1
|
Worley TK, Asal AH, Cooper L, Courcelle CT, Courcelle J. The complex development of psoralen-interstrand crosslink resistance in Escherichia coli requires AcrR inactivation, retention of a marbox sequence, and one of three MarA, SoxS, or Rob global regulators. Mutat Res 2025; 830:111898. [PMID: 39903998 DOI: 10.1016/j.mrfmmm.2025.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Crosslinking agents, such as psoralen and UVA radiation, can be effectively used as antimicrobials and for treating several dysplastic conditions in humans, including some cancers. Yet, both cancer cells and bacteria can become resistant to these compounds, making it important to understand how resistance develops. Recently, several mutants were isolated that developed high levels of resistance to these compounds through upregulation of components of the AcrAB-TolC efflux pump. Here, we characterized these mutants and found that resistance specifically requires inactivating mutations of the acrR transcriptional repressor which also retain the marbox sequence found within this coding region. In addition, the presence of any one of three global regulators, MarA, SoxS, or Rob, is necessary and sufficient to bind to the marbox sequence and activate resistance. Notably, although psoralen is a substrate for the efflux pump, these regulators are not naturally responsive to this stress as neither psoralen, UVA, nor crosslink induction upregulates acrAB expression in the absence of mutation.
Collapse
Affiliation(s)
- Travis K Worley
- Department of Biology, Portland State University, Portland OR, United States.
| | - Ayah H Asal
- Department of Biology, Portland State University, Portland OR, United States
| | - Lo Cooper
- Department of Biology, Portland State University, Portland OR, United States
| | | | - Justin Courcelle
- Department of Biology, Portland State University, Portland OR, United States
| |
Collapse
|
2
|
Sun J, Dahiya N, Schmitt T, Stewart C, Anderson J, MacGregor S, Maclean M, Beger RD, Atreya CD. Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates. Metabolomics 2023; 19:88. [PMID: 37855954 DOI: 10.1007/s11306-023-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas Schmitt
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
3
|
Asensi Cantó P, Sanz Caballer J, Solves Alcaína P, de la Rubia Comos J, Gómez Seguí I. Extracorporeal Photopheresis in Graft-versus-Host Disease. Transplant Cell Ther 2023; 29:556-566. [PMID: 37419324 DOI: 10.1016/j.jtct.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of mortality and morbidity following allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP), which exposes mononuclear cells to ultraviolet A irradiation in the presence of a photosensitizing agent, has shown efficacy in the treatment of GVHD. Recent observations in molecular and cell biology have revealed the mechanisms by which ECP can reverse GVHD, including lymphocyte apoptosis, differentiation of dendritic cells from circulating monocytes, and modification of the cytokine profile and T cell subpopulations. Technical innovations have made ECP accessible to a broader range of patients; however, logistical constraints may limit its use. In this review, we scrutinize the development of ECP from its origins to recent insights into the biology underlying ECP efficacy. We also review practical aspects that may complicate successful ECP treatment. Finally, we analyze how these theoretical concepts translate into clinical practice, summarizing the published experiences of leading research groups worldwide.
Collapse
Affiliation(s)
- Pedro Asensi Cantó
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.
| | - Jaime Sanz Caballer
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Pilar Solves Alcaína
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Javier de la Rubia Comos
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - Inés Gómez Seguí
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Wahnou H, Youlyouz-Marfak I, Liagre B, Sol V, Oudghiri M, Duval RE, Limami Y. Shining a Light on Prostate Cancer: Photodynamic Therapy and Combination Approaches. Pharmaceutics 2023; 15:1767. [PMID: 37376215 DOI: 10.3390/pharmaceutics15061767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer is a major health concern worldwide, and current treatments, such as surgery, radiation therapy, and chemotherapy, are associated with significant side effects and limitations. Photodynamic therapy (PDT) is a promising alternative that has the potential to provide a minimally invasive and highly targeted approach to treating prostate cancer. PDT involves the use of photosensitizers (PSs) that are activated by light to produce reactive oxygen species (ROS), which can induce tumor cell death. There are two main types of PSs: synthetic and natural. Synthetic PSs are classified into four generations based on their structural and photophysical properties, while natural PSs are derived from plant and bacterial sources. Combining PDT with other therapies, such as photothermal therapy (PTT), photoimmunotherapy (PIT), and chemotherapy (CT), is also being explored as a way to improve its efficacy. This review provides an overview of conventional treatments for prostate cancer, the underlying principles of PDT, and the different types of PSs used in PDT as well as ongoing clinical studies. It also discusses the various forms of combination therapy being explored in the context of PDT for prostate cancer, as well as the challenges and opportunities associated with this approach. Overall, PDT has the potential to provide a more effective and less invasive treatment option for prostate cancer, and ongoing research is aimed at improving its selectivity and efficacy in clinical settings.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
