capillaries, which is closely related to the activation of Akt. 7.2-7.6 is the appropriate pH value for constructing tissue engineered capillaries.
Collapse
Affiliation(s)
- X L Wang
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - J Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Y Q Bian
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - J Q Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - X Y Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
8
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
9
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Wang X, Li J, Bian Y, Zhao C, Li J, Li X. pH regulates the lumen diameter of tissue-engineered capillaries. Exp Ther Med 2022; 23:284. [PMID: 35317437 PMCID: PMC8908470 DOI: 10.3892/etm.2022.11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis is vital in tissue engineering and the size of the capillary lumen diameter directly affects vascular function. Therefore, the involvement of the pH in the regulation of the capillary lumen diameter was investigated in the present study. The cytosolic pH of different pH medium groups was measured using flow cytometry. Bromodeoxyuridine staining and wound-healing assays were performed to detect cell proliferation and migration, respectively. The expression of angiogenesis-related genes was detected using reverse transcription-quantitative PCR. In addition, cell tube formation under different pH conditions was assessed using a tube formation assay and a 3D Matrigel® model. The results indicated that a change in the pH value of the culture medium affected the cytosolic pH of the endothelial cells, which then led to a change in vascular diameter. When the medium's pH ranged from 7.4 to 7.6, the diameter of the lumen formed in the Matrigel was suitable for capillary formation in tissue engineering. The present results revealed an important role for the pH in the process of capillary formation and provided insight for pH regulation during endothelial cell tube formation and angiogenesis in tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Li
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yongqian Bian
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Congying Zhao
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinqing Li
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xueyong Li
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
11
|
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M, Gao R. Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 2021; 46:228. [PMID: 34476504 DOI: 10.3892/or.2021.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
Collapse
Affiliation(s)
- Lin Cao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Tianqiao Huang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaohong Chen
- Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
| | - Weisha Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Xingjiu Yang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Wenlong Zhang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Mengyuan Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Ran Gao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| |
Collapse
|
12
|
Whitton B, Okamoto H, Rose-Zerilli M, Packham G, Crabb SJ. V-ATPase Inhibition Decreases Mutant Androgen Receptor Activity in Castrate-resistant Prostate Cancer. Mol Cancer Ther 2021; 20:739-748. [PMID: 33563753 PMCID: PMC7611189 DOI: 10.1158/1535-7163.mct-20-0662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/26/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is critically dependent on androgen receptor (AR) signaling. Despite initial responsiveness to androgen deprivation, most patients with advanced prostate cancer subsequently progress to a clinically aggressive castrate-resistant prostate cancer (CRPC) phenotype, typically associated with expression of splice-variant or mutant AR forms. Although current evidence suggests that the vacuolar-ATPase (V-ATPase), a multiprotein complex that catalyzes proton transport across intracellular and plasma membranes, influences wild-type AR function, the effect of V-ATPase inhibition on variant AR function is unknown.Inhibition of V-ATPase reduced AR function in wild-type and mutant AR luciferase reporter models. In hormone-sensitive prostate cancer cell lines (LNCaP, DuCaP) and mutant AR CRPC cell lines (22Rv1, LNCaP-F877L/T878A), V-ATPase inhibition using bafilomycin-A1 and concanamycin-A reduced AR expression, and expression of AR target genes, at mRNA and protein levels. Furthermore, combining chemical V-ATPase inhibition with the AR antagonist enzalutamide resulted in a greater reduction in AR downstream target expression than enzalutamide alone in LNCaP cells. To investigate the role of individual subunit isoforms, siRNA and CRISPR-Cas9 were used to target the V1C1 subunit in 22Rv1 cells. Whereas transfection with ATP6V1C1-targeted siRNA significantly reduced AR protein levels and function, CRISPR-Cas9-mediated V1C1 knockout showed no substantial change in AR expression, but a compensatory increase in protein levels of the alternate V1C2 isoform.Overall, these results indicate that V-ATPase dysregulation is directly linked to both hormone-responsive prostate cancer and CRPC via impact on AR function. In particular, V-ATPase inhibition can reduce AR signaling regardless of mutant AR expression.
