1
|
Frisbie VS, Hashimoto H, Xie Y, De Luna Vitorino FN, Baeza J, Nguyen T, Yuan Z, Kiselar J, Garcia BA, Debler EW. Two DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids. Nat Commun 2024; 15:2467. [PMID: 38503750 PMCID: PMC10951340 DOI: 10.1038/s41467-024-46637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site loop flexible, implying a distinct mechanism of substrate recognition. We further reveal distinct methylation kinetics and substrate preferences of DOT1A (H3K76me0) and DOT1B (DOT1A products H3K76me1/me2) in vitro, determined by a Ser and Ala residue within motif IV, respectively, enabling DOT1A and DOT1B to mediate efficient H3K76 tri-methylation non-processively but cooperatively, and suggesting why kinetoplastids have evolved two DOT1 enzymes.
Collapse
Affiliation(s)
- Victoria S Frisbie
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Francisca N De Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Josue Baeza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tam Nguyen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhangerjiao Yuan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janna Kiselar
- Case Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Feoli A, Iannelli G, Cipriano A, Milite C, Shen L, Wang Z, Hadjikyriacou A, Lowe TL, Safaeipour C, Viviano M, Sarno G, Morretta E, Monti MC, Yang Y, Clarke SG, Cosconati S, Castellano S, Sbardella G. Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. J Med Chem 2023; 66:13665-13683. [PMID: 37560786 PMCID: PMC10578352 DOI: 10.1021/acs.jmedchem.3c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giulia Iannelli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Lei Shen
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Zhihao Wang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Andrea Hadjikyriacou
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Troy L. Lowe
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Cyrus Safaeipour
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Elva Morretta
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Yanzhong Yang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Steven G. Clarke
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| |
Collapse
|
4
|
Bondoc TJ, Lowe TL, Clarke SG. The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward Arg-X-Arg sites. PLoS One 2023; 18:e0285812. [PMID: 37216364 DOI: 10.1371/journal.pone.0285812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mammalian protein arginine methyltransferase 7 (PRMT7) has been shown to target substrates with motifs containing two arginine residues separated by one other residue (RXR motifs). In particular, the repression domain of human histone H2B (29-RKRSR-33) has been a key substrate in determining PRMT7 activity. We show that incubating human PRMT7 and [3H]-AdoMet with full-length Xenopus laevis histone H2B, containing the substitutions K30R and R31K (RKRSR to RRKSR), results in greatly reduced methylation activity. Using synthetic peptides, we have now focused on the enzymology behind this specificity. We show for the human and Xenopus peptide sequences 23-37 the difference in activity results from changes in the Vmax rather than the apparent binding affinity of the enzyme for the substrates. We then characterized six additional peptides containing a single arginine or a pair of arginine residues flanked by glycine and lysine residues. We have corroborated previous findings that peptides with an RXR motif have much higher activity than peptides that contain only one Arg residue. We show that these peptides have similar apparent km values but significant differences in their Vmax values. Finally, we have examined the effect of ionic strength on these peptides. We found the inclusion of salt had little effect on the Vmax value but a considerable increase in the apparent km value, suggesting that the inhibitory effect of ionic strength on PRMT7 activity occurs largely by decreasing apparent substrate-enzyme binding affinity. In summary, we find that even subtle substitutions in the RXR recognition motif can dramatically affect PRMT7 catalysis.
