1
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
3
|
Yokoyama A, Kouketsu T, Otsubo Y, Noro E, Sawatsubashi S, Shima H, Satoh I, Kawamura S, Suzuki T, Igarashi K, Sugawara A. Identification and Functional Characterization of a Novel Androgen Receptor Coregulator, EAP1. J Endocr Soc 2021; 5:bvab150. [PMID: 34585037 PMCID: PMC8462380 DOI: 10.1210/jendso/bvab150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays an essential role in the development of prostate cancer, and androgen-deprivation therapy is used as a first-line treatment for prostate cancer. However, under androgen-deprivation therapy, castration-resistant prostate cancer inevitably arises, suggesting that the interacting transcriptional coregulators of AR are promising targets for developing novel therapeutics. In this study, we used novel proteomic techniques to evaluate the AR interactome, including biochemically labile binding proteins, which might go undetected by conventional purification methods. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, we identified enhanced at puberty 1 (EAP1) as a novel AR coregulator, whereas its interaction with AR could not be detected under standard biochemical conditions. EAP1 enhanced the transcriptional activity of AR via the E3 ubiquitin ligase activity, and its ubiquitination substrate proteins included AR and HDAC1. Furthermore, in prostate cancer specimens, EAP1 expression was significantly correlated with AR expression as well as a poor prognosis of prostate cancer. Together, these results suggest that EAP1 is a novel AR coregulator that promotes AR activity and potentially plays a role in prostate cancer progression.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Takumi Kouketsu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Otsubo
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Shun Sawatsubashi
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Ikuro Satoh
- Department of Pathology, Miyagi Cancer Center, Natori, Miyagi 981-1293, Japan
| | - Sadafumi Kawamura
- Department of Urology, Miyagi Cancer Center, Natori, Miyagi 981-1293, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
4
|
Proteomic Landscape of Prostate Cancer: The View Provided by Quantitative Proteomics, Integrative Analyses, and Protein Interactomes. Cancers (Basel) 2021; 13:cancers13194829. [PMID: 34638309 PMCID: PMC8507874 DOI: 10.3390/cancers13194829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most frequent cancer of men worldwide. While the genetic landscapes and heterogeneity of prostate cancer are relatively well-known already, methodological developments now allow for studying basic and dynamic proteomes on a large scale and in a quantitative fashion. This aids in revealing the functional output of cancer genomes. It has become evident that not all aberrations at the genetic and transcriptional level are translated to the proteome. In addition, the proteomic level contains heterogeneity, which increases as the cancer progresses from primary prostate cancer (PCa) to metastatic and castration-resistant prostate cancer (CRPC). While multiple aspects of prostate adenocarcinoma proteomes have been studied, less is known about proteomes of neuroendocrine prostate cancer (NEPC). In this review, we summarize recent developments in prostate cancer proteomics, concentrating on the proteomic landscapes of clinical prostate cancer, cell line and mouse model proteomes interrogating prostate cancer-relevant signaling and alterations, and key prostate cancer regulator interactomes, such as those of the androgen receptor (AR). Compared to genomic and transcriptomic analyses, the view provided by proteomics brings forward changes in prostate cancer metabolism, post-transcriptional RNA regulation, and post-translational protein regulatory pathways, requiring the full attention of studies in the future.
Collapse
|
5
|
Vélot L, Lessard F, Bérubé-Simard FA, Tav C, Neveu B, Teyssier V, Boudaoud I, Dionne U, Lavoie N, Bilodeau S, Pouliot F, Bisson N. Proximity-dependent Mapping of the Androgen Receptor Identifies Kruppel-like Factor 4 as a Functional Partner. Mol Cell Proteomics 2021; 20:100064. [PMID: 33640491 PMCID: PMC8050775 DOI: 10.1016/j.mcpro.2021.100064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the third cause of cancer mortality. PCa initiation and growth are driven by the androgen receptor (AR). The AR is activated by androgens such as testosterone and controls prostatic cell proliferation and survival. Here, we report an AR signaling network generated using BioID proximity labeling proteomics in androgen-dependent LAPC4 cells. We identified 31 AR-associated proteins in nonstimulated cells. Strikingly, the AR signaling network increased to 182 and 200 proteins, upon 24 h or 72 h of androgenic stimulation, respectively, for a total of 267 nonredundant AR-associated candidates. Among the latter group, we identified 213 proteins that were not previously reported in databases. Many of these new AR-associated proteins are involved in DNA metabolism, RNA processing, and RNA polymerase II transcription. Moreover, we identified 44 transcription factors, including the Kru¨ppel-like factor 4 (KLF4), which were found interacting in androgen-stimulated cells. Interestingly, KLF4 repressed the well-characterized AR-dependent transcription of the KLK3 (PSA) gene; AR and KLF4 also colocalized genome-wide. Taken together, our data report an expanded high-confidence proximity network for AR, which will be instrumental to further dissect the molecular mechanisms underlying androgen signaling in PCa cells. BioID proteomics identifies 267 androgen receptor (AR)-associated candidates Krüppel-like factor 4 (KLF4) is a new AR interaction partner AR and KLF4 colocalize genome-wide on >4000 genes, including KLK3 (PSA) KLF4 acts as a repressor for the AR target gene KLK3 (PSA)
Collapse
Affiliation(s)
- Lauriane Vélot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Christophe Tav
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada
| | - Bertrand Neveu
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Imène Boudaoud
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Ugo Dionne