| | - Ibtissam Youlyouz-Marfak
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| | | | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
| | | | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| |
Collapse
|
5
|
An Overview of Potential Natural Photosensitizers in Cancer Photodynamic Therapy. Biomedicines 2023; 11:biomedicines11010224. [PMID: 36672732 PMCID: PMC9855789 DOI: 10.3390/biomedicines11010224] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. There are several different types of cancer recognized thus far, which can be treated by different approaches including surgery, radiotherapy, chemotherapy or a combination thereof. However, these approaches have certain drawbacks and limitations. Photodynamic therapy (PDT) is regarded as an alternative noninvasive approach for cancer treatment based on the generation of toxic oxygen (known as reactive oxygen species (ROS)) at the treatment site. PDT requires photoactivation by a photosensitizer (PS) at a specific wavelength (λ) of light in the vicinity of molecular oxygen (singlet oxygen). The cell death mechanisms adopted in PDT upon PS photoactivation are necrosis, apoptosis and stimulation of the immune system. Over the past few decades, the use of natural compounds as a photoactive agent for the selective eradication of neoplastic lesions has attracted researchers' attention. Many reviews have focused on the PS cell death mode of action and photonanomedicine approaches for PDT, while limited attention has been paid to the photoactivation of phytocompounds. Photoactivation is ever-present in nature and also found in natural plant compounds. The availability of various laser light setups can play a vital role in the discovery of photoactive phytocompounds that can be used as a natural PS. Exploring phytocompounds for their photoactive properties could reveal novel natural compounds that can be used as a PS in future pharmaceutical research. In this review, we highlight the current research regarding several photoactive phytocompound classes (furanocoumarins, alkaloids, poly-acetylenes and thiophenes, curcumins, flavonoids, anthraquinones, and natural extracts) and their photoactive potential to encourage researchers to focus on studies of natural agents and their use as a potent PS to enhance the efficiency of PDT.
Collapse
|
6
|
Arnason NA, Johannsson F, Landrö R, Hardarsson B, Gudmundsson S, Lian AM, Reseland J, Rolfsson O, Sigurjonsson OE. Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination. Pathogens 2022; 11:pathogens11030350. [PMID: 35335674 PMCID: PMC8954553 DOI: 10.3390/pathogens11030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
| | - Freyr Johannsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Ragna Landrö
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Björn Hardarsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Sveinn Gudmundsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Aina-Mari Lian
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Janne Reseland
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427; Fax: +354-543-5532
| |
Collapse
|
7
|
Delaney M, Andrews J, Virk M, Barber JR, Bost JE, Baech J, Feys HB. Multinational Analysis of Children Transfused With Pathogen Inactivated Platelets. Hosp Pediatr 2022; 12:311-316. [PMID: 35169851 DOI: 10.1542/hpeds.2021-006284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathogen inactivated (PI) platelets are a technological advancement in blood safety; however, the pediatric experience is not well characterized. We studied pediatric patients who received transfusions of PI platelets across several centers and countries to determine if transfusion reaction rates differed when compared with conventional platelets. METHODS This is a retrospective multisite study conducted during 2 time periods. The study period started at the time each site began using PI platelets on a widespread basis, and the control period was a similar timespan before PI introduction. Suspected acute transfusion reactions were compared. RESULTS The study included 3839 pediatric patients who were 0 to 18 years of age who received >7930 platelet transfusions, in total, across 4 centers in 3 countries between 2013 and 2019. The age distribution of patients in the study and control period was not significantly different (P = .190). There was not a difference in the percentage of patients who had any type of transfusion reaction between the time periods (1.0% and 1.1%, P = .803). There were fewer patients with mild allergic reactions in the study period compared with the control period (0.2% and 0.7% of patients with reactions, respectively, P = .018). CONCLUSIONS Pediatric patients have the same rate of acutely suspected transfusion reactions when receiving PI or conventional platelet transfusions. Subgroup analysis found fewer mild allergic reactions in the study period, which was contemporaneous to the addition of using platelet additive solution more broadly. Future studies of PI platelets should include children to better assess transfusion efficacy and hemostatic outcomes.