Collapse
Affiliation(s)
- Timothy J Bondoc
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Zhang Y, Wang K, Yang D, Liu F, Xu X, Feng Y, Wang Y, Zhu S, Gu C, Sheng J, Hu L, Xu B, Lu YJ, Feng N. Hsa_circ_0094606 promotes malignant progression of prostate cancer by inducing M2 polarization of macrophages through PRMT1-mediated arginine methylation of ILF3. Carcinogenesis 2023; 44:15-28. [PMID: 36394342 DOI: 10.1093/carcin/bgac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNA (circRNA), a type of noncoding RNAs, has been demonstrated to act vital roles in tumorigenesis and cancer deterioration. Although tumor-associated macrophages are involved in tumor malignancy, the interactions between circRNAs and tumor-associated macrophages in prostate cancer (PCa) remain unclear. In the present study, we found that hsa_circ_0094606 (subsequently named circ_0094606) could promote proliferation, epithelial-mesenchymal transition (EMT) as well as migration of PCa cells through cell viability and migration assays and the determination of EMT markers. Mass spectrometry analysis after RNA pull-down experiment identified that circ_0094606 bound to protein arginine methyltransferase 1 (PRMT1) in PCa cells, and further functional assays revealed that circ_0094606 promoted the malignant progression of PCa by binding to PRMT1. Moreover, co-immunoprecipitation (Co-IP), glutathione-S-transferase (GST) pull-down and immunofluorescence showed that PRMT1 mediated arginine methylation of ILF3 to stabilize the protein. Bioinformatics analysis combined with data from RNA-binding protein immunoprecipitation and RNA pull-down suggested that ILF3 could stabilize IL-8 mRNA, which promoted the M2 polarization in coculture study. Finally, in vivo experiments showed that circ_0094606 subserve PCa growth and promoted the M2 polarization of macrophages through the PRMT1/ILF3/IL-8 regulation pathway, supporting circ_0094606 as a potential novel effective target for PCa treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- Medical College of Nantong University, Nantong, China
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Delin Yang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengping Liu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yangkun Feng
- Medical College of Nantong University, Nantong, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Sha Zhu
- Department of Oncology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Chaoqun Gu
- Medical College of Nantong University, Nantong, China
| | - Jiayi Sheng
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Lei Hu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yong-Jie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building Charterhouse Square, London, UK
| | - Ninghan Feng
- Medical College of Nantong University, Nantong, China
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
6
|
Rodriguez MA. Protein arginine methyltransferases in protozoan parasites. Parasitology 2022; 149:427-435. [PMID: 35331350 PMCID: PMC11010539 DOI: 10.1017/s0031182021002043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/06/2022]
Abstract
Arginine methylation is a post-translational modification involved in gene transcription, signalling pathways, DNA repair, RNA metabolism and splicing, among others, mechanisms that in protozoa parasites may be involved in pathogenicity-related events. This modification is performed by protein arginine methyltransferases (PRMTs), which according to their products are divided into three main types: type I yields monomethylarginine (MMA) and asymmetric dimethylarginine; type II produces MMA and symmetric dimethylarginine; whereas type III catalyses MMA only. Nine PRMTs (PRMT1 to PRMT9) have been characterized in humans, whereas in protozoa parasites, except for Giardia intestinalis, three to eight PRMTs have been identified, where in each group there are at least two enzymes belonging to type I, the majority with higher similarity to human PRMT1, and one of type II, related to human PRMT5. However, the information on the role of most of these enzymes in the parasites biology is limited so far. Here, current knowledge of PRMTs in protozoan parasites is reviewed; these enzymes participate in the cell growth, stress response, stage transitions and virulence of these microorganisms. Thus, PRMTs are attractive targets for developing new therapeutic strategies against these pathogens.