Collapse
Affiliation(s)
- Bradleigh Whitton
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Haruko Okamoto
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Matthew Rose-Zerilli
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Graham Packham
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Simon J Crabb
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom.
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
13
|
Chen J, Cao X, Li B, Zhao Z, Chen S, Lai SWT, Muend SA, Nossa GK, Wang L, Guo W, Ye J, Lee PP, Feng M. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol 2021; 11:621757. [PMID: 33603751 PMCID: PMC7884830 DOI: 10.3389/fimmu.2020.621757] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Evasion of immunosurveillance is critical for cancer initiation and development. The expression of “don’t eat me” signals protects cancer cells from being phagocytosed by macrophages, and the blockade of such signals demonstrates therapeutic potential by restoring the susceptibility of cancer cells to macrophage-mediated phagocytosis. However, whether additional self-protective mechanisms play a role against macrophage surveillance remains unexplored. Here, we derived a macrophage-resistant cancer model from cells deficient in the expression of CD47, a major “don’t eat me” signal, via a macrophage selection assay. Comparative studies performed between the parental and resistant cells identified self-protective traits independent of CD47, which were examined with both pharmacological or genetic approaches in in vitro phagocytosis assays and in vivo tumor models for their roles in protecting against macrophage surveillance. Here we demonstrated that extracellular acidification resulting from glycolysis in cancer cells protected them against macrophage-mediated phagocytosis. The acidic tumor microenvironment resulted in direct inhibition of macrophage phagocytic ability and recruitment of weakly phagocytic macrophages. Targeting V-ATPase which transports excessive protons in cancer cells to acidify extracellular medium elicited a pro-phagocytic microenvironment with an increased ratio of M1-/M2-like macrophage populations, therefore inhibiting tumor development and metastasis. In addition, blockade of extracellular acidification enhanced cell surface exposure of CD71, targeting which by antibodies promoted cancer cell phagocytosis. Our results reveal that extracellular acidification due to the Warburg effect confers immune evasion ability on cancer cells. This previously unrecognized role highlights the components mediating the Warburg effect as potential targets for new immunotherapy harnessing the tumoricidal capabilities of macrophages.
Collapse
Affiliation(s)
- Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Zhangchen Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Seigmund W T Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sabina A Muend
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Gianna K Nossa
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
14
|
Silencing of Ac45 Simultaneously Inhibits Osteoclast-Mediated Bone Resorption and Attenuates Dendritic Cell-Mediated Inflammation through Impairing Acidification and Cathepsin K Secretion. Infect Immun 2020; 89:IAI.00436-20. [PMID: 33077625 DOI: 10.1128/iai.00436-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Endodontic disease is characterized by inflammation and destruction of periapical tissues, leading to severe bone resorption and tooth loss. ATP6AP1 (Ac45) has been implicated in human immune diseases, yet the mechanism underlying how Ac45 regulates immune response and reaction in inflammatory diseases remains unknown. We generated endodontic disease mice through bacterial infection as an inflammatory disease model and used adeno-associated virus (AAV)-mediated Ac45 RNA interference knockdown to study the function of Ac45 in periapical inflammation and bone resorption. We demonstrated that the AAV small hairpin RNA targeting Ac45 (AAV-sh-Ac45) impaired cellular acidification, extracellular acidification, and bone resorption. Our results showed that local delivery of AAV-sh-Ac45 in periapical tissues in bacterium-induced inflammatory lesions largely reduced bone destruction, inhibited inflammation, and dramatically reduced mononuclear immune cells. T-cell, macrophage, and dendritic cell infiltration in the periapical lesion was dramatically reduced, and the periodontal ligament was protected from inflammation-induced destruction. Furthermore, AAV-sh-Ac45 significantly reduced osteoclast formation and the expression of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-10 (IL-10), IL-12, IL-1α, IL-6, and IL-17. Interestingly, AAV-sh-Ac45 impaired mature cathepsin K secretion more significantly than that by AAV-sh-C1 and AAV-sh-CtsK Unbiased genome-wide transcriptome sequencing analysis of Ctsk -/- dendritic cells stimulated with lipopolysaccharide demonstrated that the ablation of Ctsk dramatically reduced dendritic cell-mediated inflammatory signaling. Taken together, our results indicated that AAV-sh-Ac45 simultaneously inhibits osteoclast-mediated bone resorption and attenuates dendritic cell-mediated inflammation through impairing acidification and cathepsin K secretion. Thus, Ac45 may be a novel target for therapeutic approaches to attenuate inflammation and bone erosion in endodontic disease and other inflammation-related osteolytic diseases.
