1
|
Heise N, Koeller CM, Sharif M, Bangs JD. Stage-specific function of sphingolipid synthases in African trypanosomes. mBio 2025; 16:e0350124. [PMID: 39679680 PMCID: PMC11796370 DOI: 10.1128/mbio.03501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The protozoan parasite Trypanosoma brucei is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (TbSLS1-4). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases. IPC synthesis occurs exclusively in the procyclic insect stage (PCF), EPC is limited to the mammalian bloodstream form (BSF), and SM is synthesized throughout the life cycle. TbSLSs are indispensable for the viability of BSF and are, thus, potential drug targets. The relative stage-specific expression of each TbSLS paralog was compared, and the results match phosphosphingolipid content. Induction of pan-specific RNAi silencing was lethal in both BSF and PCF. To investigate individual TbSLS functions, separate HA-tagged genes, recoded to be RNAi-resistant (RNAiR), were engineered to replace a single allele of the entire TbSLS locus within parental BSF and PCF RNAi cell lines. RNAiR TbSLS3 and TbSLS4 both rescued BSF growth under silencing. Expression of RNAiR TbSLS1, normally repressed in BSF, did not rescue BSF viability but was not detrimental to normal in vitro growth. RNAiR TbSLS1, TbSLS3, and TbSLS4 were each sufficient to rescue PCF growth, indicating IPC is not essential for PCF viability in vitro. All TbSLSs localize to distal Golgi compartments in both BSF and PCF cells. These findings raise interesting questions about the roles of individual phosphosphingolipids in in vivo infection of the mammalian and tsetse hosts. IMPORTANCE African trypanosomes are eukaryotic pathogens that cause human and veterinary African trypanosomaisis. Uniquely, they synthesize all three major phosphosphingolipid species using four distinct sphingolipid synthases (SLS). This work details the function of each SLS in both bloodstream and insect form parasites. Novel and unexpected sphingolipid dependences are found in each stage. These results are consistent with this metabolic pathway being a valid target for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M. Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohamed Sharif
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Nakanishi M, Takeguchi M, Takezaki R, Hino M, Nomoto H. Loss of complex-type N-linked glycans attenuates maximum cell density and susceptibility to human serum of Trypanosoma brucei brucei. Parasitol Int 2024; 101:102874. [PMID: 38417735 DOI: 10.1016/j.parint.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Trypanosoma brucei brucei is a parasitic protist that expresses cell surface proteins modified with complex-type N-linked glycan (NLG), like multicellular organisms. However, little is known about the role of complex-type NLG. In T. b. brucei, it has been shown that either one of the glycosyltransferases, TbGT11 or TbGT15, is sufficient to initiate the synthesis of complex-type NLG. To clarify the role of complex-type NLG, it is necessary to generate cells lacking both enzymes. Therefore, we deleted TbGT11 and TbGT15 from the genome of T. b. brucei for the phenotypic examination. The mutant strain grew in culture, with reduced maximum cell density; showed decreased susceptibility to normal human serum, which contains trypanolytic factors; and lacked uptake of the haptoglobin-hemoglobin complex. These data indicate that protein modification by complex-type NLG is not essential but is required for receptor function.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Masaki Takeguchi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Reo Takezaki
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
3
|
Common and unique features of glycosylation and glycosyltransferases in African trypanosomes. Biochem J 2022; 479:1743-1758. [PMID: 36066312 PMCID: PMC9472816 DOI: 10.1042/bcj20210778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic β3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed.