Collapse
Affiliation(s)
- Meghan Delaney
- Divisions of Pathology and Laboratory Medicine and.,Departments of Pathology and Pediatrics, The George Washington University Health Sciences, Washington, District of Columbia
| | - Jennifer Andrews
- Departments of Pathology, Immunology and Microbiology and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mrigender Virk
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - John R Barber
- Biostatistics and Study Methodology, Children's National Hospital, Washington, District of Columbia
| | - James E Bost
- Biostatistics and Study Methodology, Children's National Hospital, Washington, District of Columbia
| | - John Baech
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Muniyandi K, George B, Parimelazhagan T, Abrahamse H. Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules 2020; 25:E4102. [PMID: 32911753 PMCID: PMC7570746 DOI: 10.3390/molecules25184102] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the greatest life-threatening diseases conventionally treated using chemo- and radio-therapy. Photodynamic therapy (PDT) is a promising approach to eradicate different types of cancers. PDT requires the administration of photosensitisers (PSs) and photoactivation using a specific wavelength of light in the presence of molecular oxygen. This photoactivation exerts an anticancer effect via apoptosis, necrosis, and autophagy of cancer cells. Recently, various natural compounds that exhibit photosensitising potentials have been identified. Photoactive substances derived from medicinal plants have been found to be safe in comparison with synthetic compounds. Many articles have focused on PDT mechanisms and types of PSs, but limited attention has been paid to the phototoxic activities of phytocompounds. The reduced toxicity and side effects of natural compounds inspire the researchers to identify and use plant extracts or phytocompounds as a potent natural PS candidate for PDT. This review focusses on the importance of common photoactive groups (furanocoumarins, polyacetylenes, thiophenes, curcumins, alkaloids, and anthraquinones), their phototoxic effects, anticancer activity and use as a potent PS for an effective PDT outcome in the treatment of various cancers.
Collapse
Affiliation(s)
- Kasipandi Muniyandi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| | - Thangaraj Parimelazhagan
- Bioprospecting Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046, India;
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 17011, Doornfontein 2028, South Africa; (K.M.); (B.G.)
| |
Collapse
|
9
|
Vieyra-Garcia PA, Wolf P. Extracorporeal Photopheresis: A Case of Immunotherapy Ahead of Its Time. Transfus Med Hemother 2020; 47:226-235. [PMID: 32595427 DOI: 10.1159/000508479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Extracorporeal photopheresis (ECP) is a cell-based immunotherapy that involves the reinfusion of autologous leukocytes after exposure to psoralen and UVA. The treatment has been used for over 30 years, at first on patients with cutaneous T-cell lymphoma (CTCL) and later for the management of patients with graft-versus-host disease (GvHD), sclerosing disorders, atopic dermatitis, and other diseases that may share the common driving factor of a pathogenic T-cell clone or clones in blood circulation. Patients with clinical improvement mount an antigen-specific immune response that may have tolerance traits in the case of GvHD or anticlonal cytotoxic characteristics in the case of CTCL. The exact mechanisms that dictate one response or the other are not fully understood, but the evidence accumulated so far indicates that multiple events occur simultaneously and consequentially contribute to the end result. These include contact of cells with the outside (plastics and tubing of the ECP apparatus), exposure to psoralen and UVA that activates platelets, monocytes, and other myeloid cells, the release of damage-associated molecular patterns, differentiation of monocytes into dendritic cells, and generation and successive presentation of numerous antigens after the phagocytosis of apoptotic cells. Once reintroduced, the ECP product increases the frequency and activity of regulatory T cells (Tregs), shifts the systemic cytokine balance, and promotes extravasation of immune cells that together shape the effects of this treatment. In this review, we summarize the seminal work and most recent literature of the therapeutic mechanisms and reflect on future avenues of improvements and applications of ECP.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Sumorek-Wiadro J, Zając A, Maciejczyk A, Jakubowicz-Gil J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia 2020; 142:104492. [PMID: 32032635 DOI: 10.1016/j.fitote.2020.104492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
11
|
Jóhannsson F, Árnason NÁ, Landrö R, Guðmundsson S, Sigurjonsson ÓE, Rolfsson Ó. Metabolomics study of platelet concentrates photochemically treated with amotosalen and UVA light for pathogen inactivation. Transfusion 2019; 60:367-377. [PMID: 31802514 DOI: 10.1111/trf.15610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The risk of bacterial contamination and the deterioration of platelet (PLT) quality limit the shelf-life of platelet concentrates (PCs). The INTERCEPT pathogen inactivation system reduces the risk of pathogen transmission by inhibiting nucleic acid replication using a combination of a photo-reactive compound and UVA illumination. The goal of this study was to investigate the effects the INTERCEPT system has on the PLT metabolome and metabolic activity. STUDY DESIGN AND METHODS Paired units of buffy coat-derived PCs were generated using a pool and split strategy (n = 8). The paired PCs were either treated with the INTERCEPT system or left untreated. Samples were collected on Days 1, 2, 4, and 7 of storage. Ultra-performance chromatography coupled with time-of-flight mass spectrometry was used to analyze the extra- and intracellular metabolomes. Constraint-based metabolic modeling was then used to predict the metabolic activity of the stored PLTs. RESULTS A relatively large number of metabolites in the extracellular environment were depleted during the processing steps of the INTERCEPT system, in particular, metabolites with hydrophobic functional groups, including acylcarnitines and lysophosphatidylcholines. In the intracellular environment, alterations in glucose and glycerophospholipid metabolism and decreased levels of 2-hydroxyglutarate were observed following the INTERCEPT treatment. Untargeted metabolomics analysis revealed residual amotosalen dimers present in the treated PCs. Systems-level analysis of PLT metabolism indicated that the INTERCEPT system does not have a significant impact on the PLT energy metabolism and nutrient utilization. CONCLUSIONS The INTERCEPT system significantly alters the metabolome of the stored PCs without significantly influencing PLT energy metabolism.