Collapse
|
15
|
Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. Rev Physiol Biochem Pharmacol 2020; 182:85-110. [PMID: 32776252 DOI: 10.1007/112_2020_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.
Collapse
|
16
|
Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020; 8:510. [PMID: 32656214 PMCID: PMC7324685 DOI: 10.3389/fcell.2020.00510] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Luminal pH and the distinctive distribution of phosphatidylinositol phosphate (PIP) lipids are central identifying features of organelles in all eukaryotic cells that are also critical for organelle function. V-ATPases are conserved proton pumps that populate and acidify multiple organelles of the secretory and the endocytic pathway. Complete loss of V-ATPase activity causes embryonic lethality in higher animals and conditional lethality in yeast, while partial loss of V-ATPase function is associated with multiple disease states. On the other hand, many cancer cells increase their virulence by upregulating V-ATPase expression and activity. The pH of individual organelles is tightly controlled and essential for function, but the mechanisms for compartment-specific pH regulation are not completely understood. There is substantial evidence indicating that the PIP content of membranes influences organelle pH. We present recent evidence that PIPs interact directly with subunit isoforms of the V-ATPase to dictate localization of V-ATPase subpopulations and participate in their regulation. In yeast cells, which have only one set of organelle-specific V-ATPase subunit isoforms, the Golgi-enriched lipid PI(4)P binds to the cytosolic domain of the Golgi-enriched a-subunit isoform Stv1, and loss of PI(4)P binding results in mislocalization of Stv1-containing V-ATPases from the Golgi to the vacuole/lysosome. In contrast, levels of the vacuole/lysosome-enriched signaling lipid PI(3,5)P2 affect assembly and activity of V-ATPases containing the Vph1 a-subunit isoform. Mutations in the Vph1 isoform that disrupt the lipid interaction increase sensitivity to stress. These studies have decoded “zip codes” for PIP lipids in the cytosolic N-terminal domain of the a-subunit isoforms of the yeast V-ATPase, and similar interactions between PIP lipids and the V-ATPase subunit isoforms are emerging in higher eukaryotes. In addition to direct effects on the V-ATPase, PIP lipids are also likely to affect organelle pH indirectly, through interactions with other membrane transporters. We discuss direct and indirect effects of PIP lipids on organelle pH, and the functional consequences of the interplay between PIP lipid content and organelle pH.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
17
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
18
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Luiken JJFP, Nabben M, Neumann D, Glatz JFC. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165775. [PMID: 32209364 DOI: 10.1016/j.bbadis.2020.165775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
CD36 and GLUT4 are the main cardiac trans-sarcolemmal transporters for long-chain fatty acids and glucose, respectively. Together they secure the majority of cardiac energy demands. Moreover, these transporters each represent key governing kinetic steps in cardiac fatty acid and glucose fluxes, thereby offering major sites of regulation. The underlying mechanism of this regulation involves a perpetual vesicle-mediated trafficking (recycling) of both transporters between intracellular stores (endosomes) and the cell surface. In the healthy heart, CD36 and GLUT4 translocation to the cell surface is under short-term control of the same physiological stimuli, most notably increased contraction and insulin secretion. However, under chronic lipid overload, a condition that accompanies a Western lifestyle, CD36 and GLUT4 recycling are affected distinctly, with CD36 being expelled to the sarcolemma while GLUT4 is imprisoned within the endosomes. Moreover, the increased CD36 translocation towards the cell surface is a key early step, setting the heart on a route towards insulin resistance and subsequent contractile dysfunction. Therefore, the proteins making up the trafficking machinery of CD36 need to be identified with special focus to the differences with the protein composition of the GLUT4 trafficking machinery. These proteins that are uniquely dedicated to either CD36 or GLUT4 traffic may offer targets to rectify aberrant substrate uptake seen in the lipid-overloaded heart. Specifically, CD36-dedicated trafficking regulators should be inhibited, whereas such GLUT4-dedicated proteins would need to be activated. Recent advances in the identification of CD36-dedicated trafficking proteins have disclosed the involvement of vacuolar-type H+-ATPase and of specific vesicle-associated membrane proteins (VAMPs). In this review, we summarize these recent findings and sketch a roadmap of CD36 and GLUT4 trafficking compatible with experimental findings.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Dietbert Neumann
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6211 LK Maastricht, the Netherlands
| |
Collapse
|
20
|
Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, Stock C, Pedersen SF. The Vacuolar H + ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells 2020; 9:E465. [PMID: 32085585 PMCID: PMC7072798 DOI: 10.3390/cells9020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.
