1
|
Zhou L, Dau V, Jensen AA. Discovery of a Novel Class of Benzimidazole-Based Nicotinic Acetylcholine Receptor Modulators: Positive and Negative Modulation Arising from Overlapping Allosteric Sites. J Med Chem 2023; 66:12586-12601. [PMID: 37650525 DOI: 10.1021/acs.jmedchem.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Here, we present the discovery of a novel class of benzimidazole-based allosteric modulators of nicotinic acetylcholine receptors (nAChRs). The modulators were developed based on a compound (1) exhibiting positive modulatory activity at α4β2 nAChR in a compound library screening by functional characterization of 100 analogues of 1 at nAChRs. Two distinct series of positive and negative allosteric modulators (PAMs and NAMs, respectively) comprising benzimidazole as a shared structural moiety emerged from this SAR study. The PAMs mediated weak modulation of α4β2 and α6β2β3, whereas the NAMs exhibited essentially equipotent inhibition of α4β2, α6β2β3, α6β4β3, and α3β4 nAChRs, with analogue 9j [2-(2,4-dichlorophenoxy)-1,3-dimethyl-1-H-benzo[d]imidazole-3-ium] displaying high-nanomolar and low-micromolar IC50 values at the β2- and β4-containing receptor subtypes, respectively. We propose that the PAMs and NAMs act through overlapping sites in the nAChR, and these findings thus underline the heterogenous modes of modulation that can arise from a shared allosteric site in the receptor.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Vidan Dau
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Noonan JD, Beech RN. Two residues determine nicotinic acetylcholine receptor requirement for RIC-3. Protein Sci 2023; 32:e4718. [PMID: 37417463 PMCID: PMC10443321 DOI: 10.1002/pro.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.
Collapse
Affiliation(s)
- Jennifer D. Noonan
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| | - Robin N. Beech
- Institute of Parasitology, Macdonald Campus, McGill UniversityMontrealQuébecCanada
| |
Collapse
|
3
|
Thompson MJ, Domville JA, Edrington CH, Venes A, Giguère PM, Baenziger JE. Distinct functional roles for the M4 α-helix from each homologous subunit in the hetero-pentameric ligand-gated ion channel nAChR. J Biol Chem 2022; 298:102104. [PMID: 35679899 PMCID: PMC9260303 DOI: 10.1016/j.jbc.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The outermost lipid-exposed α-helix (M4) in each of the homologous α, β, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, βM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4–M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4–M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.
Collapse
|
4
|
Crnjar A, Mesoy SM, Lummis SCR, Molteni C. A Single Mutation in the Outer Lipid-Facing Helix of a Pentameric Ligand-Gated Ion Channel Affects Channel Function Through a Radially-Propagating Mechanism. Front Mol Biosci 2021; 8:644720. [PMID: 33996899 PMCID: PMC8119899 DOI: 10.3389/fmolb.2021.644720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and are crucial drug targets. Their gating mechanism is triggered by ligand binding in the extracellular domain that culminates in the opening of a hydrophobic gate in the transmembrane domain. This domain is made of four α-helices (M1 to M4). Recently the outer lipid-facing helix (M4) has been shown to be key to receptor function, however its role in channel opening is still poorly understood. It could act through its neighboring helices (M1/M3), or via the M4 tip interacting with the pivotal Cys-loop in the extracellular domain. Mutation of a single M4 tyrosine (Y441) to alanine renders one pLGIC-the 5-HT3A receptor-unable to function despite robust ligand binding. Using Y441A as a proxy for M4 function, we here predict likely paths of Y441 action using molecular dynamics, and test these predictions with functional assays of mutant receptors in HEK cells and Xenopus oocytes using fluorescent membrane potential sensitive dye and two-electrode voltage clamp respectively. We show that Y441 does not act via the M4 tip or Cys-loop, but instead connects radially through M1 to a residue near the ion channel hydrophobic gate on the pore-lining helix M2. This demonstrates the active role of the M4 helix in channel opening.
