1
|
Yang J, Zhang S, Li X, Chen Z, Xu J, Chen J, Tan Y, Li G, Yu B, Gu X, Xu L. Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury. J Adv Res 2025; 72:135-150. [PMID: 39002719 DOI: 10.1016/j.jare.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang 618000, China; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Shuqiang Zhang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jie Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jing Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Ya Tan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Bin Yu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Lian Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China; Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
2
|
Yang F, Ding M, Song X, Chen F, Yang T, Wang C, Hu C, Hu Q, Yao Y, Du S, Yao PY, Xia P, Adams Jr G, Fu C, Xiang S, Liu D, Wang Z, Yuan K, Liu X. Organization of microtubule plus-end dynamics by phase separation in mitosis. J Mol Cell Biol 2024; 16:mjae006. [PMID: 38323478 PMCID: PMC11337005 DOI: 10.1093/jmcb/mjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024] Open
Abstract
In eukaryotes, microtubule polymers are essential for cellular plasticity and fate decisions. End-binding (EB) proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis. Here, we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid-liquid phase separation to compartmentalize the kinetochore-microtubule plus-end machinery, ensuring accurate kinetochore-microtubule interactions during chromosome segregation in mitosis. Perturbation of EB1-TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos. Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis, and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex, dissolves droplets in vitro, and harnesses accurate chromosome segregation. Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha 410083, China
| | - Tongtong Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Chunyue Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Chengcheng Hu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Qing Hu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Yihan Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Shihao Du
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Phil Y Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| | - Gregory Adams Jr
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shengqi Xiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha 410083, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Cross-disciplinary Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science & Technology of China, Hefei 230027, China
| |
Collapse
|
3
|
Gravina AG, Pellegrino R, Auletta S, Palladino G, Brandimarte G, D’Onofrio R, Arboretto G, Imperio G, Ventura A, Cipullo M, Romano M, Federico A. Hericium erinaceus, a medicinal fungus with a centuries-old history: Evidence in gastrointestinal diseases. World J Gastroenterol 2023; 29:3048-3065. [PMID: 37346156 PMCID: PMC10280799 DOI: 10.3748/wjg.v29.i20.3048] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Hericium erinaceus is an edible and medicinal mushroom commonly used in traditional Chinese medicine for centuries. Several studies have highlighted its therapeutic potential for gastrointestinal disorders such as gastritis and inflammatory bowel diseases. In addition, some components of this mushroom appear to possess strong antineoplastic capabilities against gastric and colorectal cancer. This review aims to analyse all available evidence on the digestive therapeutic potential of this fungus as well as the possible underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Raffaele Pellegrino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Salvatore Auletta
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giovanna Palladino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giovanni Brandimarte
- Division of Internal Medicine and Gastroenterology, Cristo Re Hospital, Rome 00167, Italy
| | - Rossella D’Onofrio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giusi Arboretto
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giuseppe Imperio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Andrea Ventura
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Marina Cipullo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Marco Romano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
4
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Jeong R, Eom JH, Gong J, Kang M, Kim J, Lee HS. Programmed hierarchical radial association of anisotropic foldamer assemblies. NANOSCALE 2022; 14:1700-1705. [PMID: 35050287 DOI: 10.1039/d1nr05135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report the first example of a programmed radial assembly of anisotropic microparticles derived from a helical foldamer with a C-terminal cysteine residue. Surface-exposed thiols played a crucial role in facilitating the interparticle hydrogen bonding to form higher-order structures in an aqueous solution.