Collapse
Affiliation(s)
- Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Sofie Hagelund
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Christian Stock
- Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| |
Collapse
|
21
|
Couto-Vieira J, Nicolau-Neto P, Costa EP, Figueira FF, Simão TDA, Okorokova-Façanha AL, Ribeiro Pinto LF, Façanha AR. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine 2020; 51:102581. [PMID: 31901859 PMCID: PMC6948166 DOI: 10.1016/j.ebiom.2019.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023] Open
Abstract
Background V-ATPases are hetero-oligomeric enzymes consisting of 13 subunits and playing key roles in ion homeostasis and signaling. Differential expression of these proton pumps has been implicated in carcinogenesis and metastasis. To elucidate putative molecular signatures underlying these phenomena, we evaluated the expression of V-ATPase genes in esophageal squamous cell carcinoma (ESCC) and extended the analysis to other cancers. Methods Expression of all V-ATPase genes were analyzed in ESCC by a microarray data and in different types of tumors available from public databases. Expression of C isoforms was validated by qRT-PCR in paired ESCC samples. Findings A differential expression pattern of V-ATPase genes was found in different tumors, with combinations in up- and down-regulation leading to an imbalance in the expression ratios of their isoforms. Particularly, a high C1 and low C2 expression pattern accurately discriminated ESCC from normal tissues. Structural modeling of C2a isoform uncovered motifs for oncogenic kinases in an additional peptide stretch, and an actin-biding domain downstream to this sequence. Interpretation Altogether these data revealed that the expression ratios of subunits/isoforms could form a conformational code that controls the H+ pump regulation and interactions related to tumorigenesis. This study establishes a paradigm change by uncovering multi-cancer molecular signatures present in the V-ATPase structure, from which future studies must address the complexity of the onco-related V-ATPase assemblies as a whole, rather than targeting changes in specific subunit isoforms. Funding This work was supported by grants from CNPq and FAPERJ-Brazil.
Collapse
Affiliation(s)
- Juliana Couto-Vieira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Frederico Firme Figueira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Anna Lvovna Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Arnoldo Rocha Façanha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
22
|
Zhang Y, Takahashi Y, Hong SP, Liu F, Bednarska J, Goff PS, Novak P, Shevchuk A, Gopal S, Barozzi I, Magnani L, Sakai H, Suguru Y, Fujii T, Erofeev A, Gorelkin P, Majouga A, Weiss DJ, Edwards C, Ivanov AP, Klenerman D, Sviderskaya EV, Edel JB, Korchev Y. High-resolution label-free 3D mapping of extracellular pH of single living cells. Nat Commun 2019; 10:5610. [PMID: 31811139 PMCID: PMC6898398 DOI: 10.1038/s41467-019-13535-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Medicine, Imperial College London, London, W12 0NN, UK.
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Sung Pil Hong
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Fengjie Liu
- Department of Earth Science & Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Joanna Bednarska
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Philip S Goff
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Pavel Novak
- Department of Medicine, Imperial College London, London, W12 0NN, UK
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sahana Gopal
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshimoto Suguru
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Alexander Erofeev
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, GSP-1, 119991, Moscow, Russian Federation
| | - Peter Gorelkin
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
| | - Alexander Majouga
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, GSP-1, 119991, Moscow, Russian Federation
| | - Dominik J Weiss
- Department of Earth Science & Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, London, CB2 1EW, UK
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK.