Collapse
Affiliation(s)
| | - Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Carla Molteni
- Physics Department, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Epstein M, Bali K, Piggot TJ, Green AC, Timperley CM, Bird M, Tattersall JEH, Bermudez I, Biggin PC. Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR. Toxicol Lett 2021; 340:114-122. [PMID: 33482275 DOI: 10.1016/j.toxlet.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/27/2022]
Abstract
Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.
Collapse
Affiliation(s)
- Max Epstein
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK
| | - Karan Bali
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Thomas J Piggot
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Christopher M Timperley
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Mike Bird
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - John E H Tattersall
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Mesoy SM, Lummis SCR. M4, the Outermost Helix, is Extensively Involved in Opening of the α4β2 nACh Receptor. ACS Chem Neurosci 2021; 12:133-139. [PMID: 33295751 DOI: 10.1021/acschemneuro.0c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4), with M2 lining the pore, then M1 and M3, and with M4 outermost and adjacent to the membrane lipids. Despite its remote location, M4 contributes both to receptor assembly and gating in pLGICs where it has been examined. This study probes the role of M4 residues in the α4β2 nAChR using site-directed mutagenesis to individually mutate each residue to alanine, followed by expression in HEK293 cells and then characterization using membrane potential sensitive dye and radioligand binding. Two of the resulting mutant receptors showed altered EC50s, while 13 were nonfunctional, although coexpression with the chaperones RIC3 and nAChO resulted in 4 of these responding to agonist. Of the remaining 9, radioligand binding with epibatidine showed that 8 were expressed, suggesting these residues may play a role in channel opening. These data differ from similar studies in other pLGIC, where few or no Ala mutants in M4 ablate function, and they suggest that the α4β2 nAChR M4 may play a more significant role than in related receptors.
Collapse
Affiliation(s)
- Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
7
|
Deba F, Ramos K, Vannoy M, Munoz K, Akinola LS, Damaj MI, Hamouda AK. Examining the Effects of (α4)3(β2)2 Nicotinic Acetylcholine Receptor-Selective Positive Allosteric Modulator on Acute Thermal Nociception in Rats. Molecules 2020; 25:molecules25122923. [PMID: 32630476 PMCID: PMC7355939 DOI: 10.3390/molecules25122923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR)-based therapeutics are sought as a potential alternative strategy to opioids for pain management. In this study, we examine the antinociceptive effects of 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrazol-4-yl)isoxazole (CMPI), a novel positive allosteric modulator (PAM), with preferential selectivity to the low agonist sensitivity (α4)3(β2)2 nAChR and desformylflustrabromine (dFBr), a PAM for α4-containing nAChRs. We used hot plate and tail flick tests to measure the effect of dFBr and CMPI on the latency to acute thermal nociceptive responses in rats. Intraperitoneal injection of dFBr, but not CMPI, dose-dependently increased latency in the hot plate test. In the tail flick test, the effect achieved at the highest dFBr or CMPI dose tested was only <20% of the maximum possible effects reported for nicotine and other nicotinic agonists. Moreover, the coadministration of dFBr did not enhance the antinociceptive effect of a low dose of nicotine. Our results show that the direct acute effect of dFBr is superior to that for CMPI, indicating that selectivity to (α4)3(β2)2 nAChR is not advantageous in alleviating responses to acute thermal nociceptive stimulus. However, further studies are necessary to test the suitability of (α4)3(β2)2 nAChR-selective PAMs in chronic pain models.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kara Ramos
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Matthew Vannoy
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kemburli Munoz
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Lois S. Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - Ayman K. Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
- Correspondence: ; Tel.: +1-903-565-6578
| |
Collapse
|
8
|
Thompson MJ, Domville JA, Baenziger JE. The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses. J Biol Chem 2020; 295:11056-11067. [PMID: 32527728 DOI: 10.1074/jbc.ra120.013751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 01/22/2023] Open
Abstract
The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaimee A Domville
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
da Costa Couto ARGM, Price KL, Mesoy S, Capes E, Lummis SCR. The M4 Helix Is Involved in α7 nACh Receptor Function. ACS Chem Neurosci 2020; 11:1406-1412. [PMID: 32364364 DOI: 10.1021/acschemneuro.0c00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4) with M2 lining the pore and then M1 and M3, with M4 outermost and adjacent to the membrane lipids. M4 has a variety of roles: its interaction with neighboring M1 and M3 helices is important for receptor assembly, it can a transmit information on the lipid content of the membrane to the gating mechanism, and it may form a vital link to the extracellular domain via the Cys-loop. This study examines the role of M4 receptor residues in the α7 nAChR using site-directed mutagenesis and subsequent expression in Xenopus oocytes. The data indicate that many of the residues in M4 play a role in receptor function, as substitution with Ala can modify functional parameters; 11 of 24 mutants showed a small gain of function (<10-fold decrease in EC50), and 1 (D446A) did not respond to the agonist; it was also not expressed at the cell surface. Removal or addition of aromatic residues had small or no effects. These results demonstrate the α7 nAChR M4 has a role in receptor function, and a structural model suggests possible interactions of some of these residues with their neighbors.
