1
|
Izquierdo Lafuente B, Verboom T, Coenraads S, Ummels R, Bitter W, Speer A. Vitamin B 12 uptake across the mycobacterial outer membrane is influenced by membrane permeability in Mycobacterium marinum. Microbiol Spectr 2024; 12:e0316823. [PMID: 38722177 PMCID: PMC11237697 DOI: 10.1128/spectrum.03168-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Vitamin B12 (B12) serves as a critical cofactor within mycobacterial metabolism. While some pathogenic strains can synthesize B12 de novo, others rely on host-acquired B12. In this investigation, we studied the transport of vitamin B12 in Mycobacterium marinum using B12-auxotrophic and B12-sensitive strains by deleting metH or metE, respectively. These two enzymes rely on B12 in different ways to function as methionine synthases. We used these strains to select mutants affecting B12 scavenging and confirmed their phenotypes during growth experiments in vitro. Our analysis of B12 uptake mechanisms revealed that membrane lipids and cell wall integrity play an essential role in cell envelope transport. Furthermore, we identified a potential transcription regulator that responds to B12. Our study demonstrates that M. marinum can take up exogenous B12 and that altering mycobacterial membrane integrity affects B12 uptake. Finally, during zebrafish infection using B12-auxotrophic and B12-sensitive strains, we found that B12 is available for virulent mycobacteria in vivo.IMPORTANCEOur study investigates how mycobacteria acquire essential vitamin B12. These microbes, including those causing tuberculosis, face challenges in nutrient uptake due to their strong outer layer. We focused on Mycobacterium marinum, similar to TB bacteria, to uncover its vitamin B12 absorption. We used modified strains unable to produce their own B12 and discovered that M. marinum can indeed absorb it from the environment, even during infections. Changes in the outer layer composition affect this process, and genes related to membrane integrity play key roles. These findings illuminate the interaction between mycobacteria and their environment, offering insights into combatting diseases like tuberculosis through innovative strategies. Our concise research underscores the pivotal role of vitamin B12 in microbial survival and its potential applications in disease control.
Collapse
Affiliation(s)
- Beatriz Izquierdo Lafuente
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sita Coenraads
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Nijland M, Lefebvre SN, Thangaratnarajah C, Slotboom DJ. Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC transporter BacA. Nat Commun 2024; 15:2626. [PMID: 38521790 PMCID: PMC10960864 DOI: 10.1038/s41467-024-46917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BacA is a mycobacterial ATP-binding cassette (ABC) transporter involved in the translocation of water-soluble compounds across the lipid bilayer. Whole-cell-based assays have shown that BacA imports cobalamin as well as unrelated hydrophilic compounds such as the antibiotic bleomycin and the antimicrobial peptide Bac7 into the cytoplasm. Surprisingly, there are indications that BacA also mediates the export of different antibacterial compounds, which is difficult to reconcile with the notion that ABC transporters generally operate in a strictly unidirectional manner. Here we resolve this conundrum by developing a fluorescence-based transport assay to monitor the transport of cobalamin across liposomal membranes. We find that BacA transports cobalamin in both the import and export direction. This highly unusual bidirectionality suggests that BacA is mechanistically distinct from other ABC transporters and facilitates ATP-driven diffusion, a function that may be important for the evolvability of specific transporters, and may bring competitive advantages to microbial communities.
Collapse
Affiliation(s)
- Mark Nijland
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Solène N Lefebvre
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Chancievan Thangaratnarajah
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen, Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
3
|
van Wijk RC, Hu W, Dijkema SM, van den Berg DJ, Liu J, Bahi R, Verbeek FJ, Simonsson USH, Spaink HP, van der Graaf PH, Krekels EHJ. Anti-tuberculosis effect of isoniazid scales accurately from zebrafish to humans. Br J Pharmacol 2020; 177:5518-5533. [PMID: 32860631 PMCID: PMC7707096 DOI: 10.1111/bph.15247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose There is a clear need for innovation in anti‐tuberculosis drug development. The zebrafish larva is an attractive disease model in tuberculosis research. To translate pharmacological findings to higher vertebrates, including humans, the internal exposure of drugs needs to be quantified and linked to observed response. Experimental Approach In zebrafish studies, drugs are usually dissolved in the external water, posing a challenge to quantify internal exposure. We developed experimental methods to quantify internal exposure, including nanoscale blood sampling, and to quantify the bacterial burden, using automated fluorescence imaging analysis, with isoniazid as the test compound. We used pharmacokinetic–pharmacodynamic modelling to quantify the exposure–response relationship responsible for the antibiotic response. To translate isoniazid response to humans, quantitative exposure–response relationships in zebrafish were linked to simulated concentration–time profiles in humans, and two quantitative translational factors on sensitivity to isoniazid and stage of infection were included. Key Results Blood concentration was only 20% of the external drug concentration. The bacterial burden increased exponentially, and an isoniazid dose corresponding to 15 mg·L−1 internal concentration (minimum inhibitory concentration) leads to bacteriostasis of the mycobacterial infection in the zebrafish. The concentration–effect relationship was quantified, and based on that relationship and the translational factors, the isoniazid response was translated to humans, which correlated well with observed data. Conclusions and Implications This proof of concept study confirmed the potential of zebrafish larvae as tuberculosis disease models in translational pharmacology and contributes to innovative anti‐tuberculosis drug development, which is very clearly needed.