Collapse
|
4
|
Toustou C, Walet‐Balieu M, Kiefer‐Meyer M, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Laure Walet‐Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Christine Kiefer‐Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenHerestraat 49, Box 802Leuven3000Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| |
Collapse
|
5
|
Duncan SM, Nagar R, Damerow M, Yashunsky DV, Buzzi B, Nikolaev AV, Ferguson MAJ. A Trypanosoma brucei β3 glycosyltransferase superfamily gene encodes a β1-6 GlcNAc-transferase mediating N-glycan and GPI anchor modification. J Biol Chem 2021; 297:101153. [PMID: 34478712 PMCID: PMC8477195 DOI: 10.1016/j.jbc.2021.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Manuela Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dmitry V Yashunsky
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Benedetta Buzzi
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrei V Nikolaev
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
6
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
7
|
Koeller CM, Tiengwe C, Schwartz KJ, Bangs JD. Steric constraints control processing of glycosylphosphatidylinositol anchors in Trypanosoma brucei. J Biol Chem 2020; 295:2227-2238. [PMID: 31932305 DOI: 10.1074/jbc.ra119.010847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/26/2019] [Indexed: 11/06/2022] Open
Abstract
The transferrin receptor (TfR) of the bloodstream form (BSF) of Trypanosoma brucei is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five N-glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues. TfR binds tomato lectin (TL), specific for N-acetyllactosamine (LacNAc) repeats, and previous studies have shown transport-dependent increases in E6 size consistent with post-glycan processing in the endoplasmic reticulum. Using pulse-chase radiolabeling, peptide-N-glycosidase F treatment, lectin pulldowns, and exoglycosidase treatment, we have now investigated TfR N-glycan and GPI processing. E6 increased ∼5 kDa during maturation, becoming reactive with both TL and Erythrina cristagalli lectin (ECL, terminal LacNAc), indicating synthesis of poly-LacNAc on paucimannose N-glycans. This processing was lost after exoglycosidase treatment and after RNAi-based silencing of TbSTT3A, the oligosaccharyltransferase that transfers paucimannose structures to nascent secretory polypeptides. These results contradict previous structural studies. Minor GPI processing was also observed, consistent with α-galactose addition. However, increasing the spacing between E6 protein and the GPI ω-site (aa 4-7) resulted in extensive post-translational processing of the GPI anchor to a form that was TL/ECL-reactive, suggesting the addition of LacNAc structures, confirmed by identical assays with BiPNHP, a non-N-glycosylated GPI-anchored reporter. We conclude that BSF trypanosomes can modify GPIs by generating structures reminiscent of those present in insect-stage trypanosomes and that steric constraints, not stage-specific expression of glycosyltransferases, regulate GPI processing.
Collapse
Affiliation(s)
- Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Kevin J Schwartz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53706
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214.
| |
Collapse
|
8
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
9
|
Silva Pereira S, Jackson AP. UDP-glycosyltransferase genes in trypanosomatid genomes have diversified independently to meet the distinct developmental needs of parasite adaptations. BMC Evol Biol 2018; 18:31. [PMID: 29540192 PMCID: PMC5853035 DOI: 10.1186/s12862-018-1149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosomatid parasites such as Trypanosoma spp. and Leishmania spp. are a major source of infectious disease in humans and domestic animals worldwide. Fundamental to the host-parasite interactions of these potent pathogens are their cell surfaces, which are highly decorated with glycosylated proteins and other macromolecules. Trypanosomatid genomes contain large multi-copy gene families encoding UDP-dependent glycosyltransferases (UGTs), the primary role of which is cell-surface decoration. Here we report a phylogenetic analysis of UGTs from diverse trypanosomatid genomes, the aim of which was to understand the origin and evolution of their diversity. RESULTS By combining phylogenetics with analyses of recombination, and selection, we compared UGT repertoire, genomic context and sequence evolution across 19 trypanosomatids. We identified a UGT lineage present in stercorarian trypanosomes and a free-living kinetoplastid Bodo saltans that likely represents the ancestral state of this gene family. The phylogeny of parasite-specific genes shows that UGTs repertoire in Leishmaniinae and salivarian trypanosomes has expanded independently and with distinct evolutionary dynamics. In the former, the ancestral UGT repertoire was organised in a tandem array from which sporadic transpositions to telomeric regions occurred, allowing expansion most likely through telomeric exchange. In the latter, the ancestral UGT repertoire was comprised of seven subtelomeric lineages, two of which have greatly expanded potentially by gene transposition between these dynamic regions of the genome. CONCLUSIONS The phylogeny of UGTs confirms that they represent a substantial parasite-specific innovation, which has diversified independently in the distinct trypanosomatid lineages. Nonetheless, developmental regulation has been a strong driver of UGTs diversification in both African trypanosomes and Leishmania.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
10
|
Jinnelov A, Ali L, Tinti M, Güther MLS, Ferguson MAJ. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities. J Biol Chem 2017; 292:20328-20341. [PMID: 28928222 PMCID: PMC5724017 DOI: 10.1074/jbc.m117.810945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N-glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the TbSTT3A and TbSTT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide:N-glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N-glycosylation sites by endoglycosidase H-resistant N-glycans originating from Man5GlcNAc2-PP-dolichol transferred by TbSTT3A, and endoglycosidase H-sensitive N-glycans originating from Man9GlcNAc2-PP-dolichol transferred by TbSTT3B. Using machine learning, we assessed the features that best define TbSTT3A and TbSTT3B substrates in vivo and built an algorithm to predict the types of N-glycan most likely to predominate at all the putative N-glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why TbSTT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N-glycosylation to provide protein sequence-specific N-glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267, and PXD007268.
Collapse
Affiliation(s)
- Anders Jinnelov
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Liaqat Ali
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Maria Lucia S Güther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|