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, W12 0NN, UK.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
23
|
Rehorst WA, Thelen MP, Nolte H, Türk C, Cirak S, Peterson JM, Wong GW, Wirth B, Krüger M, Winter D, Kye MJ. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol Commun 2019; 7:154. [PMID: 31615574 PMCID: PMC6794869 DOI: 10.1186/s40478-019-0806-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder, which causes dysfunction/loss of lower motor neurons and muscle weakness as well as atrophy. While SMA is primarily considered as a motor neuron disease, recent data suggests that survival motor neuron (SMN) deficiency in muscle causes intrinsic defects. We systematically profiled secreted proteins from control and SMN deficient muscle cells with two combined metabolic labeling methods and mass spectrometry. From the screening, we found lower levels of C1q/TNF-related protein 3 (CTRP3) in the SMA muscle secretome and confirmed that CTRP3 levels are indeed reduced in muscle tissues and serum of an SMA mouse model. We identified that CTRP3 regulates neuronal protein synthesis including SMN via mTOR pathway. Furthermore, CTRP3 enhances axonal outgrowth and protein synthesis rate, which are well-known impaired processes in SMA motor neurons. Our data revealed a new molecular mechanism by which muscles regulate the physiology of motor neurons via secreted molecules. Dysregulation of this mechanism contributes to the pathophysiology of SMA.
Collapse
|
24
|
Hsu KS, Otsu W, Li Y, Wang HC, Chen S, Tsang SH, Chuang JZ, Sung CH. CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. Sci Rep 2019; 9:12247. [PMID: 31439888 PMCID: PMC6706427 DOI: 10.1038/s41598-019-48438-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells. The matrix degradative activity, but not the assembly, of the focal adhesion is regulated by chloride intracellular channel 4 (CLIC4). CLIC4 is co-localized with MMP14 in the late endosome. CLIC4 regulates the proper sorting of MMP14 into the lumen of the late endosome and its proteolytic activation in lipid rafts. CLIC4 has the newly-identified “late domain” motif that binds to MMP14 and to Tsg101, a component of the endosomal sorting complex required for transport (ESCRT) complex. Unlike the late domain mutant CLIC4, wild-type CLIC4 can rescue the late endosomal sorting defect of MMP14. Finally, CLIC4 knockdown inhibits the apical secretion of MMP2 in polarized human RPE monolayers. These results, taken together, demonstrate that CLIC4 is a novel matrix microenvironment modulator and a novel regulator for late endosomal cargo sorting. Moreover, the late endosomal sorting of MMP14 actively regulates its surface activation in RPE cells.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Surgery, Colorectal Service and Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wataru Otsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Heuy-Ching Wang
- Ocular Trauma Task Area, US Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, TX, San Antonio, USA
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA. .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
25
|
Santos JM, Hussain F. VD3 mitigates breast cancer aggressiveness by targeting V-H+-ATPase. J Nutr Biochem 2019; 70:185-193. [DOI: 10.1016/j.jnutbio.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
|
26
|
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades. Drug Deliv Transl Res 2019; 9:379-393. [PMID: 30194528 DOI: 10.1007/s13346-018-0584-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a complex phenomenon caused by numerous reasons in cancer chemotherapy. It is related to the abnormal tumor metabolism, precisely increased glycolysis and lactic acid production, extracellular acidification, and drug efflux caused by transport proteins. There are few strategies to increase drug delivery into cancer cells. One of them is the inhibition of carbonic anhydrases or certain proton transporters that increase extracellular acidity by proton extrusion from the cells. This prevents weakly basic chemotherapeutic drugs from ionization and increases their penetration through the cancer cell membrane. Another approach is the inhibition of MDR proteins that pump the anticancer agents into the extracellular milieu and decrease their intracellular concentration. Physical methods, such as ultrasound-mediated sonoporation, are being developed, as well. To increase the efficacy of sonoporation, various microbubbles are used. Ultrasound causes microbubble cavitation, i.e., periodical pulsation of the microbubble, and destruction which results in formation of temporary pores in the cellular membrane and increased permeabilization to drug molecules. This review summarizes the main approaches to reverse MDR related to the drug penetration along with its applications in preclinical and clinical studies.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania. .,Institute of Biotechnology, Vilnius University, Saulėtekio Ave. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
27
|
Vela D. Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies. Front Oncol 2018; 8:547. [PMID: 30538952 PMCID: PMC6277552 DOI: 10.3389/fonc.2018.00547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