Collapse
Affiliation(s)
- Mario Alberto Rodriguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Ren WS, Rahman A, Jiang KB, Deng H, Zhao YY, Zhang WJ, Liu K, Qian P, Guo H. Unraveling the Origins of Changing Product Specificity Properties of Arginine Methyltransferase PRMT7 by the E181D and E181D/Q329A Mutations through QM/MM MD and Free-Energy Simulations. J Chem Theory Comput 2022; 18:2631-2641. [PMID: 35316052 DOI: 10.1021/acs.jctc.1c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine methylations can regulate important biological processes and affect many cellular activities, and the enzymes that catalyze the methylations are protein arginine methyltransferases (PRMTs). The biological consequences of arginine methylations depend on the methylation states of arginine that are determined by the PRMT's product specificity. Nevertheless, it is still unclear how different PRMTs may generate different methylation states for the target proteins. PRMT7 is the only known member of type III PRMT that produces monomethyl arginine (MMA) product. Interestingly, its E181D and E181D/Q329A mutants can catalyze, respectively, the formation of asymmetrically dimethylated arginine (ADMA) and symmetrically dimethylated arginine (SDMA). The reasons as to why the mutants have the abilities to add the second methyl group and E181D (E181D/Q329A) has the unique product specificity in generating ADMA (SDMA) have not been understood. Here, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and potential of mean force (PMF) free-energy simulations are performed for the E181D and E181D/Q329A mutants to understand the origin for their ability to generate, respectively, ADMA and SDMA. The simulations show that the free-energy barrier for adding the second methyl group to MMA in E181D (E181D/Q329A) to produce ADMA (SDMA) is considerably lower than the corresponding barriers in wild type and E181D/Q329A (wild type and E181D), consistent with experimental observations. Some important factors that contribute to the change of the activity and product specificity due to the E181D and E181D/Q329A mutations are identified based on the data from the simulations and analysis. It is shown that the transferable methyl group (from SAM) and Nη2 (the nitrogen atom that is methylated in the substrate MMA) can only form good near-attack conformations in the E181D reaction state for the methyl transfer (not in wild type and E181D/Q329A), while the transferable methyl group and Nη1 (the nitrogen atom that is not methylated in the substrate MMA) can only form good near-attack conformations in E181D/Q329A (not in wild type and E181D). The results suggest that the steric repulsions in the reaction state between the methyl group on MMA and active-site residues (e.g., Q329) and the release of such repulsions (e.g., from the Q329A mutation) may play an important role in generating specific near-attack conformations for the methyl transfer and controlling the product specificity for the mutants. The general principle identified in this work for PRMT7 is expected to be useful for understanding the activity and product specificity of other PRMTs as well.
Collapse
Affiliation(s)
- Wan-Sheng Ren
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Adua Rahman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kai-Bin Jiang
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Hao Deng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yuan-Yuan Zhao
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Wei-Jie Zhang
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Kedian Liu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Structure, Activity, and Function of PRMT1. Life (Basel) 2021; 11:life11111147. [PMID: 34833023 PMCID: PMC8619983 DOI: 10.3390/life11111147] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.
Collapse
|
9
|
Maron MI, Lehman SM, Gayatri S, DeAngelo JD, Hegde S, Lorton BM, Sun Y, Bai DL, Sidoli S, Gupta V, Marunde MR, Bone JR, Sun ZW, Bedford MT, Shabanowitz J, Chen H, Hunt DF, Shechter D. Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases. iScience 2021; 24:102971. [PMID: 34505004 PMCID: PMC8417332 DOI: 10.1016/j.isci.2021.102971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.
Collapse
Affiliation(s)
- Maxim I. Maron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie M. Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joseph D. DeAngelo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - James R. Bone
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Zu-Wen Sun
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongshan Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donald F. Hunt
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:3011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
11
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|
12
|
Abstract
Protein arginine methyltransferase 6 (PRMT6), a member of type I PRMT enzymes, catalyzes the monomethylation or asymmetric dimethylation of arginine residues. To better understand its biological roles in cells, highly selective inhibitors are needed. The first reported allosteric inhibitor of PRMT6 should fulfill this need. Further comparison with allosteric inhibitors of PRMT5 identified that the dynamics of double-E loop plays a vital role in making this allosteric binding possible.
Collapse
Affiliation(s)
- Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P.R. China
| |
Collapse
|
13
|
Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochem J 2021; 477:2971-2980. [PMID: 32716034 DOI: 10.1042/bcj20200534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Methylation of arginine residues occurs on a number of protein substrates, most notably the N-terminal tails of histones, and is catalyzed by a family of enzymes called the protein arginine methyltransferases (PRMTs). This modification can lead to transcriptional activation or repression of cancer-related genes. To date, a number of inhibitors, based on natural peptide substrates, have been developed for the PRMT family of enzymes. However, because peptides are easily degraded in vivo, the utility of these inhibitors as potential therapeutics is limited. The use of peptoids, which are peptide mimetics where the amino acid side chain is attached to the nitrogen in the amide backbone instead of the α-carbon, may circumvent the problems associated with peptide degradation. Given the structural similarities, peptoid scaffolds may provide enhanced stability, while preserving the mechanism of action. Herein, we have identified that peptoids based on natural peptide substrates are not catalyzed to the product by PRMT1, but instead are inhibitors of this enzyme. Reducing the length of the peptoid reduces inhibition and suggest the residues distal from the site of modification are important for binding. Furthermore, a positive charge on the N-terminus helps promote binding and improves inhibition. Selectivity among family members is likely possible based on inhibition being moderately selective for PRMT1 over PRMT5 and provides a scaffold that can be used to develop pharmaceuticals against this class of enzymes.