Collapse
Affiliation(s)
- Freyr Jóhannsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland.,Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Níels Á Árnason
- The Blood Bank, Landspitali-University Hospital, Snorrabraut 60, Reykjavik, Iceland
| | - Ragna Landrö
- The Blood Bank, Landspitali-University Hospital, Snorrabraut 60, Reykjavik, Iceland
| | - Sveinn Guðmundsson
- The Blood Bank, Landspitali-University Hospital, Snorrabraut 60, Reykjavik, Iceland
| | - Ólafur E Sigurjonsson
- The Blood Bank, Landspitali-University Hospital, Snorrabraut 60, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Menntavegur 1, Reykjavik, Iceland
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland.,Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| |
Collapse
|
12
|
Domanović D, Ushiro-Lumb I, Compernolle V, Brusin S, Funk M, Gallian P, Georgsen J, Janssen M, Jimenez-Marco T, Knutson F, Liumbruno GM, Mali P, Marano G, Maryuningsih Y, Niederhauser C, Politis C, Pupella S, Rautmann G, Saadat K, Sandid I, Sousa AP, Vaglio S, Velati C, Verdun N, Vesga M, Rebulla P. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 PMCID: PMC6917531 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
Affiliation(s)
- Dragoslav Domanović
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ines Ushiro-Lumb
- National Transfusion Microbiology Reference Laboratory, NHS Blood and Transplant and Public Health England, London, England
| | | | - Sergio Brusin
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Markus Funk
- Pharmacovigilance II, Paul-Ehrlich-Institut Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Pierre Gallian
- Etablissement Français du Sang Provence Alpes Côte d’Azur et Corse, Marseille, France
| | - Jørgen Georgsen
- South Danish Transfusion Service, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mart Janssen
- Department of Donor Medicine Research, Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands
| | | | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | - Polonca Mali
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome
| | | | - Christoph Niederhauser
- Interregional Blood Transfusion Swiss Red Cross, Laboratory Diagnostics, Bern, Switzerland
| | - Constantina Politis
- Hellenic Coordinating Hemovigilance Center, Hellenic National Public Health Organization, Athens, Greece
| | | | - Guy Rautmann
- European Directorate for the Quality of Medicines and HealthCare, Strasbourg, France
| | - Karmin Saadat
- Austrian Agency for Health and Food Safety, Wien, Austria
| | - Imad Sandid
- French National Agency for Medicines and Health Products Safety (ANSM), Saint Denis, France
| | - Ana P. Sousa
- Portuguese Blood and Transplantation Center, Lisbon, Portugal
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome
| | - Claudio Velati
- Italian National Blood Centre, National Institute of Health, Rome
| | - Nicole Verdun
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Silver Spring, United States of America
| | - Miguel Vesga
- Basque Center for Transfusion and Human Tissues/Spanish Scientific Committee for Transfusion Safety, Galdakao, Spain
| | - Paolo Rebulla
- IRCCS Foundation Ca’ Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
13
|
Arnason NA, Johannson F, Landrö R, Hardarsson B, Irsch J, Gudmundsson S, Rolfsson O, Sigurjonsson OE. Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion 2019; 59:3727-3735. [PMID: 31674051 DOI: 10.1111/trf.15575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To reduce the risk of transfusion transmission infection, nucleic acid targeted methods have been developed to inactivate pathogens in PCs. miRNAs have been shown to play an important role in platelet function, and changes in the abundance of specific miRNAs during storage have been observed, as have perturbation effects related to pathogen inactivation (PI) methods. The aim of this work was to investigate the effects of PI on selected miRNAs during storage. STUDY DESIGN AND METHODS Using a pool and split strategy, 3 identical buffy coat PC units were generated from a pool of 24 whole blood donors. Each unit received a different treatment: 1) Untreated platelet control in platelet additive solution (C-PAS); 2) Amotosalen-UVA-treated platelets in PAS (PI-PAS); and 3) untreated platelets in donor plasma (U-PL). PCs were stored for 7 days under standard blood banking conditions. Standard platelet quality control (QC) parameters and 25 selected miRNAs were analyzed. RESULTS During the 7-day storage period, differences were found in several QC parameters relating to PI treatment and storage in plasma, but overall the three treatments were comparable. Out of 25 miRNA tested changes in regulation of 5 miRNA in PI-PAS and 3 miRNA U-PL where detected compared to C-PAS. A statistically significant difference was observed in down regulations miR-96-5p on Days 2 and 4, 61.9% and 61.8%, respectively, in the PI-PAS treatment. CONCLUSION Amotosalen-UVA treatment does not significantly alter the miRNA profile of platelet concentrates generated and stored using standard blood banking conditions.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Freyr Johannson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ragna Landrö
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Björn Hardarsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Sveinn Gudmundsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
14
|