Collapse
Affiliation(s)
- Ana R G M da Costa Couto
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Kerry L Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Susanne Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Emily Capes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
10
|
Cartereau A, Taillebois E, Selvam B, Martin C, Graton J, Le Questel JY, Thany SH. Cloning and Expression of Cockroach α7 Nicotinic Acetylcholine Receptor Subunit. Front Physiol 2020; 11:418. [PMID: 32457646 PMCID: PMC7221154 DOI: 10.3389/fphys.2020.00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding insect nicotinic acetylcholine receptor (nAChR) subtypes is of major interest because they are the main target of several insecticides. In this study, we have cloned a cockroach Pameα7 subunit that encodes a 518 amino acid protein with futures typical of nAChR subunit, and sequence homology to α7 subunit. Pameα7 is differently expressed in the cockroach nervous system, in particular in the antennal lobes, optical lobes and the mushroom bodies where specific expression was found in the non-compact Kenyon cells. In addition, we found that cockroach Pameα7 subunits expressed in Xenopus laevis oocytes can assemble to form homomeric receptors. Electrophysiological recordings using the two-electrode voltage clamp method demonstrated that nicotine induced an I max current of -92 ± 27 nA at 1 mM. Despite that currents are low with the endogenous ligand, ACh, this study provides information on the first expression of cockroach α7 homomeric receptor.
Collapse
Affiliation(s)
- Alison Cartereau
- LBLGC, UPRES EA 1207-USC INRA 1328, Université d’Orléans, Orléans, France
| | | | - Balaji Selvam
- Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Carine Martin
- LBLGC, UPRES EA 1207-USC INRA 1328, Université d’Orléans, Orléans, France
| | - Jérôme Graton
- CEISAM-UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Jean-Yves Le Questel
- CEISAM-UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Steeve H. Thany
- LBLGC, UPRES EA 1207-USC INRA 1328, Université d’Orléans, Orléans, France
| |
Collapse
|
11
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
12
|
Wilkerson JL, Deba F, Crowley ML, Hamouda AK, McMahon LR. Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 2020; 168:108008. [PMID: 32113032 DOI: 10.1016/j.neuropharm.2020.108008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Receptors containing α4 and β2 subunits are a major neuronal nicotinic acetylcholine receptor (nAChR) subtype in the brain. This receptor plays a critical role in nicotine addiction, with potential smoking cessation therapeutics producing modulation of α4β2 nAChR. In addition, compounds that act as agonists at α4β2 nAChR may be useful for the treatment of pathological pain. Further, as the α4β2 nAChR has been implicated in cognition, therapeutics that act as α4β2 nAChR agonists are also being examined as treatments for cognitive disorders and neurological diseases that impact cognitive function, such as Alzheimer's disease and schizophrenia. This review will cover the molecular in vitro evidence that allosteric modulators of the α4β2 neuronal nAChR provide several advantages over traditional α4β2 nAChR orthosteric ligands. Specifically, we explore the concept that nAChR allosteric modulators allow for greater pharmacological selectivity, while minimizing potential deleterious off-target effects. Further, here we discuss the development and preclinical in vivo behavioral assessment of allosteric modulators at the α4β2 neuronal nAChR as therapeutics for smoking cessation, pathological pain, as well as cognitive disorders and neurological diseases that impact cognitive function. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| | - Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States.