Collapse
|
14
|
Medina-Gómez C, Bolaños J, Borbolla-Vázquez J, Munguía-Robledo S, Orozco E, Rodríguez MA. The atypical protein arginine methyltrasferase of Entamoeba histolytica (EhPRMTA) is involved in cell proliferation, heat shock response and in vitro virulence. Exp Parasitol 2021; 222:108077. [PMID: 33465379 DOI: 10.1016/j.exppara.2021.108077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8). The protozoa parasite Entamoeba histolytica has four PRMTs related to type I; three of them are similar to PRMT1, but the other one does not show significant homology to be grouped in any known PRMT family, thus we called it as atypical PRMT (EhPRMTA). Here, we showed that EhPRMTA does not contain several of the canonical amino acid residues of type I PRMTs, confirming that it is an atypical PRMT. A specific antibody against EhPRMTA localized this protein in cytoplasm. The recombinant EhPRMTA displayed catalytic activity on commercial histones and the native enzyme modified its expression level during heat shock and erythrophagocytosis. Besides, the knockdown of EhPRMTA produced an increment in cell growth, and phagocytosis, but decreases cell migration and the survival of trophozoites submitted to heat shock, suggesting that this protein is involved in regulate negatively or positively these events, respectively. Thus, results suggest that this methyltransferase regulates some cellular functions related to virulence and cell surviving.
Collapse
Affiliation(s)
- Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | - Susana Munguía-Robledo
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Fulton MD, Dang T, Brown T, Zheng YG. Effects of substrate modifications on the arginine dimethylation activities of PRMT1 and PRMT5. Epigenetics 2020; 17:1-18. [PMID: 33380261 DOI: 10.1080/15592294.2020.1864170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone arginine methylation is a prevalent posttranslational modification (PTM) in eukaryotic cells and contributes to the histone codes for epigenetic regulation of gene transcription. In this study, we determined how local changes on adjacent residues in the histone H4 substrate regulate arginine asymmetric dimethylation and symmetric dimethylation catalysed by the major protein arginine methyltransferase (PRMT) enzymes PRMT1 and PRMT5, respectively. We found that phosphorylation at histone H4 Ser-1 site (H4S1) was inhibitory to activities of PRMT1 and PRMT5 in both monomethylating and dimethylating H4R3. Also, a positively charged H4K5 was important for PRMT1 catalysis because acetylation of H4K5 or the loss of the H4K5 ε-amine had a similar effect in reducing the catalytic efficiency of asymmetric dimethylation of H4R3. An opposite effect was observed in that acetylation of H4K5 or the loss of the H4K5 ε-amine enhanced PRMT5-mediated symmetric dimethylation of H4R3. Furthermore, we observed that N-terminal acetylation of H4 modestly decreased asymmetric dimethylation of H4R3 by PRMT1 and symmetric dimethylation of H4R3 by PRMT5. This work highlights the significance of local chemical changes in the substrate to regulating PRMT activity and unravels the pattern complexities and subtleties of histone codes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tran Dang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| |
Collapse
|
16
|
Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 2020; 48:3869-3887. [PMID: 32016422 PMCID: PMC7144947 DOI: 10.1093/nar/gkaa067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/03/2023] Open
Abstract
Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.