An increasing amount of research has recently strengthened the case for the existence of iron dysmetabolism in prostate cancer. It is characterized with a wide array of differential expression of iron-related proteins compared to normal cells. These proteins control iron entry, cellular iron distribution but also iron exit from prostate cells. Iron dysmetabolism is not an exclusive feature of prostate cancer cells, but it is observed in other cells of the tumor microenvironment. Disrupting the machinery that secures iron for prostate cancer cells can retard tumor growth and its invasive potential. This review unveils the current understanding of the ways that prostate cancer cells secure iron in the tumor milieu and how can we exploit this knowledge for therapeutic purposes.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
28
|
Chen M, Lu J, Wei W, Lv Y, Zhang X, Yao Y, Wang L, Ling T, Zou X. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo. Onco Targets Ther 2018; 11:6705-6722. [PMID: 30349304 PMCID: PMC6188003 DOI: 10.2147/ott.s161198] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Our study aimed to explore the effects of PPIs on reversing multidrug resistance (MDR) to chemotherapy in gastric cancer by inhibiting the expression of V-ATPases and the PI3K/Akt/mTOR/HIF-1α signal pathway. Methods The gastric cancer cell lines SGC7901 and the multidrug resistance cell lines SGC7901/MDR were pretreated by the pantoprazole or the esomeprazole, respectively. Real-time PCR was used to determine mRNA levels, and western blotting and immunofluorescent staining analyses were employed to determine the protein expressions and intracellular distributions of the V-ATPases, PI3K, Akt, mTOR, HIF-1α, P-gp and MRP1 before and after PPIs pretreatment. SGC7901/MDR cells were planted on the athymic nude mice. Then the effects of PPZ pretreatment and/or ADR were compared by determining the tumor size, tumor weight and nude mice weight. Results PPIs pretreatment could inhibit mRNA levels of V-ATPases, MDR1 and MRP1, PI3K, Akt, mTOR and HIF-1α. PPIs inhibited V-ATPases and down-regulated the expressions of P-gp and MRP1. And further to block the expression of mTOR by Rapamycin could obviously inhibit the expressions of HIF-1α, P-gp and MRP1 in a dose-dependent manner. Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway. Meanwhile, PPIs also could inhibit the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately. The weight growth rate of the mice bearing tumor in the treatment group was lower than that of the nude mice in the normal group, while the weight growth rate of the mice in control group was significantly lower than that of the normal group and the treatment group, presenting a downward trend. Conclusion Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway, and also to inhibiting the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately.
Collapse
Affiliation(s)
- Min Chen
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Jian Lu
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ; .,Department of Gastroenterology, the Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, the affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi 214002, People's Republic of China
| | - Wei Wei
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Ying Lv
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Xiaoqi Zhang
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Yuling Yao
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Lei Wang
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| | - Tingsheng Ling
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ; .,Department of Gastroenterology, Nanjing Gaochun People's Hospital, Nanjing 211300, People's Republic of China,
| | - Xiaoping Zou
- Department of Gastroenterology the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing 210008, People's Republic of China, ;
| |
Collapse
|
29
|
Sahoo M, Katara GK, Bilal MY, Ibrahim SA, Kulshrestha A, Fleetwood S, Suzue K, Beaman KD. Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget 2018; 9:33215-33231. [PMID: 30237863 PMCID: PMC6145706 DOI: 10.18632/oncotarget.26061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023] Open
Abstract
The interaction of recruited immune effector cells and cancer cells within tumor microenvironment (TME) shapes the fate of cancer progression and metastasis. Many cancers including breast cancer, express a specific vacuolar ATPase (a2V) on their cell surface which acidifies the extracellular milieu helping cancer cell proliferation and metastasis. To understand the role of immune cell-associated-a2V during breast tumor pathogenesis, we knocked-out a2V (KO) from the hematopoietic stem cells (HSC) and generated breast tumors in mice. The a2V-KO mice developed faster growing, larger, and metastatic breast tumors compared to control mice. Further investigation of the TME revealed a significant reduction in the presence of CD4+ and CD8+ T cells in the a2V-KO tumors. Targeted RNA-Seq of the cells of the TME demonstrated that pro-inflammatory cytokines, death receptors, death receptor ligands, and cytotoxic effectors were significantly down-regulated within the a2V-KO TME. Interestingly, analysis of immune cells in the blood, spleen, and thymus of the non-tumor bearing a2V-KO mice revealed a significant decrease in CD4+ and CD8+ T cell populations. For the first time, this study demonstrates that inhibition of V-ATPase expression in HSC leads to a decrease in CD4+ and CD8+ T cell populations and thus promotes breast tumor growth and metastasis.