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
13
|
Mosesso R, Dougherty DA, Lummis SCR. Proline Residues in the Transmembrane/Extracellular Domain Interface Loops Have Different Behaviors in 5-HT 3 and nACh Receptors. ACS Chem Neurosci 2019; 10:3327-3333. [PMID: 31273982 DOI: 10.1021/acschemneuro.9b00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cys-loop receptors are important drug targets that are involved in signaling in the nervous system. The binding of neurotransmitters in the extracellular region of these receptors triggers an allosteric activation mechanism, the full details of which remain elusive, although structurally flexible loops in the interface between the extracellular region of Cys-loop receptors and the pore-forming transmembrane domain are known to play an important role. Here we explore the roles of three largely conserved Pro residues in two of these loops, the Cys-loop and M2-M3 loop, in 5-HT3A and α7 nACh receptors. The data from natural and noncanonical amino acid mutagenesis suggest that in both proteins a Pro is essential in the Cys-loop, probably because of its enhanced ability to form a cis peptide bond, although other factors are also involved. The important characteristics of Pros in the M2-M3 loop, however, differ in these two receptors: in the 5-HT3 receptor, the Pros can be replaced by some charged amino acids resulting in EC50s similar to those of wild-type receptors, while such substitutions in the nACh receptor ablate function. Ala substitution at one of these Pros also has different effects in the two receptors. Thus, our data show that even highly conserved residues can have distinct behaviors in related Cys-loop receptors.
Collapse
Affiliation(s)
- Richard Mosesso
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
14
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
15
|
Norleans J, Wang J, Kuryatov A, Leffler A, Doebelin C, Kamenecka TM, Lindstrom J. Discovery of an intrasubunit nicotinic acetylcholine receptor-binding site for the positive allosteric modulator Br-PBTC. J Biol Chem 2019; 294:12132-12145. [PMID: 31221718 DOI: 10.1074/jbc.ra118.006253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/19/2019] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptor (nAChR) ligands that lack agonist activity but enhance activation in the presence of an agonist are called positive allosteric modulators (PAMs). nAChR PAMs have therapeutic potential for the treatment of nicotine addiction and several neuropsychiatric disorders. PAMs need to be selectively targeted toward certain nAChR subtypes to tap this potential. We previously discovered a novel PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which selectively potentiates the opening of α4β2*, α2β2*, α2β4*, and (α4β4)2α4 nAChRs and reactivates some of these subtypes when desensitized (* indicates the presence of other subunits). We located the Br-PBTC-binding site through mutagenesis and docking in α4. The amino acids Glu-282 and Phe-286 near the extracellular domain on the third transmembrane helix were found to be crucial for Br-PBTC's PAM effect. E282Q abolishes Br-PBTC potentiation. Using (α4E282Qβ2)2α5 nAChRs, we discovered that the trifluoromethylated derivatives of Br-PBTC can potentiate channel opening of α5-containing nAChRs. Mutating Tyr-430 in the α5 M4 domain changed α5-selectivity among Br-PBTC derivatives. There are two kinds of α4 subunits in α4β2 nAChRs. Primary α4 forms an agonist-binding site with another β2 subunit. Accessory α4 forms an agonist-binding site with another α4 subunit. The pharmacological effect of Br-PBTC depends both on its own and agonists' occupancy of primary and accessory α4 subunits. Br-PBTC reactivates desensitized (α4β2)2α4 nAChRs. Its full efficacy requires intact Br-PBTC sites in at least one accessory and one primary α4 subunit. PAM potency increases with higher occupancy of the agonist sites. Br-PBTC and its derivatives should prove useful as α subunit-selective nAChR PAMs.