Collapse
Affiliation(s)
- Linlin Hou
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiwei Wang
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Menghui Yin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China
| | - Yanpu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Xiangpeng Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Senbin Wu
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Muqddas Tariq
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,CAS Key Laboratory of Regenerative Biology, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Ren WS, Jiang KB, Deng H, Lu N, Yu T, Guo H, Qian P. Catalytic Mechanism and Product Specificity of Protein Arginine Methyltransferase PRMT7: A Study from QM/MM Molecular Dynamics and Free Energy Simulations. J Chem Theory Comput 2020; 16:5301-5312. [DOI: 10.1021/acs.jctc.0c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wan-Sheng Ren
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Kai-Bin Jiang
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Hao Deng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Nan Lu
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, United States
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
18
|
Morettin A, Bourassa J, Mahadevan K, Trinkle-Mulcahy L, Cote J. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods 2020; 175:44-52. [PMID: 31794835 DOI: 10.1016/j.ymeth.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.
Collapse
Affiliation(s)
- Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Bourassa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohila Mahadevan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jocelyn Cote
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Li F, Zhu H, Hou M, Zhang X, Li Z, Zhao H, Zhou Q, Zhong X. Identification, expression and functional analysis of prmt7 in medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:77-87. [PMID: 31990140 DOI: 10.1002/jez.b.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 11/07/2022]
Abstract
Arginine methylation is an important posttranslational modification and catalyzed by a family of protein arginine methyltransferases (PRMTs). PRMT7 is the type III PRMT and produces solely monomethylarginine products. PRMT7 has been found to play important roles in multiple biological processes in mammals. However, the expression pattern and function of Prmt7 remain largely unknown in fish. In this study, we characterized the medaka prmt7 gene and determined its expression pattern and function during embryogenesis and germ cell development. The results showed that the chromosomal location and gene structure of medaka prmt7 were similar to its mammalian orthologs. Comparisons of deduced amino acid sequences indicated that medaka Prmt7 was a homolog of human PRMT7 with two methyltransferase domains. Reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR revealed that medaka prmt7 had maternal origin with continuous and dynamical expression during embryonic development. Whole-mount in situ hybridization analysis observed that the transcripts of prmt7 were ubiquitous at morula and gastrula stage, and were later riched in the brain and otic vesicles during embryogenesis. In the adult stage, prmt7 messenger RNA was detected in all examined tissues with the high levels in the ovary and testis. The expression of prmt7 in the gonads was restricted to oocytes of the ovary and spermatids/sperm of the testis. Functional analysis showed that knockdown of medaka prmt7 did not reduce the total number of primordial germ cells (PGCs) in vivo but significantly affected PGCs distribution during embryonic development. These results indicate that prmt7 may be involved in germ cell development in medaka.
Collapse
Affiliation(s)
- Fangqing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Huihui Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Mengying Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xiaoyi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Zhenzhen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
20
|
Hashimoto H, Kafková L, Raczkowski A, Jordan KD, Read LK, Debler EW. Structural Basis of Protein Arginine Methyltransferase Activation by a Catalytically Dead Homolog (Prozyme). J Mol Biol 2020; 432:410-426. [PMID: 31726063 PMCID: PMC6995776 DOI: 10.1016/j.jmb.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