Delabie W, Maes W, Devloo R, Van den Hauwe MR, Vanhoorelbeke K, Compernolle V, Feys HB. The senotherapeutic nicotinamide riboside raises platelet nicotinamide adenine dinucleotide levels but cannot prevent storage lesion. Transfusion 2019; 60:165-174. [PMID: 31652008 PMCID: PMC6973138 DOI: 10.1111/trf.15556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Supplementation of the nicotinamide adenine dinucleotide (NAD) precursor nicotinamide riboside (NR) has recently been shown to increase life‐span of cells, tissues, and entire organisms. [Correction added on 13 December 2019, after first online publication: In the preceding sentence, “adenine nicotinamide” was revised to “nicotinamide adenine.”] The impact of NR on platelet longevity has not been tested. STUDY DESIGN AND METHODS A pool‐and‐split design of buffy coat derived platelet concentrates (PCs) was used. One arm was treated with cumulative doses of NR‐triflate, the control arm with sodium triflate. Storage lesion was monitored for 23 days. Platelet metabolic and functional parameters were tested. Clearance of human platelets was measured in a mouse model of transfusion. RESULTS Total intracellular NAD levels in platelets decreased two‐fold from 4.8 ± 0.5 fmol (mean ± SD, n = 6) to 2.1 ± 1.8 fmol per 103 control cells, but increased almost 10‐fold to 41.5 ± 4.1 fmol per 103 NR treated platelets. This high intracellular NAD level had no significant impact on platelet count, mean platelet volume, swirling, nor on lactate and glucose levels. Platelet aggregation and integrin αIIbβ3 activation declined steadily and comparably in both conditions. GPIbα levels were slightly lower in NR‐treated platelets compared to control, but this was not caused by reduced receptor shedding because glycocalicin increased similarly. Apoptotic markers cytochrome c, Bcl‐xL, cleaved caspase‐3, and Bak were not different throughout storage for both conditions. Platelet survival in a mouse model of transfusion was not different between NR‐treated and control platelets. CONCLUSION Platelets carry the cellular machinery to metabolize NR into NAD at rates comparable to other eukaryotic cells. Unlike those cells, platelet life‐span cannot be prolonged using this strategy.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Wim Maes
- Laboratory For Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - Karen Vanhoorelbeke
- Laboratory For Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
15
|
Six KR, Devloo R, Compernolle V, Feys HB. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Transfusion 2019; 59:2662-2671. [PMID: 31187889 PMCID: PMC6851707 DOI: 10.1111/trf.15398] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pathogen inactivation and cold or cryopreservation of platelets (PLTs) both significantly affect PLT function. It is not known how PLTs function when both are combined. STUDY DESIGN AND METHODS Standard PLT concentrates (PCs) were compared to pathogen‐inactivated PCs treated with amotosalen photochemical treatment (AS‐PCT) when stored at room (RT, 22°C), cold (4°C, n = 6), or cryopreservation (−80°C, n = 8) temperatures. The impact of alternative storage methods on both arms was studied in flow cytometry, light transmittance aggregometry, and hemostasis in collagen‐coated microfluidic flow chambers. RESULTS Platelet aggregation of cold‐stored AS‐PCT PLTs was 44% ± 11% compared to 57% ± 14% for cold‐stored standard PLTs and 58% ± 21% for RT‐stored AS‐PCT PLTs. Integrin activation of cold‐stored AS‐PCT PLTs was 53% ± 9% compared to 77% ± 6% for cold‐stored standard PLTs and 69% ± 13% for RT‐stored AS‐PCT PLTs. Coagulation of cold‐stored AS‐PCT PLTs started faster under flow (836 ± 140 sec) compared to cold‐stored standard PLTs (960 ± 192 sec) and RT‐stored AS‐PCT PLTs (1134 ± 220 sec). Fibrin formation rate under flow was also highest for cold‐stored AS‐PCT PLTs. This was in line with thrombin generation in static conditions because cold‐stored AS‐PCT PLTs generated 297 ± 47 nmol/L thrombin compared to 159 ± 33 nmol/L for cold‐stored standard PLTs and 83 ± 25 nmol/L for RT‐stored AS‐PCT PLTs. So despite decreased PLT activation and aggregation, cold storage of AS‐PCT PLTs promoted coagulation. PLT aggregation of cryopreserved AS‐PCT PLTs (23% ± 10%) was not significantly different from cryopreserved standard PLTs (25% ± 8%). CONCLUSION This study shows that cold storage of AS‐PCT PLTs further affects PLT activation and aggregation but promotes (pro)coagulation. Increased procoagulation was not observed after cryopreservation.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Laulhé M, Lefebvre S, Le Broc-Ryckewaert D, Pierre M, Ferry A, Delorme B. A standardized methodical approach to characterize the influence of key parameters on the in vitro efficacy of extracorporeal photopheresis. PLoS One 2019; 14:e0212835. [PMID: 30822323 PMCID: PMC6396964 DOI: 10.1371/journal.pone.0212835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Extracorporeal photopheresis (ECP) is an autologous immunomodulatory cell therapy that consists of the ex vivo collection of mononuclear cells (MNCs), which are irradiated with UVA in the presence of the photosensitizing agent 8-methoxypsoralen (8-MOP) to induce cell apoptosis. This photoactivated cell preparation is then reinfused into the patient. While the clinical benefits of ECP are well-demonstrated, no study has yet characterized the influence of variations in the composition of the cell preparation on the efficacy of ECP in vitro. Here, we describe a standardized methodology for the in vitro assessment of ECP that uses the human lymphoma T-cell line and mimics the clinical procedure. By quantifying cell apoptosis, inhibition of cell proliferation, and 8-MOP consumption, we used this approach to characterize the specific influence of key variables on the cellular response to ECP. We found that (i) increases in hematocrit and plasma concentrations attenuated the cellular response to ECP; (ii) plasma concentration was the only variable tested that influenced 8-MOP consumption; and (iii) the loss of efficacy due to variations in the concentration of certain blood components could be counteracted by modulating the UVA dose. This methodology may enable evaluation of other leukapheresis preparation protocols and better determination of the optimal working parameters for ECP.