Collapse
Affiliation(s)
- Jack Norleans
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jingyi Wang
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abba Leffler
- Neuroscience Graduate Program, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York 10010
| | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
16
|
Changeux JP. The nicotinic acetylcholine receptor: a typical 'allosteric machine'. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0174. [PMID: 29735728 DOI: 10.1098/rstb.2017.0174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
The concept of allosteric interaction was initially proposed to account for the inhibitory feedback mechanism mediated by bacterial regulatory enzymes. In contrast with the classical mechanism of competitive, steric, interaction between ligands for a common site, allosteric interactions take place between topographically distinct sites and are mediated by a discrete and reversible conformational change of the protein. The concept was soon extended to membrane receptors for neurotransmitters and shown to apply to the signal transduction process which, in the case of the acetylcholine nicotinic receptor (nAChR), links the ACh binding site to the ion channel. Pharmacological effectors, referred to as allosteric modulators, such as Ca2+ ions and ivermectin, were discovered that enhance the transduction process when they bind to sites distinct from the orthosteric ACh site and the ion channel. The recent X-ray and electron microscopy structures, at atomic resolution, of the resting and active conformations of several homologues of the nAChR, in combination with atomistic molecular dynamics simulations reveal a stepwise quaternary transition in the transduction process with tertiary changes modifying the boundaries between subunits. These interfaces host orthosteric and allosteric modulatory sites which structural organization changes in the course of the transition. The nAChR appears as a typical allosteric machine. The model emerging from these studies has led to the conception and development of several new pharmacological agents.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris 75724, France .,Communications Cellulaires, Collège de France, Paris 75005, France
| |
Collapse
|
17
|
Mazzaferro S, Bermudez I, Sine SM. Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cell Mol Life Sci 2019; 76:1151-1167. [PMID: 30600358 PMCID: PMC8022356 DOI: 10.1007/s00018-018-2993-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Neuronal nicotinic receptors containing α4 and β2 subunits assemble in two pentameric stoichiometries, (α4)3(β2)2 and (α4)2(β2)3, each with distinct pharmacological signatures; (α4)3(β2)2 receptors are strongly potentiated by the drug NS9283, whereas (α4)2(β2)3 receptors are unaffected. Despite this stoichiometry-selective pharmacology, the molecular identity of the target for NS9283 remains elusive. Here, studying (α4)3(β2)2 receptors, we show that mutations at either the principal face of the β2 subunit or the complementary face of the α4 subunit prevent NS9283 potentiation of ACh-elicited single-channel currents, suggesting the drug targets the β2-α4 pseudo-agonist sites, the α4-α4 agonist site, or both sites. To distinguish among these possibilities, we generated concatemeric receptors with mutations at specified subunit interfaces, and monitored the ability of NS9283 to potentiate ACh-elicited single-channel currents. We find that a mutation at the principal face of the β2 subunit at either β2-α4 pseudo-agonist site suppresses potentiation, whereas mutation at the complementary face of the α4 subunit at the α4-α4 agonist site allows a significant potentiation. Thus, monitoring potentiation of single concatemeric receptor channels reveals that the β2-α4 pseudo-agonist sites are required for stoichiometry-selective drug action. Together with the recently determined structure of the (α4)3(β2)2 receptor, the findings have implications for structure-guided drug design.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Isabel Bermudez
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 OBP, UK
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Dukat M, Jain A, German N, Ferrara-Pontoriero R, Huang Y, Ma Y, Schulte MK, Glennon RA. des-Formylflustrabromine (dFBr): A Structure-Activity Study on Its Ability To Potentiate the Action of Acetylcholine at α4β2 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2018; 9:2984-2996. [PMID: 30028943 DOI: 10.1021/acschemneuro.8b00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The naturally occurring indole alkaloid des-formylflustrabromine (dFBr; 1) is one of the first agents shown to act as a selective positive allosteric modulator (PAM) at α4β2 nicotinic acetylcholine receptors (nAChRs). We previously deconstructed this agent to determine which of its structural features contribute to its actions and have identified an agent that might serve as the basis for a " working pharmacophore". Here, we elaborate the dFBr (1; EC50 = 0.2 μM) structure to identify how various structural modifications impact its actions. Electrophysiological studies with Xenopus laevis oocytes identified several compounds with dFBr-like potency and one, the 5-bromo analogue of 1 (i.e., 5-bromo dFBr; 25; EC50 = 0.4 μM), with more than twice the efficacy of 1 as a PAM at α4β2 nAChRs.