Prozymes are pseudoenzymes that stimulate the function of weakly active enzymes through complex formation. The major Trypanosoma brucei protein arginine methyltransferase, TbPRMT1 enzyme (ENZ), requires TbPRMT1 prozyme (PRO) to form an active heterotetrameric complex. Here, we present the X-ray crystal structure of the TbPRMT1 ENZ-Δ52PRO tetrameric complex with the cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.4 Å resolution. The individual ENZ and PRO units adopt the highly-conserved PRMT domain architecture and form an antiparallel heterodimer that corresponds to the canonical homodimer observed in all previously reported PRMTs. In turn, two such heterodimers assemble into a tetramer both in the crystal and in solution with twofold rotational symmetry. ENZ is unstable in absence of PRO and incapable of forming a homodimer due to a steric clash of an ENZ-specific tyrosine within the dimerization arm, rationalizing why PRO is required to complement ENZ to form a PRMT dimer that is necessary, but not sufficient for PRMT activity. The PRO structure deviates from other, active PRMTs in that it lacks the conserved η2 310-helix within the Rossmann fold, abolishing cofactor binding. In addition to its chaperone function for ENZ, PRO substantially contributes to substrate binding. Heterotetramerization is required for catalysis, as heterodimeric ENZ-PRO mutants lack binding affinity and methyltransferase activity toward the substrate protein TbRGG1. Together, we provide a structural basis for TbPRMT1 ENZ activation by PRO heterotetramer formation, which is conserved across all kinetoplastids, and describe a chaperone function of the TbPRMT1 prozyme, which represents a novel mode of PRMT regulation.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas
Jefferson University, Philadelphia, PA 19107, USA
| | - Lucie Kafková
- Department of Microbiology and Immunology and Witebsky
Center for Microbial Pathogenesis and Immunology, SUNY Buffalo, Buffalo, NY 14203,
USA
| | - Ashleigh Raczkowski
- Simons Electron Microscopy Center, New York Structural
Biology Center, New York, NY 10027, USA
| | - Kelsey D. Jordan
- Simons Electron Microscopy Center, New York Structural
Biology Center, New York, NY 10027, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology and Witebsky
Center for Microbial Pathogenesis and Immunology, SUNY Buffalo, Buffalo, NY 14203,
USA
| | - Erik W. Debler
- Department of Biochemistry and Molecular Biology, Thomas
Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
22
|
Zhao J, Adams A, Weinman SA, Tikhanovich I. Hepatocyte PRMT1 protects from alcohol induced liver injury by modulating oxidative stress responses. Sci Rep 2019; 9:9111. [PMID: 31235809 PMCID: PMC6591482 DOI: 10.1038/s41598-019-45585-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 01/23/2023] Open
Abstract
Protein Arginine methyltransferase 1 (PRMT1) is the main enzyme of cellular arginine methylation. Previously we found that PRMT1 activity in the liver is altered after alcohol exposure resulting in epigenetic changes. To determine the impact of these PRMT1 changes on the liver's response to alcohol, we induced a hepatocyte specific PRMT1 knockout using AAV mediated Cre delivery in mice fed either alcohol or control Lieber-DeCarli liquid diet. We found that in alcohol fed mice, PRMT1 prevents oxidative stress and promotes hepatocyte survival. PRMT1 knockout in alcohol fed mice resulted in a dramatic increase in hepatocyte death, inflammation and fibrosis. Additionally, we found that alcohol promotes PRMT1 dephosphorylation at S297. Phosphorylation at this site is necessary for PRMT1-dependent protein arginine methylation. PRMT1 S297A, a dephosphorylation mimic of PRMT1 had reduced ability to promote gene expression of pro-inflammatory cytokines, pro-apoptotic genes BIM and TRAIL and expression of a suppressor of hepatocyte proliferation, Hnf4α. On the other hand, several functions of PRMT1 were phosphorylation-independent, including expression of oxidative stress response genes, Sod1, Sod2 and others. In vitro, both wild type and S297A PRMT1 protected hepatocytes from oxidative stress induced apoptosis, however S297D phosphorylation mimic PRMT1 promoted cell death. Taken together these data suggest that PRMT1 is an essential factor of liver adaptation to alcohol; alcohol-induced dephosphorylation shifts PRMT1 toward a less pro-inflammatory, more pro-proliferative and pro-survival form.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, United States
| | - Abby Adams
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, United States.,Liver Center, University of Kansas Medical Center, Kansas, United States
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, United States.,Liver Center, University of Kansas Medical Center, Kansas, United States
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, United States.