Collapse
Affiliation(s)
- Marie Laulhé
- MacoPharma, Biotherapy Division, Rue Lorthiois, Mouvaux, France
| | - Sylvie Lefebvre
- MacoPharma, Biotherapy Division, Rue Lorthiois, Mouvaux, France
| | | | - Maxime Pierre
- MacoPharma, Biotherapy Division, Rue Lorthiois, Mouvaux, France
| | - Aurélie Ferry
- MacoPharma, Biotherapy Division, Rue Lorthiois, Mouvaux, France
| | - Bruno Delorme
- MacoPharma, Biotherapy Division, Rue Lorthiois, Mouvaux, France
- * E-mail:
| |
Collapse
|
17
|
Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem Toxicol 2018; 122:163-171. [DOI: 10.1016/j.fct.2018.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022]
|
18
|
Jacquot C, Delaney M. Pathogen-inactivated blood products for pediatric patients: blood safety, patient safety, or both? Transfusion 2018; 58:2095-2101. [DOI: 10.1111/trf.14811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Cyril Jacquot
- Divisions of Pathology & Laboratory Medicine; Children's National Health System; Washington DC
- Departments of Pathology & Pediatrics, School of Medicine and Health Sciences; The George Washington University; Washington DC
| | - Meghan Delaney
- Divisions of Pathology & Laboratory Medicine; Children's National Health System; Washington DC
- Departments of Pathology & Pediatrics, School of Medicine and Health Sciences; The George Washington University; Washington DC
| |
Collapse
|
19
|
Guillon CD, Jan YH, Foster N, Choudhuri M, Saxena J, Mariano TM, Heck DE, Laskin JD, Heindel ND. SYNTHESIS AND EVALUATION OF WATER-SOLUBLE DIMETHYLAMINOETHYL ETHERS OF METHOXSALEN FOR PROLIFERATIVE SKIN DISORDERS. HETEROCYCLIC LETTERS 2018; 8:729-736. [PMID: 33575202 PMCID: PMC7875182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural product 8-methoxypsoralen (methoxsalen or 8-MOP) in combination with long wavelength ultraviolet light (UVA, 320-400 nm), also referred to as PUVA therapy, is used for the treatment of cutaneous proliferative disorders including psoriasis, vitiligo and mycosis fungoides. The use of 8-MOP (3) is limited by its poor water solubility and there remains a need to develop more water-soluble psoralens to enhance bioavailability following oral administration of the drug. In the present studies a water-soluble dimethylaminoethyl ether analog of 8-MOP was synthesized and analyzed for biological activity. This analog, (8-[2-(N,N-dimethylamino)ethoxy]-psoralen hydrochloride (1) [or CAS name: 9-[2-(dimethylamino)ethoxy]-7H-furo[3,2-g][1]benzopyran-7-one, hydrochloride], was found to be significantly more active than 3 in keratinocyte growth inhibition assays (IC50 = 12 nM and 130 nM for 1 and 3, respectively). The partially reduced dihydro derivative of 1, 8-[2-(N,N-dimethylamino)ethoxy]-4',5'-dihydropsoralen hydrochloride (2) [or CAS name: 9-[2-(dimethylamino)ethoxy]-2,3-dihydro-7H-furo[3,2-g][1]benzopyran-7-one, hydrochloride] and the partially reduced 4',5'-dihydro-8-methoxypsoralen (4) lacking the water-solubilizing side-chain were significantly less active. As inhibitors of keratinocyte growth they ranked as IC50 = 13,000 nM and 70,000 nM for 2 and 4, respectively, indicating that an unsaturated furan ring in the psoralen was required for maximal activity. Compound (1) was found to readily intercalate and damage DNA following UVA light treatment as determined by plasmid DNA nicking and unwinding experiments in neutral and alkaline agarose gels. Taken together, these data demonstrate that a water-soluble dimethylaminoethyl ether psoralen targets DNA, is highly active as a photosensitizer, and may be useful in the treatment of skin diseases involving abnormal keratinocyte proliferation.