Collapse
Affiliation(s)
- Rokam Jeong
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jae-Hoon Eom
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jintaek Gong
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Minsang Kang
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jaewook Kim
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hee-Seung Lee
- Department of Chemistry and Center for Multiscale Chiral Architectures, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Dharmapal D, Jyothy A, Mohan A, Balagopal PG, George NA, Sebastian P, Maliekal TT, Sengupta S. β-Tubulin Isotype, TUBB4B, Regulates The Maintenance of Cancer Stem Cells. Front Oncol 2021; 11:788024. [PMID: 35004310 PMCID: PMC8733585 DOI: 10.3389/fonc.2021.788024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advancements in cancer research have shown that cancer stem cell (CSC) niche is a crucial factor modulating tumor progression and treatment outcomes. It sustains CSCs by orchestrated regulation of several cytokines, growth factors, and signaling pathways. Although the features defining adult stem cell niches are well-explored, the CSC niche is poorly characterized. Since membrane trafficking proteins have been shown to be essential for the localization of critical proteins supporting CSCs, we investigated the role of TUBB4B, a probable membrane trafficking protein that was found to be overexpressed in the membranes of stem cell enriched cultures, in sustaining CSCs in oral cancer. Here, we show that the knockdown of TUBB4B downregulates the expression of pluripotency markers, depletes ALDH1A1+ population, decreases in vitro sphere formation, and diminishes the tumor initiation potential in vivo. As TUBB4B is not known to have any role in transcriptional regulation nor cell signaling, we suspected that its membrane trafficking function plays a role in constituting a CSC niche. The pattern of its expression in tissue sections, forming a gradient in and around the CSCs, reinforced the notion. Later, we explored its possible cooperation with a signaling protein, Ephrin-B1, the abrogation of which reduces the self-renewal of oral cancer stem cells. Expression and survival analyses based on the TCGA dataset of head and neck squamous cell carcinoma (HNSCC) samples indicated that the functional cooperation of TUBB4 and EFNB1 results in a poor prognosis. We also show that TUBB4B and Ephrin-B1 cohabit in the CSC niche. Moreover, depletion of TUBB4B downregulates the membrane expression of Ephrin-B1 and reduces the CSC population. Our results imply that the dynamics of TUBB4B is decisive for the surface localization of proteins, like Ephrin-B1, that sustain CSCs by their concerted signaling.
Collapse
Affiliation(s)
- Dhrishya Dharmapal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Athira Jyothy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - P. G. Balagopal
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Paul Sebastian
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Suparna Sengupta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
7
|
Song X, Wang W, Wang H, Yuan X, Yang F, Zhao L, Mullen M, Du S, Zohbi N, Muthusamy S, Cao Y, Jiang J, Xia P, He P, Ding M, Emmett N, Ma M, Wu Q, Green HN, Ding X, Wang D, Wang F, Liu X. Acetylation of ezrin regulates membrane-cytoskeleton interaction underlying CCL18-elicited cell migration. J Mol Cell Biol 2021; 12:424-437. [PMID: 31638145 PMCID: PMC7333480 DOI: 10.1093/jmcb/mjz099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ezrin, a membrane–cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Optics and Optical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Lingli Zhao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Shihao Du
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Najdat Zohbi
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Saravanakumar Muthusamy
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Yalei Cao
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Jiying Jiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Ping He
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Nerimah Emmett
- Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Mingming Ma
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Quan Wu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Hadiyah-Nicole Green
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Xia Ding
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengsong Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,School of Life Science, Anhui Medical University, Hefei, China
| | - Xing Liu
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| |
Collapse
|
8
|
Wang X, Wang W, Wang X, Wang M, Zhu L, Garba F, Fu C, Zieger B, Liu X, Liu X, Yao X. The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity. J Mol Cell Biol 2021; 13:395-408. [PMID: 34143183 PMCID: PMC8436676 DOI: 10.1093/jmcb/mjab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is essential for spatially regulating of physiological processes in metazoans by which hormonal stimulation‒secretion coupling is precisely coupled for tissue homeostasis and organ communications. However, the molecular mechanisms underlying epithelial cell polarity establishment remain elusive. Here, we show that septin cytoskeleton interacts with catenin complex to organize a functional domain to separate apical from basal membranes in polarized epithelial cells. Using polarized epithelial cell monolayer as a model system with transepithelial electrical resistance as functional readout, our studies show that septins are essential for epithelial cell polarization. Our proteomic analyses discovered a novel septin‒catenin complex during epithelial cell polarization. The functional relevance of septin‒catenin complex was then examined in three-dimensional (3D) culture in which suppression of septins resulted in deformation of apical lumen in cysts, a hallmark seen in polarity-deficient 3D cultures and animals. Mechanistically, septin cytoskeleton stabilizes the association of adherens catenin complex with actin cytoskeleton, and depletion or disruption of septin cytoskeleton liberates adherens junction and polarity complexes into the cytoplasm. Together, these findings reveal a previously unrecognized role for septin cytoskeleton in the polarization of the apical‒basal axis and lumen formation in polarized epithelial cells.