| |
Collapse
|
23
|
Thakur A, Hevel JM, Acevedo O. Examining Product Specificity in Protein Arginine Methyltransferase 7 (PRMT7) Using Quantum and Molecular Mechanical Simulations. J Chem Inf Model 2019; 59:2913-2923. [PMID: 31033288 DOI: 10.1021/acs.jcim.9b00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 7 (PRMT7) catalyzes the formation of monomethylarginine (MMA) but is incapable of performing a dimethylation. Given that PRMT7 performs vital functions in mammalian cells and has been implicated in a variety of diseases, including breast cancer and age-related obesity, elucidating the origin of its strict monomethylation activity is of considerable interest. Three active site residues, Glu172, Phe71, and Gln329, have been reported as particularly important for product specificity and enzymatic activity. To better understand their roles, mixed quantum and molecular mechanical (QM/MM) calculations coupled to molecular dynamics and free energy perturbation theory were carried out for the WT, F71I, and Q329S trypanosomal PRMT7 (TbPRMT7) enzymes bound with S-adenosyl- L-methionine (AdoMet) and an arginine substrate in an unmethylated or methylated form. The Q329S mutation, which experimentally abolished enzymatic activity, was appropriately computed to give an outsized Δ G‡ of 30.1 kcal/mol for MMA formation compared to 16.9 kcal/mol for WT. The F71I mutation, which has been experimentally shown to convert the enzyme from a type III PRMT into a mixed type I/II capable of forming dimethylated arginine products, yielded a reasonable Δ G‡ of 21.9 kcal/mol for the second turnover compared to 28.8 kcal/mol in the WT enzyme. Similar active site orientations for both WT and F71I TbPRMT7 allowed Glu172 and Gln329 to better orient the substrate for SN2 methylation, enhanced the nucleophilicity of the attacking guanidino group by reducing positive charge, and facilitated the binding of the subsequent methylated products.
Collapse
Affiliation(s)
- Abhishek Thakur
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Orlando Acevedo
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| |
Collapse
|
24
|
Jain K, Clarke SG. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch Biochem Biophys 2019; 665:36-45. [PMID: 30802433 PMCID: PMC6461449 DOI: 10.1016/j.abb.2019.02.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are found in a wide variety of eukaryotic organisms and can regulate gene expression, DNA repair, RNA splicing, and stem cell biology. In mammalian cells, nine genes encode a family of sequence-related enzymes; six of these PRMTs catalyze the formation of ω-asymmetric dimethyl derivatives, two catalyze ω-symmetric dimethyl derivatives, and only one (PRMT7) solely catalyzes ω-monomethylarginine formation. Purified recombinant PRMT7 displays a number of unique enzymatic properties including a substrate preference for arginine residues in R-X-R motifs with additional flanking basic amino acid residues and a temperature optimum well below 37 °C. Evidence has been presented for crosstalk between PRMT7 and PRMT5, where methylation of a histone H4 peptide at R17, a PRMT7 substrate, may activate PRMT5 for methylation of R3. Defects in muscle stem cells (satellite cells) and immune cells are found in mouse Prmt7 homozygous knockouts, while humans lacking PRMT7 are characterized by significant intellectual developmental delays, hypotonia, and facial dysmorphisms. The overexpression of the PRMT7 gene has been correlated with cancer metastasis in humans. Current research challenges include identifying cellular factors that control PRMT7 expression and activity, identifying the physiological substrates of PRMT7, and determining the effect of methylation on these substrates.
Collapse
Affiliation(s)
- Kanishk Jain
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Haghandish N, Baldwin RM, Morettin A, Dawit HT, Adhikary H, Masson JY, Mazroui R, Trinkle-Mulcahy L, Côté J. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol Biol Cell 2019; 30:778-793. [PMID: 30699057 PMCID: PMC6589776 DOI: 10.1091/mbc.e18-05-0330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that modify proteins by methylating the guanidino nitrogen atoms of arginine residues to regulate cellular processes such as chromatin remodeling, pre-mRNA splicing, and signal transduction. PRMT7 is the single type III PRMT solely capable of arginine monomethylation. To date, other than histone proteins, there are very few identified substrates of PRMT7. We therefore performed quantitative mass spectrometry experiments to identify PRMT7’s interactome and potential substrates to better characterize the enzyme’s biological function(s) in cells. These experiments revealed that PRMT7 interacts with and can methylate eukaryotic translation initiation factor 2 alpha (eIF2α), in vitro and in breast cancer cells. Furthermore, we uncovered a potential regulatory interplay between eIF2α arginine methylation by PRMT7 and stress-induced phosphorylation status of eIF2α at serine 51. Finally, we demonstrated that PRMT7 is required for eIF2α-dependent stress granule formation in the face of various cellular stresses. Altogether, our findings implicate PRMT7 as a novel mediator of eIF2α-dependent cellular stress response pathways.