Collapse
Affiliation(s)
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854 USA
| | - Natalie Foster
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
| | - Mridula Choudhuri
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
| | - Jaya Saxena
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
| | - Thomas M. Mariano
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854 USA
| | - Diane E. Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY, 10595 USA
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854 USA
| | - Ned D. Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
| |
Collapse
|
20
|
Stefaniuk CM, Hong H, Harding CV, Maitta RW. α-Synuclein concentration increases over time in plasma supernatant of single donor platelets. Eur J Haematol 2018; 101:10.1111/ejh.13152. [PMID: 30055066 PMCID: PMC6349522 DOI: 10.1111/ejh.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES In platelets, α-synuclein is important in calcium-dependent granule release. Notably, cells release α-synuclein in setting of cell damage or death. Therefore, we investigated α-synuclein levels in plasma of single donor platelet (SDP) units during storage. METHODS Aliquots were obtained from same SDP units for 7 days from day of donation. Additionally, randomly sampled SDP units at same storage time points were also assayed by enzyme-linked immunosorbent assay. RESULTS α-Synuclein in SDP plasma increased continuously over time at each assayed time point. Significant increases were measured on day 3 (11.7 ± 9.6 ng/mL, P = 0.025), day 5 (15.3 ± 5.9 ng/mL, P = 0.002), and highest on day 7 (23.7 ± 5.6 ng/mL, P < 0.0001) compared to day 0 (1.1 ± 0.8 ng/mL). Similar significant results were obtained in randomly sampled SDP units at same corresponding time points. Flow cytometry showed that platelets had strong expression of α-synuclein and lacked expression of other synucleins. CONCLUSIONS Increases of α-synuclein during SDP storage is a steady and continuous process that increases with time. Our findings indicate that α-synuclein may represent a biomarker of platelet biological state during storage. Further research will be needed to determine how α-synuclein increases correlate with platelets' function.
Collapse
Affiliation(s)
- Catherine M. Stefaniuk
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hong Hong
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Clifford V. Harding
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
21
|
Feys HB, Van Aelst B, Compernolle V. Biomolecular Consequences of Platelet Pathogen Inactivation Methods. Transfus Med Rev 2018; 33:29-34. [PMID: 30021699 DOI: 10.1016/j.tmrv.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Pathogen inactivation (PI) for platelet concentrates (PC) is a fairly recent development in transfusion medicine that is intended to decrease infectious disease transmission from the donor to the receiving patient. Effective inactivation of viruses, bacteria and eukaryotic parasites adds a layer of safety, protecting the blood supply against customary and emerging pathogens. Three PI methods have been described for platelets. These are based on photochemical damage of nucleic acids which prevents replication of most infectious pathogens and contaminating donor leukocytes. Because platelets do not replicate, the collateral damage to platelet function is considered low to non-existing. This is disputable however because photochemistry is not specific for nucleic acids and significantly affects platelet biomolecules as well. The impact of these biomolecular changes on platelet function and hemostasis is not well understood, but is increasingly being studied. The results of these studies can help explain current and future clinical observations with PI platelets, including the impact on transfusion yield and bleeding. This review summarizes the biomolecular effects of PI treatment on platelets. We conclude that despite a comparable principle of photochemical inactivation, all three methods affect platelets in different ways. This knowledge can help blood banks and transfusion specialists to guide their choice when considering the implementation or clinical use of PI treated platelets.
Collapse
Affiliation(s)
- Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Britt Van Aelst
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
22
|
Feys HB, Devloo R, Sabot B, Coene J, Compernolle V. Comparison of three commercially available buffy coat pooling sets for the preparation of platelet concentrates. Vox Sang 2018; 113:555-561. [PMID: 29797720 DOI: 10.1111/vox.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND A disposable set for platelet concentrate (PC) preparation by the buffy coat method allows pooling of buffy coats, centrifugation and cell separation with in-line leucocyte filtration. This study compares three commercially available pooling sets in combination with INTERCEPT pathogen inactivation (PI). MATERIALS AND METHODS Sets for pooling of buffy coats were from Fresenius Kabi (FRE), Macopharma (MAC) and Terumo BCT (TER). Platelet yield, recovery and concentration were compared before and after PI (n = 20). Platelet quality was assessed by annexin V binding, P-selectin expression and PAC1 binding. RESULTS The TER pooling set had the highest platelet yield (5·39 ± 0·44 × 1011 ) compared with MAC (4·53 ± 0·77) and FRE (4·56 ± 0·51) prior to PI. This was the result of a significantly higher platelet concentration in the TER storage bag (1·41 ± 0·12 × 106 /μL) compared with MAC (1·18 ± 0·19) and FRE (1·28 ± 0·15). However, the TER platelet content decreased by 15·6% after PI, yielding 4·55 ± 0·47 × 1011 platelets compared with smaller reductions at 9·5% for MAC (4·10 ± 0·69) and 4·4% for FRE (4·36 ± 0·52). None of the individual PC contained >106 leucocytes. The pH in TER PC was lower compared with MAC and FRE caused by a higher lactic acid production rate. Consequently, PAC1 binding after TRAP activation was lowest for TER PC on day 6. P-selectin and annexin V were not different between suppliers. CONCLUSION This study demonstrates the added value of evaluating the entire component production process when introducing a new consumable. This study helped to inform a decision on what pooling set is ideally suited for routine implementation taking into account PI.