Collapse
Affiliation(s)
- Małgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Atul Jain
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Nadezhda German
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Rossana Ferrara-Pontoriero
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Yanzhou Huang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 S 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| | - Yilong Ma
- Institute of Arctic Biology, Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775-7000, United States
| | - Marvin K. Schulte
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 S 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| | - Richard A. Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| |
Collapse
|
19
|
Pan Z, Zhao M, Peng Y, Wang J. Functional divergence analysis of vertebrate neuronal nicotinic acetylcholine receptor subunits. J Biomol Struct Dyn 2018; 37:2938-2948. [PMID: 30044167 DOI: 10.1080/07391102.2018.1500945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3 D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2-β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the "transition zone" may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhenhua Pan
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China.,b Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment , Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital , Tianjin , China
| | - Mengwen Zhao
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| | - Yonglin Peng
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| | - Ju Wang
- a School of Biomedical Engineering , Tianjin Medical University , Tianjin , China
| |
Collapse
|
20
|
New K, Del Villar SG, Mazzaferro S, Alcaino C, Bermudez I. The fifth subunit of the (α4β2) 2 β2 nicotinic ACh receptor modulates maximal ACh responses. Br J Pharmacol 2018; 175:1822-1837. [PMID: 28600847 PMCID: PMC5978951 DOI: 10.1111/bph.13905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The fifth subunit in the (α4β2)2 α4 nicotinic ACh receptor (nAChR) plays a determining role in the pharmacology of this nAChR type. Here, we have examined the role of the fifth subunit in the ACh responses of the (α4β2)2 β2 nAChR type. EXPERIMENTAL APPROACH The role of the fifth subunit in receptor function was explored using two-electrode voltage clamp electrophysiology, along with subunit-targeted mutagenesis and the substituted cysteine scanning method applied to fully linked (α4β2)2 β2 receptors. KEY RESULTS Covalent modification of the cysteine-substituted fifth subunit with a thiol-reactive agent (MTS) caused irreversible inhibition of receptor function. ACh reduced the rate of the reaction to MTS, but the competitive inhibitor dihydro-β-erythroidine had no effect. Alanine substitution of conserved residues that line the core of the agonist sites on α4(+)/β2(-) interfaces did not impair receptor function. However, impairment of agonist binding to α4(+)/β2(-) agonist sites by mutagenesis modified the effect of ACh on the rate of the reaction to MTS. The extent of this effect was dependent on the position of the agonist site relative to the fifth subunit. CONCLUSIONS AND IMPLICATIONS The fifth subunit in the (α4β2)2 β2 receptor isoform modulates maximal ACh responses. This effect appears to be driven by a modulatory, and asymmetric, association with the α4(+)/β2(-) agonist sites. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Karina New
- Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Silvia Garcia Del Villar
- Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Simone Mazzaferro
- Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Constanza Alcaino
- Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
21
|
Cory-Wright J, Alqazzaz M, Wroe F, Jeffreys J, Zhou L, Lummis SCR. Aromatic Residues in the Fourth Transmembrane-Spanning Helix M4 Are Important for GABAρ Receptor Function. ACS Chem Neurosci 2018; 9:284-290. [PMID: 29120166 DOI: 10.1021/acschemneuro.7b00315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
GABAρ receptors are a subfamily of the GABAA receptor family of pentameric ligand-gated ion channels (pLGICs). Each of the five subunits has four transmembrane α-helices (M1-M4), with M4 most distant from the central pore. Aromatic residues in this M4 helix are important for receptor assembly in pLGICs and also may interact with adjacent lipids and/or residues in neighboring α-helices and the extracellular domain to modify or enable channel gating. This study examines the role of M4 receptor aromatic residues in the GABAρ receptor transmembrane domain using site-directed mutagenesis and subsequent expression in HEK293 cells, probing functional parameters using a fluorescent membrane-potential-sensitive dye. The data indicate that many of the aromatic residues in M4 play a role in receptor function, as substitution with other residues can ablate and/or modify functional parameters. Modeling showed that these residues likely interact with residues in the adjacent M1 and M3 α-helices and/or residues in the Cys-loop in the extracellular domain. We suggest that many of these aromatic interactions contribute to an "aromatic zipper", which allows interactions between M4 and the rest of the receptor that are essential for function. Thus, the data support other studies showing that M4 does not play a passive role in "protecting" the other transmembrane helices from the lipid bilayer but is actively involved in the function of the protein.