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Steve Bilodeau
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Frédéric Pouliot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Department of Surgery, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| |
Collapse
|
6
|
Rahimi R, Malek I, Lerrer-Goldshtein T, Elkis Y, Shoval I, Jacob A, Shpungin S, Nir U. TMF1 is upregulated by insulin and is required for a sustained glucose homeostasis. FASEB J 2021; 35:e21295. [PMID: 33475194 DOI: 10.1096/fj.202001995r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Insulin-regulated glucose homeostasis is a critical and intricate physiological process, of which not all regulatory components have been deciphered. One of the key players in modulating glucose uptake by cells is the glucose transporter-GLUT4. In this study, we aimed to explore the regulatory role of the trans-Golgi-associated protein-TATA Element Modulatory Factor (TMF1) in the GLUT4 mediated, insulin-directed glucose uptake. By establishing and using TMF1-/- myoblasts and mice, we examined the effect of TMF1 absence on the insulin driven functioning of GLUT4. We show that TMF1 is upregulated by insulin in myoblasts, and is essential for the formation of insulin responsive, glucose transporter GLUT4-containing vesicles. Absence of TMF1 leads to the retention of GLUT4 in perinuclear compartments, and to severe impairment of insulin-stimulated GLUT4 trafficking throughout the cytoplasm and to the cell plasma membrane. Accordingly, glucose uptake is impaired in TMF1-/- cells, and TMF1-/- mice are hyperglycemic. This is reflected by the mice impaired blood glucose clearance and increased blood glucose level. Correspondingly, TMF1-/- animals are leaner than their normal littermates. Thus, TMF1 is a novel effector of insulin-regulated glucose homeostasis, and dys-functioning of this protein may contribute to the onset of a diabetes-like disorder.
Collapse
Affiliation(s)
- Roni Rahimi
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Israel Malek
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerrer-Goldshtein
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Irit Shoval
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
7
|
Pluciennik A, Liu Y, Molotsky E, Marsh GB, Ranxhi B, Arnold FJ, St.-Cyr S, Davidson B, Pourshafie N, Lieberman AP, Gu W, Todi SV, Merry DE. Deubiquitinase USP7 contributes to the pathogenicity of spinal and bulbar muscular atrophy. J Clin Invest 2021; 131:134565. [PMID: 33170804 PMCID: PMC7773404 DOI: 10.1172/jci134565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.
Collapse
Affiliation(s)
- Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elana Molotsky
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gregory B. Marsh
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bedri Ranxhi
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Frederick J. Arnold
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sophie St.-Cyr
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beverly Davidson
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wei Gu
- Department of Pathology and Cell Biology and Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Sokol V. Todi
- Department of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Lempiäinen JK, Manjur ABMK, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 2020; 39:2391-2407. [PMID: 31925334 DOI: 10.1038/s41388-020-1153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
9
|
Agbo L, Lambert JP. Proteomics contribution to the elucidation of the steroid hormone receptors functions. J Steroid Biochem Mol Biol 2019; 192:105387. [PMID: 31173874 DOI: 10.1016/j.jsbmb.2019.105387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Steroid hormones have far-ranging biological impacts and more are continuously being uncovered. Over the last decades, proteomics approaches have become key to better understand biological processes. Due to multiple technical breakthroughs allowing for the concurrent identification and/or quantification of thousands of analytes using mass spectrometers, researchers employing proteomics tools today can now obtain truly holistic views of multiple facets of the human proteome. Here, we review how the field of proteomics has contributed to discoveries about steroid hormones, their receptors and their impact on human pathologies. In particular, the involvement of steroid receptors in cancer initiation, development, metastasis and treatment will be highlighted. Techniques at the forefront of the proteomics field will also be discussed to present how they can contribute to a better understanding of steroid hormone receptors.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
10
|
Flanagan JJ, Neklesa TK. Targeting Nuclear Receptors with PROTAC degraders. Mol Cell Endocrinol 2019; 493:110452. [PMID: 31125586 DOI: 10.1016/j.mce.2019.110452] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
Abstract
Nuclear receptors comprise a class of intracellular transcription factors whose major role is to act as sensors of various stimuli and to convert the external signal into a transcriptional output. Nuclear receptors (NRs) achieve this by possessing a ligand binding domain, which can bind cell permeable agonists, a DNA-binding domain, which binds the upstream sequences of target genes, and a regulatory domain that recruits the transcriptional machinery. The ligand binding alters the activation state of the NR, either by activating or inactivating its transcriptional output. Given the central role of NRs in signal transduction, many currently approved therapeutics modulate the activity of NRs. Here we discuss how PROTAC degraders afford a novel approach to abrogate the downstream signaling activity of NRs. We highlight six broad functional reasons why PROTAC degraders are preferable to the classical ligand binding pocket antagonists, with specific examples provided for each category. Lastly, as Androgen Receptor and Estrogen Receptor PROTAC degraders are being pursued as treatment for prostate cancer and breast cancer, respectively, a rationale is provided for the translational utility for the degradation of these two NRs.