Collapse
Affiliation(s)
- Xueying Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Ming Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fatima Garba
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| |
Collapse
|
9
|
Dai L, Weiss RB, Dunn DM, Ramirez A, Paul S, Korenberg JR. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Hum Mol Genet 2021; 30:411-429. [PMID: 33564861 DOI: 10.1093/hmg/ddab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.
Collapse
Affiliation(s)
- Li Dai
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Ramirez
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie R Korenberg
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.,Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Mlynarczuk-Bialy I, Dziuba I, Sarnecka A, Platos E, Kowalczyk M, Pels KK, Wilczynski GM, Wojcik C, Bialy LP. Entosis: From Cell Biology to Clinical Cancer Pathology. Cancers (Basel) 2020; 12:cancers12092481. [PMID: 32883000 PMCID: PMC7563411 DOI: 10.3390/cancers12092481] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary We review published clinico-histopathological studies establishing entosis an important prognostic and predictor factor in various cancer types. We also propose a new model to study this phenomenon, which involves active entry of one cell into another one. The internalized cell can remain viable and leave the host cell after a long time, potentially leading to cancer recurrence. Entotic figures are cell in cell structures, in which the nucleus of external cell is crescent-shaped, and the inner cell is surrounded by the extensive space entotic vacuole, distinguishing entosis from cell cannibalism. Entosis correlates with cancer worse prognosis in head and neck squamous cell carcinoma, anal carcinoma, lung adenocarcinoma, pancreatic ductal carcinoma, and some breast ductal carcinoma. The BxPC-3 pancreatic cancer cells provide a new, more convenient model for entosis research in comparison to the previously described semidherent MCF7 model. BxPC-3 cells undergo and survive spontaneous entosis in normal adherent culture conditions. Abstract Entosis is a phenomenon, in which one cell enters a second one. New clinico-histopathological studies of entosis prompted us to summarize its significance in cancer. It appears that entosis might be a novel, independent prognostic predictor factor in cancer histopathology. We briefly discuss the biological basis of entosis, followed by a summary of published clinico-histopathological studies on entosis significance in cancer prognosis. The correlation of entosis with cancer prognosis in head and neck squamous cell carcinoma, anal carcinoma, lung adenocarcinoma, pancreatic ductal carcinoma and breast ductal carcinoma, is shown. Numerous entotic figures are associated with a more malignant cancer phenotype and poor prognosis in many cancers. We also showed that some anticancer drugs could induce entosis in cell culture, even as an escape mechanism. Thus, entosis is likely beneficial for survival of malignant cells, i.e., an entotic cell can hide from unfavourable factors in another cell and subsequently leave the host cell remaining intact, leading to failure in therapy or cancer recurrence. Finally, we highlight the potential relationship of cell adhesion with entosis in vitro, based on the model of the BxPc3 cells cultured in full adhesive conditions, comparing them to a commonly used MCF7 semiadhesive model of entosis.
Collapse
Affiliation(s)
| | - Ireneusz Dziuba
- Department of Pathology, West Pomeranian Hospital in Gryfice, 72-300 Gryfice, Poland;
| | - Agnieszka Sarnecka
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Emilia Platos
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Magdalena Kowalczyk
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Katarzyna K. Pels
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.K.P.); (G.M.W.)
| | - Grzegorz M. Wilczynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.K.P.); (G.M.W.)
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA;
| | - Lukasz P. Bialy
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland;
- Correspondence:
| |
Collapse
|
11
|
Su M, Zhao C, Li D, Cao J, Ju Z, Kim EL, Jung YS, Jung JH. Viriditoxin Stabilizes Microtubule Polymers in SK-OV-3 Cells and Exhibits Antimitotic and Antimetastatic Potential. Mar Drugs 2020; 18:md18090445. [PMID: 32867174 PMCID: PMC7551567 DOI: 10.3390/md18090445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Microtubules play a crucial role in mitosis and are attractive targets for cancer therapy. Recently, we isolated viriditoxin, a cytotoxic and antibacterial compound, from a marine fungus Paecilomyces variotii. Viriditoxin has been reported to inhibit the polymerization of bacterial FtsZ, a tubulin-like GTPase that plays an essential role in bacterial cell division. Given the close structural homology between FtsZ and tubulin, we investigated the potential antimitotic effects of viriditoxin on human cancer cells. Viriditoxin, like paclitaxel, enhanced tubulin polymerization and stabilized microtubule polymers, thereby perturbing mitosis in the SK-OV-3 cell line. However, the morphology of the stabilized microtubules was different from that induced by paclitaxel, indicating subtle differences in the mode of action of these compounds. Microtubule dynamics are also essential in cell movement, and viriditoxin repressed migration and colony formation ability of SK-OV-3 cells. Based on these results, we propose that viriditoxin interrupts microtubule dynamics, thus leading to antimitotic and antimetastatic activities.