Collapse
Affiliation(s)
- Manoranjan Sahoo
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mahmood Y Bilal
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kimiko Suzue
- Department of Pathology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
30
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V o Proton Channel. Mol Cell 2018. [PMID: 29526695 DOI: 10.1016/j.molcel.2018.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA; Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Nicholas J Stam
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Corey F Hryc
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Couoh-Cardel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Grigore Pintilie
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA 94305, USA; Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
32
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Katara GK, Kulshrestha A, Mao L, Wang X, Sahoo M, Ibrahim S, Pamarthy S, Suzue K, Shekhawat GS, Gilman-Sachs A, Beaman KD. Mammary epithelium-specific inactivation of V-ATPase reduces stiffness of extracellular matrix and enhances metastasis of breast cancer. Mol Oncol 2017; 12:208-223. [PMID: 29178186 PMCID: PMC5792725 DOI: 10.1002/1878-0261.12159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix (ECM) critically impacts tumor progression and is influenced by both cancer and host tissue cells. While our understanding of cancer cell ECM remodeling is widespread, the importance of host tissue ECM, which provides initial congenial environment for primary tumor formation, is partly understood. Here, we report a novel role of epithelial cell-associated vacuolar ATPase 'a2' isoform (a2V) in regulating breast tissue ECM stiffness to control metastasis. Using a mammary gland-specific a2V-knockout model, we show that in the absence of a2V, breast tumors exhibit atypically soft tumor phenotype, less tumor rigidity, and necrotic tumor microenvironment. These tumors contain a decreased number of cancer cells at primary tumor site, but showed extensive metastases compared to control. Nanomechanical evaluation of normal breast tissues revealed a decrease in stiffness and collagen content in ECM of a2V-deleted breast tissues. Mechanistically, inhibition of a2V expression caused dispersed Golgi morphology with relocation of glycosyltransferase enzymes to early endosomes in mammary epithelial cells. This resulted in defective glycosylation of ECM proteins and production of compromised ECM that further influenced tumor metastasis. Clinically, in patients with cancer, low a2V expression levels in normal breast tissue correlated with lymph node metastasis. Thus, using a new knockout mouse model, we have identified a2V expression in epithelial cells as a key requirement for proper ECM formation in breast tissue and its expression levels can significantly modulate breast tumor dissemination. Evaluation of a2V expression in normal breast tissues can help in identifying patients with high risk of developing metastases.