Collapse
Affiliation(s)
- Rob C van Wijk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Wanbin Hu
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sharka M Dijkema
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dirk-Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeremy Liu
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rida Bahi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Fons J Verbeek
- Imaging and Bioinformatics Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | | | - Herman P Spaink
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,QSP, Certara, Canterbury, UK
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Zebrafish Embryo Model for Assessment of Drug Efficacy on Mycobacterial Persisters. Antimicrob Agents Chemother 2020; 64:AAC.00801-20. [PMID: 32778551 DOI: 10.1128/aac.00801-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinum In vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.
Collapse
|
5
|
De Vecchis D, Brandner A, Baaden M, Cohen MM, Taly A. A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin. J Membr Biol 2019; 252:293-306. [PMID: 31485701 DOI: 10.1007/s00232-019-00089-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.
Collapse
Affiliation(s)
- Dario De Vecchis
- School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LIGHT Building, Leeds, LS2 9JT, UK.
| | - Astrid Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Mickael M Cohen
- Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Antoine Taly
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005, Paris, France. .,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Mycobacterial dynamin-like protein IniA mediates membrane fission. Nat Commun 2019; 10:3906. [PMID: 31467269 PMCID: PMC6715688 DOI: 10.1038/s41467-019-11860-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis infection remains a major threat to human health worldwide. Drug treatments against tuberculosis (TB) induce expression of several mycobacterial proteins, including IniA, but its structure and function remain poorly understood. Here, we report the structures of Mycobacterium smegmatis IniA in both the nucleotide-free and GTP-bound states. The structures reveal that IniA folds as a bacterial dynamin-like protein (BDLP) with a canonical GTPase domain followed by two helix-bundles (HBs), named Neck and Trunk. The distal end of its Trunk domain exists as a lipid-interacting (LI) loop, which binds to negatively charged lipids for membrane attachment. IniA does not form detectable nucleotide-dependent dimers in solution. However, lipid tethering indicates nucleotide-independent association of IniA on the membrane. IniA also deforms membranes and exhibits GTP-hydrolyzing dependent membrane fission. These results confirm the membrane remodeling activity of BDLP and suggest that IniA mediates TB drug-resistance through fission activity to maintain plasma membrane integrity.
Collapse
|
7
|
Abramovitch RB. Mycobacterium tuberculosis Reporter Strains as Tools for Drug Discovery and Development. IUBMB Life 2018; 70:818-825. [PMID: 29707888 DOI: 10.1002/iub.1862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/08/2018] [Indexed: 11/11/2022]
Abstract
Reporter strains have proven to be powerful tools to study Mycobacterium tuberculosis (Mtb) physiology. Transcriptional and translational reporter strains are engineered by fusing a readout gene, encoding a fluorescent, luminescent or enzymatic protein, downstream of a promoter or in-frame with a gene of interest. When the reporter is expressed, it generates a signal that acts as a synthetic phenotype, enabling the study of physiologies that might have otherwise been hidden. This review will discuss approaches for generating reporter strains in Mtb and how they can be used as tools for high-throughput genetic and small molecule screening and as biomarkers for examining Mtb responses to drug or immune stresses during animal infections. Fluorescent reporter strains have an added benefit in that they can be used for single-cell studies both in vitro and in vivo, thus enabling the study of mechanisms underlying phenotypic heterogeneity. Recent examples of the use of Mtb reporter strains will be presented with a focus on how they can be used as tools for drug discovery and development. © 2018 IUBMB Life, 70(9):818-825, 2018.