Collapse
Affiliation(s)
- James Cory-Wright
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Mona Alqazzaz
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Francesca Wroe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Jenny Jeffreys
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Lu Zhou
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
22
|
Taylor-Wells J, Senan A, Bermudez I, Jones AK. Species specific RNA A-to-I editing of mosquito RDL modulates GABA potency and influences agonistic, potentiating and antagonistic actions of ivermectin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:1-11. [PMID: 29223796 DOI: 10.1016/j.ibmb.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
The insect GABA receptor, RDL, is the target of several classes of pesticides. The peptide sequences of RDL are generally highly conserved between diverse insects. However, RNA A-to-I editing can effectively alter amino acid residues of RDL in a species specific manner, which can affect the potency of GABA and possibly insecticides. We report here that RNA A-to-I editing alters the gene products of Rdl in three mosquito disease vectors, recoding five amino acid residues in RDL of Aedes aegypti and six residues in RDLs of Anopheles gambiae and Culex pipiens, which is the highest extent of editing in RDL observed to date. Analysis of An. gambiae Rdl cDNA sequences identified 24 editing isoforms demonstrating a considerable increase in gene product diversity. RNA editing influenced the potency of the neurotransmitter, GABA, on An. gambiae RDL editing isoforms expressed in Xenopus laevis oocytes, as demonstrated by EC50s ranging from 5 ± 1 to 246 ± 41 μM. Fipronil showed similar potency on different editing isoforms, with IC50s ranging from 0.18 ± 0.08 to 0.43 ± 0.09 μM. In contrast, editing of An. gambiae RDL affected the activating, potentiating and inhibiting actions of ivermectin. For example, ivermectin potentiated currents induced by GABA at the EC20 concentration in the unedited isoform but not in the fully edited variant. Editing of a residue in the first transmembrane domain or the cys-loop influenced this potentiation, highlighting residues involved in the allosteric mechanisms of cys-loop ligand-gated ion channels. Understanding the interactions of ivermectin with molecular targets may have relevance to mosquito control in areas where people are administered with ivermectin to treat parasitic diseases.
Collapse
Affiliation(s)
- Jennina Taylor-Wells
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, OX30BP, UK.
| | - Anish Senan
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, OX30BP, UK.
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, OX30BP, UK.
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, OX30BP, UK.
| |
Collapse
|
23
|
Deba F, Ali HI, Tairu A, Ramos K, Ali J, Hamouda AK. LY2087101 and dFBr share transmembrane binding sites in the (α4)3(β2)2 Nicotinic Acetylcholine Receptor. Sci Rep 2018; 8:1249. [PMID: 29352227 PMCID: PMC5775429 DOI: 10.1038/s41598-018-19790-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChRs) have potential therapeutic application in neuropathologies associated with decrease in function or loss of nAChRs. In this study, we characterize the pharmacological interactions of the nAChRs PAM, LY2087101, with the α4β2 nAChR using mutational and computational analyses. LY2087101 potentiated ACh-induced currents of low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs with similar potencies albeit to a different maximum potentiation (potentiation I max = ~840 and 450%, respectively). Amino acid substitutions within the α4 subunit transmembrane domain [e.g. α4Leu256 and α4Leu260 within the transmembrane helix 1 (TM1); α4Phe316 within the TM3; and α4Gly613 within TM4] significantly reduced LY2087101 potentiation of (α4)3(β2)2 nAChR. The locations of these amino acid residues and LY2087101 computational docking analyses identify two LY2087101 binding sites: an intrasubunit binding site within the transmembrane helix bundle of α4 subunit at the level of α4Leu260/α4Phe316 and intersubunit binding site at the α4:α4 subunit interface at the level of α4Leu256/α4Ile315 with both sites extending toward the extracellular end of the transmembrane domain. We also show that desformylflustrabromine (dFBr) binds to these two sites identified for LY2087101. These results provide structural information that are pertinent to structure-based design of nAChR allosteric modulators.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Hamed I Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Abisola Tairu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Kara Ramos
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Jihad Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA.
| |
Collapse
|
24
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|