Collapse
Affiliation(s)
- Nasim Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Haben Tesfu Dawit
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
26
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Targets 2018; 22:527-545. [PMID: 29781349 PMCID: PMC6311705 DOI: 10.1080/14728222.2018.1474203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.
Collapse
Affiliation(s)
- Emily Smith
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Polina Shindiapina
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Chenglong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert A. Baiocchi
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Cáceres TB, Thakur A, Price OM, Ippolito N, Li J, Qu J, Acevedo O, Hevel JM. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation. Biochemistry 2018; 57:1349-1359. [PMID: 29378138 DOI: 10.1021/acs.biochem.7b01265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal SN2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.
Collapse
Affiliation(s)
- Tamar B Cáceres
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Abhishek Thakur
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Owen M Price
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Nicole Ippolito
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York , Kapoor 318, North Campus, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York , Kapoor 318, North Campus, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| |
Collapse
|
29
|
Brown JI, Koopmans T, van Strien J, Martin NI, Frankel A. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. Chembiochem 2017; 19:85-99. [PMID: 29112789 DOI: 10.1002/cbic.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 01/13/2023]
Abstract
Arginine methylation is a prevalent post-translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N-methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη-hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi-Bi kinetic mechanism for PRMT1, based on steady-state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timo Koopmans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Jolinde van Strien
- Leiden Institute for Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
30
|
Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification. J Mol Biol 2017; 430:102-118. [PMID: 29183786 DOI: 10.1016/j.jmb.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 01/24/2023]
Abstract
Protein methylation is one of the major post-translational modifications (PTMs) in the cell. In Saccharomyces cerevisiae, over 20 protein methyltransferases (MTases) and their respective substrates have been identified. However, the way in which these MTases are modified and potentially subject to regulation remains poorly understood. Here, we investigated six overexpressed S. cerevisiae protein MTases (Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1) to identify PTMs of potential functional relevance. We identified 48 PTM sites across the six MTases, including phosphorylation, acetylation and methylation. Forty-two sites are novel. We contextualized the PTM sites in structural models of the MTases and revealed that many fell in catalytic pockets or enzyme-substrate interfaces. These may regulate MTase activity. Finally, we compared PTMs on Hmt1 with those on its human homologs PRMT1, PRMT3, CARM1, PRMT6 and PRMT8. This revealed that several PTMs are conserved from yeast to human, whereas others are only found in Hmt1. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD006767.
Collapse
|
31
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 731] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
32
|
Jain K, Jin CY, Clarke SG. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci U S A 2017; 114:10101-10106. [PMID: 28874563 PMCID: PMC5617285 DOI: 10.1073/pnas.1706978114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Cyrus Y Jin
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
33
|
Hadjikyriacou A, Clarke SG. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities. Biochemistry 2017; 56:2612-2626. [PMID: 28441492 DOI: 10.1021/acs.biochem.7b00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caenorhabditis elegans protein arginine methyltransferases PRMT-7 and PRMT-9 are two evolutionarily conserved enzymes, with distinct orthologs in plants, invertebrates, and vertebrates. Biochemical characterization of these two enzymes reveals that they share much in common with their mammalian orthologs. C. elegans PRMT-7 produces only monomethylarginine (MMA) and preferentially methylates R-X-R motifs in a broad collection of substrates, including human histone peptides and RG-rich peptides. In addition, the activity of the PRMT-7 enzyme is dependent on temperature, the presence of metal ions, and the reducing agent dithiothreitol. C. elegans PRMT-7 has a substrate specificity and a substrate preference different from those of mammalian PRMT7, and the available X-ray crystal structures of the PRMT7 orthologs show differences in active site architecture. C. elegans PRMT-9, on the other hand, produces symmetric dimethylarginine and MMA on SFTB-2, the conserved C. elegans ortholog of human RNA splicing factor SF3B2, indicating a possible role in the regulation of nematode splicing. In contrast to PRMT-7, C. elegans PRMT-9 appears to be biochemically indistinguishable from its human ortholog.
Collapse
Affiliation(s)
- Andrea Hadjikyriacou
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|