Collapse
Affiliation(s)
- Mingzhi Su
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Changhao Zhao
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
| | - Dandan Li
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Zhiran Ju
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (M.S.); (C.Z.); (D.L.); (J.C.); (Z.J.); (E.L.K.); (Y.-S.J.)
- Correspondence:
| |
Collapse
|
12
|
Liu X, Xu L, Li J, Yao PY, Wang W, Ismail H, Wang H, Liao B, Yang Z, Ward T, Ruan K, Zhang J, Wu Q, He P, Ding X, Wang D, Fu C, Dou Z, Yan F, Wang W, Liu X, Yao X. Mitotic motor CENP-E cooperates with PRC1 in temporal control of central spindle assembly. J Mol Cell Biol 2020; 12:654-665. [PMID: 31174204 PMCID: PMC7683015 DOI: 10.1093/jmcb/mjz051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Error-free cell division depends on the accurate assembly of the spindle midzone from dynamic spindle microtubules to ensure chromatid segregation during metaphase-anaphase transition. However, the mechanism underlying the key transition from the mitotic spindle to central spindle before anaphase onset remains elusive. Given the prevalence of chromosome instability phenotype in gastric tumorigenesis, we developed a strategy to model context-dependent cell division using a combination of light sheet microscope and 3D gastric organoids. Light sheet microscopic image analyses of 3D organoids showed that CENP-E inhibited cells undergoing aberrant metaphase-anaphase transition and exhibiting chromosome segregation errors during mitosis. High-resolution real-time imaging analyses of 2D cell culture revealed that CENP-E inhibited cells undergoing central spindle splitting and chromosome instability phenotype. Using biotinylated syntelin as an affinity matrix, we found that CENP-E forms a complex with PRC1 in mitotic cells. Chemical inhibition of CENP-E in metaphase by syntelin prevented accurate central spindle assembly by perturbing temporal assembly of PRC1 to the midzone. Thus, CENP-E-mediated PRC1 assembly to the central spindle constitutes a temporal switch to organize dynamic kinetochore microtubules into stable midzone arrays. These findings reveal a previously uncharacterized role of CENP-E in temporal control of central spindle assembly. Since CENP-E is absent from yeast, we reasoned that metazoans evolved an elaborate central spindle organization machinery to ensure accurate sister chromatid segregation during anaphase and cytokinesis.
Collapse
Affiliation(s)
- Xu Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Leilei Xu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Junying Li
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Phil Y Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Wanjuan Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Haowei Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Bryce Liao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Biology, Duke University Durham, NC 27708, USA
| | - Zhihong Yang
- Institute of ProteoGenomics, Beijing 100029, China
| | - Tarsha Ward
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ke Ruan
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Jianchun Zhang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Quan Wu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Ping He
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Xia Ding
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Feng Yan
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
13
|
Niu X, Zheng F, Fu C. The concerted actions of Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 regulate microtubule catastrophe at the cell end. J Mol Cell Biol 2019; 11:956-966. [PMID: 31071203 PMCID: PMC6927233 DOI: 10.1093/jmcb/mjz039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/23/2019] [Accepted: 04/26/2019] [Indexed: 11/14/2022] Open
Abstract
Spatial regulation of microtubule catastrophe is important for controlling microtubule length and consequently contributes to the proper establishment of cell polarity and cell growth. The +TIP proteins including Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 reside at microtubule plus ends to regulate microtubule dynamics. In the fission yeast Schizosaccharomyces pombe, Tip1 and Alp14 serve as microtubule-stabilizing factors, while Klp5 functions oppositely as a catastrophe-promoting factor. Despite that Tip1 has been shown to play a key role in restricting microtubule catastrophe to the cell end, how Tip1 fulfills the role remains to be determined. Employing live-cell microscopy, we showed that the absence of Tip1 impairs the localization of both Klp5 and Alp14 at microtubule plus ends, but the absence of Klp5 prolongs the residence time of Tip1 at microtubule plus ends. We further revealed that Klp5 accumulates behind Tip1 at microtubule plus ends in a Tip1-dependent manner. In addition, artificially tethering Klp5 to microtubule plus ends promotes premature microtubule catastrophe, while tethering Alp14 to microtubule plus ends in the cells lacking Tip1 rescues the phenotype of short microtubules. These findings establish that Tip1 restricts microtubule catastrophe to the cell end likely by spatially restricting the microtubule catastrophe activity of Klp5 and stabilizing Alp14 at microtubule plus ends. Thus, the work demonstrates the orchestration of Tip1, Alp14, and Klp5 in ensuring microtubule catastrophe at the cell end.