Collapse
Affiliation(s)
- H B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - R Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - B Sabot
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - J Coene
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - V Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| |
Collapse
|
23
|
Laskin JD, Jan YH, Jetter MM, Guillon CD, Mariano TM, Heck DE, Heindel ND. Identification of a Pyranocoumarin Photosensitizer that is a Potent Inhibitor of Keratinocyte Growth. Photochem Photobiol 2018; 94:577-582. [DOI: 10.1111/php.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey D. Laskin
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Yi-Hua Jan
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | | | | | - Thomas M. Mariano
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Diane E. Heck
- Department of Environmental Health Science; New York Medical College; Valhalla NY USA
| | - Ned D. Heindel
- Department of Chemistry; Lehigh University; Bethlehem PA USA
| |
Collapse
|
24
|
Grandi V, Fava P, Rupoli S, Alberti Violetti S, Canafoglia L, Quaglino P, Berti E, Pimpinelli N. Standardization of regimens in Narrowband UVB and PUVA in early stage mycosis fungoides: position paper from the Italian Task Force for Cutaneous Lymphomas. J Eur Acad Dermatol Venereol 2018; 32:683-691. [DOI: 10.1111/jdv.14668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- V. Grandi
- Dermatology Unit; Department of Surgery and Translational Medicine; University of Florence Medical School; Florence Italy
| | - P. Fava
- Department of Medical Sciences; Dermatologic Clinic; University of Turin; Turin Italy
| | - S. Rupoli
- Clinic of Hematology; United Ancona Hospitals; Polytechnic University of Marche; Ancona Italy
| | - S. Alberti Violetti
- Dermatology Unit; IRCCS Ca’ Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - L. Canafoglia
- Clinic of Hematology; United Ancona Hospitals; Polytechnic University of Marche; Ancona Italy
| | - P. Quaglino
- Department of Medical Sciences; Dermatologic Clinic; University of Turin; Turin Italy
| | - E. Berti
- Dermatology Unit; IRCCS Ca’ Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - N. Pimpinelli
- Dermatology Unit; Department of Surgery and Translational Medicine; University of Florence Medical School; Florence Italy
| | | |
Collapse
|
25
|
Feys HB, Devloo R, Sabot B, De Pourcq K, Coene J, Compernolle V. High platelet content can increase storage lesion rates following Intercept pathogen inactivation primarily in platelet concentrates prepared by apheresis. Vox Sang 2017; 112:751-758. [PMID: 28960339 DOI: 10.1111/vox.12596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/25/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pathogen inactivation methods for platelet concentrates are increasingly being used in blood banks worldwide. In vitro studies have demonstrated its effects on storage lesion, but little routine quality control data on blood banking outcomes have been reported. MATERIALS AND METHODS Swirling of distributed products was monitored before and after implementation of Intercept pathogen inactivation. Metabolic parameters pH, glucose and lactic acid were determined in a random cohort of expired pathogen-inactivated products. Storage lesion indicators in apheresis concentrates with premature low swirling were compared to concentrates with normal swirling. RESULTS During validation for implementing Intercept pathogen inactivation, pH and glucose levels decreased faster in apheresis platelet concentrates with high platelet content than with low platelet content or than in pathogen-inactivated pooled buffy coat-derived products. In routine products, glucose exhaustion was more often found in apheresis compared to buffy coat-derived platelet concentrates despite 3-7% more plasma carryover in the former. Annual incidence of premature low swirling increased significantly by 50% following implementation of pathogen inactivation implementation for apheresis but not for pooled buffy coat platelet concentrates. In addition, apheresis concentrates with premature low swirling had a significantly higher median platelet count (5·0 × 1011 ) than unaffected products (3·5 × 1011 ). CONCLUSION The risk of increased storage lesion rates following Intercept pathogen inactivation is higher for apheresis than for buffy coat-derived platelet concentrates, especially when platelet contents are higher than 5·0 × 1011 .
Collapse
Affiliation(s)
- H B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - R Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - B Sabot
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - K De Pourcq
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - J Coene
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - V Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| |
Collapse
|