Collapse
Affiliation(s)
| | - Taavi K Neklesa
- Halda Therapeutics, 23 Business Park, Branford, CT, 06405, USA.
| |
Collapse
|
11
|
Petrillo MG, Oakley RH, Cidlowski JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J Biol Chem 2019; 294:11225-11239. [PMID: 31167788 DOI: 10.1074/jbc.ra118.007150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function. These protein-protein interactions are necessary for the resolution of glucocorticoid-dependent physiological and pharmacological processes. In this study, we discovered a novel protein interaction between the glucocorticoid receptor and β-arrestin-1, a scaffold protein with a well-established role in G protein-coupled receptor signaling. Using co-immunoprecipitation and in situ proximity ligation assays in A549 cells, we observed that β-arrestin-1 and unliganded GR interact in the cytoplasm and that, following glucocorticoid binding, the protein complex is found in the nucleus. We show that siRNA-mediated β-arrestin-1 knockdown alters GR protein turnover by up-regulating the E3 ubiquitin ligase Pellino-1, which catalyzes GR ubiquitination and thereby marks the receptor for proteasomal degradation. The enhanced GR turnover observed in β-arrestin-1-deficient cells limits the duration of the glucocorticoid response on GR target genes. These results demonstrate that β-arrestin-1 is a crucial player for the stability of the glucocorticoid receptor. The GR/β-arrestin-1 interaction uncovered here may help unravel mechanisms that contribute to the cell type-specific activities of glucocorticoids.
Collapse
Affiliation(s)
- Maria G Petrillo
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robert H Oakley
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
12
|
Morgan JT, Robbins AK, Mateson AB, Sawamoto K, Tomatsu S, Gray DR, Gleghorn JP, Barthold JS. Regional Variation in Androgen Receptor Expression and Biomechanical Properties May Contribute to Cryptorchidism Susceptibility in the LE/orl Rat. Front Endocrinol (Lausanne) 2018; 9:738. [PMID: 30568634 PMCID: PMC6290328 DOI: 10.3389/fendo.2018.00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The process of testicular descent requires androgen and insulin-like 3, hormones secreted by fetal Leydig cells. Knowledge concerning distinct and common functions of these hormones in regulating development of the fetal gubernaculum remains limited and/or conflicting. The current studies were designed to better define characteristics of androgen receptor (AR) expression, function and regulation, as well as the biomechanical properties of normal and cryptorchid gubernaculum during fetal development. Methods: We studied fetal gubernacula from Long Evans outbred (LE/wt) rats and an inbred (LE/orl) strain with an inherited form of cryptorchidism associated with an AR signaling defect. Gubernacular cells or whole organs obtained from LE/wt and LE/orl fetal gubernacula underwent AR immunostaining and quantitative image analysis. The effects of dihydrotestosterone (DHT) on AR expression, muscle fiber morphology, hyaluronan (HA) levels and glycosaminoglycan (GAG) content were measured in LE/wt gubernacula. Finally, the spatial mechanics of freshly harvested LE/wt and LE/orl fetal gubernacula were compared using micropipette aspiration. Results: AR is expressed in the nucleus of mesenchymal core, tip and cord cells of the embryonic (E) day 17 and 21 fetal gubernaculum, and is enhanced by DHT in primary cultures of gubernacular mesenchymal cells. Enhanced AR expression at the tip was observed in LE/wt but not LE/orl gubernacula. In in vitro studies of whole mount fetal gubernaculum, DHT did not alter muscle fiber morphology, HA content or GAG production. Progressive swelling with reduced cellular density of the LE/wt gubernaculum at E19-21 was associated with increased central stiffness in LE/wt but not in LE/orl fetuses. Conclusions: These data confirm nuclear AR expression in gubernacular mesenchyme with distal enhancement at the tip/cord region in LE/wt but not LE/orl rat fetuses. DHT enhanced cellular AR expression but had no major effects on muscle morphology or matrix composition in the rat fetal gubernaculum in vitro. Regional increased stiffness and decreased cell density between E19 and E21 were observed in LE/wt but not LE/orl fetal gubernacula. Developmental differences in cell-specific AR expression in LE/orl fetal gubernacula may contribute to the dysmorphism and aberrant function that underlies cryptorchidism susceptibility in this strain.