Collapse
Affiliation(s)
- Xiaojia Niu
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. J Biol Chem 2019; 294:4608-4620. [PMID: 30659095 DOI: 10.1074/jbc.ra118.004732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Collapse
Affiliation(s)
| | | | - Gergő Gógl
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Ibolya Leveles
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | | | | | | | | | - Virág Vas
- From the Institute of Enzymology and
| | | | - Szabolcs Sipeki
- the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - László Nyitray
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Beáta G Vértessy
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | - László Buday
- From the Institute of Enzymology and .,the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| |
Collapse
|
16
|
Akram S, Yang F, Li J, Adams G, Liu Y, Zhuang X, Chu L, Liu X, Emmett N, Thompson W, Mullen M, Muthusamy S, Wang W, Mo F, Liu X. LRIF1 interacts with HP1α to coordinate accurate chromosome segregation during mitosis. J Mol Cell Biol 2018; 10:527-538. [PMID: 30016453 PMCID: PMC6304163 DOI: 10.1093/jmcb/mjy040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/05/2018] [Accepted: 07/14/2018] [Indexed: 01/26/2023] Open
Abstract
Heterochromatin protein 1α (HP1α) regulates chromatin specification and plasticity during cell fate decision. Different structural determinants account for HP1α localization and function during cell division cycle. Our earlier study showed that centromeric localization of HP1α depends on the epigenetic mark H3K9me3 in interphase, while its centromeric location in mitosis relies on uncharacterized PXVXL-containing factors. Here, we identified a PXVXL-containing protein, ligand-dependent nuclear receptor-interacting factor 1 (LRIF1), which recruits HP1α to the centromere of mitotic chromosomes and its interaction with HP1α is essential for accurate chromosome segregation during mitosis. LRIF1 interacts directly with HP1α chromoshadow domain via an evolutionarily conserved PXVXL motif within its C-terminus. Importantly, the LRIF1-HP1α interaction is critical for Aurora B activity in the inner centromere. Mutation of PXVXL motif of LRIF1 leads to defects in HP1α centromere targeting and aberrant chromosome segregation. These findings reveal a previously unrecognized direct link between LRIF1 and HP1α in centromere plasticity control and illustrate the critical role of LRIF1-HP1α interaction in orchestrating accurate cell division.
Collapse
Affiliation(s)
- Saima Akram
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Fengrui Yang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Junying Li
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
| | - Gregory Adams
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Yingying Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xiaoxuan Zhuang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Lingluo Chu
- Department of Molecular Cell Biology, Harvard University, Cambridge, MA, USA
| | - Xu Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Nerimah Emmett
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Winston Thompson
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - McKay Mullen
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Saravana Muthusamy
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wenwen Wang
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fei Mo
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- National Institutes of Health, Bethesda, MD, USA
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, National Science Center for Physical Sciences at Nanoscale, and Chinese Academy of Science Center of Excellence on Molecular Cell Sciences, Hefei, China
- Keck Center for Molecular Imaging, Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Logan CM, Bowen CJ, Menko AS. Functional role for stable microtubules in lens fiber cell elongation. Exp Cell Res 2017; 362:477-488. [PMID: 29253534 DOI: 10.1016/j.yexcr.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.
Collapse
Affiliation(s)
- Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
18
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|