Collapse
Affiliation(s)
- Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Accelerating Early Antituberculosis Drug Discovery by Creating Mycobacterial Indicator Strains That Predict Mode of Action. Antimicrob Agents Chemother 2018; 62:AAC.00083-18. [PMID: 29661879 DOI: 10.1128/aac.00083-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Due to the rise of drug-resistant forms of tuberculosis, there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole-cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life/death screening that give little qualitative information. In doing so, promising compound scaffolds or nonoptimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early tuberculosis (TB) drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to subinhibitory concentrations of antibiotics with known targets, ciprofloxacin, ethambutol, isoniazid, streptomycin, and rifampin. The resulting data set comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage, and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we identified the putative modes of action for three novel compounds, which confirms the utility of our approach.
Collapse
|
9
|
Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front-Line Tuberculosis Drugs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Department of Chemistry; University of California; Berkeley CA 94720 USA
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Xiaoxue Zhou
- Department of Biochemistry; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Julie A. Theriot
- Department of Biochemistry; Stanford University School of Medicine; Stanford CA 94305 USA
- Department of Microbiology and Immunology; Stanford University School of Medicine; Stanford CA 94305 USA
- Howard Hughes Medical Institute; Stanford University; Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
- Howard Hughes Medical Institute; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
10
|
Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front-Line Tuberculosis Drugs. Angew Chem Int Ed Engl 2018; 57:5267-5272. [PMID: 29392891 DOI: 10.1002/anie.201712020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/28/2018] [Indexed: 02/06/2023]
Abstract
Front-line tuberculosis (TB) drugs have been characterized extensively in vitro and in vivo with respect to gene expression and cell viability. However, little work has been devoted to understanding their effects on the physiology of the cell envelope, one of the main targets of this clinical regimen. Herein, we use metabolic labeling methods to visualize the effects of TB drugs on cell envelope dynamics in mycobacterial species. We developed a new fluorophore-trehalose conjugate to visualize trehalose monomycolates of the mycomembrane using super-resolution microscopy. We also probed the relationship between mycomembrane and peptidoglycan dynamics using a dual metabolic labeling strategy. Finally, we found that metabolic labeling of both cell envelope structures reports on drug effects on cell physiology in two hours, far faster than a genetic sensor of cell envelope stress. Our work provides insight into acute drug effects on cell envelope biogenesis in live mycobacteria.
Collapse
Affiliation(s)
- Frances P Rodriguez-Rivera
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoxue Zhou
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Boot M, van Winden VJC, Sparrius M, van de Weerd R, Speer A, Ummels R, Rustad T, Sherman DR, Bitter W. Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose. PLoS Genet 2017; 13:e1007131. [PMID: 29281637 PMCID: PMC5760070 DOI: 10.1371/journal.pgen.1007131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose.
Collapse
Affiliation(s)
- Maikel Boot
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Vincent J. C. van Winden
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert van de Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Tige Rustad
- Center for Infectious Disease, Seattle, Washington, United States of America
| | - David R. Sherman
- Center for Infectious Disease, Seattle, Washington, United States of America
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
- Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep 2017; 7:10665. [PMID: 28878275 PMCID: PMC5587683 DOI: 10.1038/s41598-017-10944-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome bd is a component of the oxidative phosphorylation pathway in many Gram-positive and Gram-negative bacteria. Next to its role as a terminal oxidase in the respiratory chain this enzyme plays an important role as a survival factor in the bacterial stress response. In Mycobacterium tuberculosis and related mycobacterial strains, cytochrome bd is an important component of the defense system against antibacterial drugs. In this report we describe and evaluate an mCherry-based fluorescent reporter for detection of cytochrome bd expression in Mycobacterium marinum. Cytochrome bd was induced by mycolic acid biosynthesis inhibitors such as isoniazid and most prominently by drugs targeting oxidative phosphorylation. We observed no induction by inhibitors of protein-, DNA- or RNA-synthesis. The constructed expression reporter was suitable for monitoring mycobacterial cytochrome bd expression during mouse macrophage infection and in a zebrafish embryo infection model when using Mycobacterium marinum. Interestingly, in both these infection models cytochrome bd levels were considerably higher than during in vitro culturing of M. marinum. The expression reporter described here can be a valuable tool for elucidating the role of cytochrome bd as a survival factor.
Collapse
Affiliation(s)
- Maikel Boot
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ting Liu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ping Lu
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Earth- and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Degiacomi G, Benjak A, Madacki J, Boldrin F, Provvedi R, Palù G, Kordulakova J, Cole ST, Manganelli R. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci Rep 2017; 7:43495. [PMID: 28240248 PMCID: PMC5327466 DOI: 10.1038/srep43495] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate ≤1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan Madacki
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jana Kordulakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|