Collapse
Affiliation(s)
- Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Liqun Mao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Manoranjan Sahoo
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kimiko Suzue
- Department of Pathology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
34
|
Licon-Munoz Y, Michel V, Fordyce CA, Parra KJ. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open 2017; 6:1734-1744. [PMID: 29038303 PMCID: PMC5703614 DOI: 10.1242/bio.028837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) proton pump sustains cellular pH homeostasis, and its inhibition triggers numerous stress responses. However, the cellular mechanisms involved remain largely elusive in cancer cells. We studied V-ATPase in the prostate cancer (PCa) cell line PC-3, which has characteristics of highly metastatic PCa. V-ATPase inhibitors impaired endo-lysosomal pH, vesicle trafficking, migration, and invasion. V-ATPase accrual in the Golgi and recycling endosomes suggests that traffic of internalized membrane vesicles back to the plasma membrane was particularly impaired. Directed movement provoked co-localization of V-ATPase containing vesicles with F-actin near the leading edge of migrating cells. V-ATPase inhibition prompted prominent F-actin cytoskeleton reorganization. Filopodial projections were reduced, which related to reduced migration velocity. F-actin formed novel cytoplasmic rings. F-actin rings increased with extended exposure to sublethal concentrations of V-ATPase inhibitors, from 24 to 48 h, as the amount of alkalinized endo-lysosomal vesicles increased. Studies with chloroquine indicated that F-actin rings formation was pH-dependent. We hypothesize that these novel F-actin rings assemble to overcome widespread traffic defects caused by V-ATPase inhibition, similar to F-actin rings on the surface of exocytic organelles. Summary: V-ATPase activates multiple stress responses. In prostate cancer, sub-lethal concentrations of V-ATPase inhibitors trigger widespread traffic defects. F-actin assembles into rings that mimic those seen during regulated exocytosis.
Collapse
Affiliation(s)
- Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Vera Michel
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Colleen A Fordyce
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
35
|
Banerjee S, Kane PM. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast. Mol Biol Cell 2017; 28:2518-2530. [PMID: 28720663 PMCID: PMC5597324 DOI: 10.1091/mbc.e17-05-0316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
PI(4)P directly interacts with the cytosolic domain of yeast Golgi vacuolar H+-ATPase (V-ATPase) a-isoform, Stv1, and the human Golgi a-subunit isoform. Lys-84 of Stv1 is essential for PI(4)P interaction, and localization of Stv1-containing V-ATPases in vivo requires the PI(4)P interaction. We propose that phosphatidylinositol binding exerts organelle-specific control over V-ATPases. Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H+-ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae. Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of Vo a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
36
|
Rotating with the brakes on and other unresolved features of the vacuolar ATPase. Biochem Soc Trans 2017; 44:851-5. [PMID: 27284051 PMCID: PMC4900747 DOI: 10.1042/bst20160043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/31/2022]
Abstract
The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss.
Collapse
|
37
|
Pamarthy S, Mao L, Katara GK, Fleetwood S, Kulshreshta A, Gilman-Sachs A, Beaman KD. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis 2016; 7:e2443. [PMID: 27809299 PMCID: PMC5260869 DOI: 10.1038/cddis.2016.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
Among all tissues and organs, the mammary gland is unique because most of its development occurs in adulthood. Notch signaling has a major role in mammary gland development and has been implicated in breast cancer. The vacuolar-ATPase (V-ATPase) is a proton pump responsible for the regulation and control of pH in intracellular vesicles and the extracellular milieu. We have previously reported that a2V-ATPase (a2V), an isoform of ‘a' subunit of V-ATPase, regulates processing of Notch receptor and alters Notch signaling in breast cancer. To study the role of a2V in mammary gland development, we generated an a2V-KO model (conditional mammary knockout a2V mouse strain). During normal mammary gland development, the basal level expression of a2V increased from puberty, virginity, and pregnancy through the lactation stage and then decreased during involution. Litters of a2V-KO mice weighed significantly less when compared with litters from wild-type mice and showed reduced expression of the lactation marker β-casein. Whole-mount analysis of mammary glands demonstrated impaired ductal elongation and bifurcation in a2V-KO mice. Consequently, we found disintegrated mammary epithelium as seen by basal and luminal epithelial staining, although the rate of proliferation remained unchanged. Delayed mammary morphogenesis in a2V-KO mice was associated with aberrant activation of Notch and TGF-β (transforming growth factor-β) pathways. Notably, Hey1 (hairy/enhancer-of-split related with YRPW motif) and Smad2, the key downstream mediators of Notch and TGF-β pathways, respectively, were upregulated in a2V-KO mice and also in human mammary epithelial cells treated with a2V siRNA. Taken together, our results show that a2V deficiency disrupts the endolysosomal route in Notch and TGF signaling, thereby impairing mammary gland development. Our findings have broader implications in developmental and oncogenic cellular environments where V-ATPase, Notch and TGF-β are crucial for cell survival.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liquin Mao
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sara Fleetwood
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Arpita Kulshreshta
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|