Collapse
Affiliation(s)
- Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Joshua T. Morgan
| | - Alan K. Robbins
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Abigail B. Mateson
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kazuki Sawamoto
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Shunji Tomatsu
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Dione R. Gray
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julia Spencer Barthold
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
13
|
Barthold JS, Ivell R. Perspective: A Neuro-Hormonal Systems Approach to Understanding the Complexity of Cryptorchidism Susceptibility. Front Endocrinol (Lausanne) 2018; 9:401. [PMID: 30083133 PMCID: PMC6065160 DOI: 10.3389/fendo.2018.00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Nonsyndromic cryptorchidism is a common multifactorial, condition with long-term risks of subfertility and testicular cancer. Revealing the causes of cryptorchidism will likely improve prediction and prevention of adverse outcomes. Herein we provide our current perspective of cryptorchidism complexity in a synthesis of cumulative clinical and translational data generated by ourselves and others. From our recent comparison of genome-wide association study (GWAS) data of cryptorchidism with or without testicular germ cell tumor, we identified RBFOX family genes as candidate susceptibility loci. Notably, RBFOX proteins regulate production of calcitonin gene-related peptide (CGRP), a sensory neuropeptide linked to testicular descent in animal models. We also re-analyzed existing fetal testis transcriptome data from a rat model of inherited cryptorchidism (the LE/orl strain) for enrichment of Leydig cell progenitor genes. The majority are coordinately downregulated, consistent with known reduced testicular testosterone levels in the LE/orl fetus, and similarly suppressed in the gubernaculum. Using qRT-PCR, we found dysregulation of dorsal root ganglia (DRG) sensory transcripts ipsilateral to undescended testes. These data suggest that LE/orl cryptorchidism is associated with altered signaling in possibly related cell types in the testis and gubernaculum as well as DRG. Complementary rat and human studies thus lead us to propose a multi-level, integrated neuro-hormonal model of testicular descent. Variants in genes encoding RBFOX family proteins and/or their transcriptional targets combined with environmental exposures may disrupt this complex pathway to enhance cryptorchidism susceptibility. We believe that a systems approach is necessary to provide further insight into the causes and consequences of cryptorchidism.
Collapse
Affiliation(s)
- Julia S. Barthold
- Nemours Biomedical Research, Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- *Correspondence: Julia S. Barthold
| | - Richard Ivell
- School of Biosciences and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
14
|
Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, Wessels LFA, van Weerden WM, Altelaar AFM, Bergman AM, Zwart W. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 2017; 37:313-322. [PMID: 28925401 DOI: 10.1038/onc.2017.330] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is a key player in prostate cancer development and progression. Here we applied immunoprecipitation mass spectrometry of endogenous AR in LNCaP cells to identify components of the AR transcriptional complex. In total, 66 known and novel AR interactors were identified in the presence of synthetic androgen, most of which were critical for AR-driven prostate cancer cell proliferation. A subset of AR interactors required for LNCaP proliferation were profiled using chromatin immunoprecipitation assays followed by sequencing, identifying distinct genomic subcomplexes of AR interaction partners. Interestingly, three major subgroups of genomic subcomplexes were identified, where selective gain of function for AR genomic action in tumorigenesis was found, dictated by FOXA1 and HOXB13. In summary, by combining proteomic and genomic approaches we reveal subclasses of AR transcriptional complexes, differentiating normal AR behavior from the oncogenic state. In this process, the expression of AR interactors has key roles by reprogramming the AR cistrome and interactome in a genomic location-specific manner.
Collapse
Affiliation(s)
- S Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y Kim
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L Hoekman
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - O B Bleijerveld
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Mirza
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - W M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F M Altelaar
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - A M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
MacDonald C, Winistorfer S, Pope RM, Wright ME, Piper RC. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases. Traffic 2017; 18:465-484. [PMID: 28382714 DOI: 10.1111/tra.12485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022]
Abstract
The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions.
Collapse
Affiliation(s)
- Chris MacDonald
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Robert M Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa
| | - Michael E Wright
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| |
Collapse
|