1
|
Gahlawat S, Siess J, Losada N, Timm J, Nanda V, Shreiber DI. Impact of vascular Ehlers-Danlos Syndrome-associated Gly substitutions on structure, function, and mechanics using bacterial collagen. Matrix Biol 2025; 135:87-98. [PMID: 39645092 DOI: 10.1016/j.matbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) arises from mutations in collagen-III, a major structural component of the extracellular matrix (ECM) in vascularized tissues, including blood vessels. Fibrillar collagens form a triple-helix that is characterized by a canonical (Gly-X-Y)n sequence. The substitution of another amino acid for Gly within this conserved repeating sequence is associated with several hereditary connective tissue disorders, including vEDS. The clinical severity of vEDS depends on the identity of the substituted amino acid and its location. In this study, we engineered recombinant bacterial collagen-like proteins (CLPs) with previously reported Gly→X (X=Ser or Arg) vEDS substitutions within the integrin-binding site. Employing a combination of biophysical techniques, enzymatic digestion assays, integrin binding affinity assays, and computational modeling, we assessed the impact of Gly→X substitutions on structure, stability, function, and mechanical properties. While constructs with Ser or Arg substitutions maintained a triple-helix structure, Arg substitution significantly reduced global thermal stability, heightened susceptibility to trypsin digestion, and altered integrin α2-inserted (α2I) domain binding. Molecular dynamics (MD) simulations also demonstrated distinct effects of different Gly substitutions on the triple-helix structure - Arg substitutions induced notable bulging at the substitution site and disrupted interchain hydrogen bonds compared to Ser substitutions. Additionally, steered MD simulations revealed that Arg substitution led to a significant decrease in the Young's modulus of the triple-helix. Bacterial CLPs have proved to be a powerful model for studying the underlying mechanisms of vEDS-causing mutations in collagen-III. Serine and arginine substitutions differentially perturb cell-matrix interactions and ECM in a manner consistent with clinical vEDS severity.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States
| | - Jan Siess
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States; Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Natalie Losada
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States
| | - Jennifer Timm
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Marine and Coastal Sciences, Rutgers University - New Brunswick, New Brunswick, New Jersey 08901, United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States.
| |
Collapse
|
2
|
Bhattarai P, Yilmaz E, Cakir EÖ, Korkmaz HY, Lee AJ, Ma Y, Celikkaya H, Cosacak MI, Haage V, Wang X, Nelson N, Lin W, Zhang Y, Nuriel T, Jülich D, Iş Ö, Holley SA, de Jager P, Fisher E, Tubbesing K, Teich AF, Bertucci T, Temple S, Ertekin-Taner N, Vardarajan BN, Mayeux R, Kizil C. APOE- ε4-induced Fibronectin at the blood-brain barrier is a conserved pathological mediator of disrupted astrocyte-endothelia interaction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634732. [PMID: 39975303 PMCID: PMC11838230 DOI: 10.1101/2025.01.24.634732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature of Alzheimer's disease (AD), particularly in individuals carrying the APOE-ε4 allele. This dysfunction worsens neuroinflammation and hinders the removal of toxic proteins, such as amyloid-beta (Aβ42), from the brain. In post-mortem brain tissues and in animal models, we previously reported that fibronectin accumulates at the BBB predominantly in APOE-ε4 carriers. Furthermore, we found a loss-of-function variant in the fibronectin 1 ( FN1 ) gene significantly reduces aggregated fibronectin levels and decreases AD risk among APOE-ε4 carriers. Yet, the molecular mechanisms downstream of fibronectin at the BBB remain unclear. The extracellular matrix (ECM) plays a crucial role in maintaining BBB homeostasis and orchestrating the interactions between BBB cell types, including endothelia and astrocytes. Understanding the mechanisms affecting the ECM and BBB cell types will be critical for developing effective therapies against AD, especially among APOE-ε4 carriers. Here, we demonstrate that APOE-ε4 , Aβ42, and inflammation drive the induction of FN1 expression in several models including zebrafish, mice, iPSC-derived human 3D astrocyte and 3D cerebrovascular cell cultures, and in human brains. Fibronectin accumulation disrupts astroglial-endothelial interactions and the signalling cascade between vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor (HBEGF) and Insulin-like growth factor 1 (IGF1). This accumulation of fibronectin in APOE-ε4- associated AD potentiates BBB dysfunction, which strongly implicates reducing fibronectin deposition as a potential therapeutic target for AD. Graphical abstract Accessibility text This image illustrates the effects of different APOE isoforms (ApoE-ε3 and ApoE-ε4) on blood-brain barrier (BBB) integrity, focusing on the molecular interactions between astrocytes and endothelial cells. This figure emphasizes the detrimental effects of ApoE-ε4 on BBB integrity via fibronectin accumulation and altered signaling pathways. The top section provides a schematic overview of the blood-brain barrier, highlighting astrocytes, endothelial cells, and their interface. The left panel represents the ApoE-ε3 condition: Normal fibronectin (FN1) levels support healthy interactions between astrocytes and endothelial cells. Growth factors, including VEGFA, HBEGF, and IGF1, maintain BBB integrity through their respective receptors (VEGFR and EGFR). Green arrows indicate activation of these signaling pathways. The right panel depicts the ApoE-ε4 condition: Elevated fibronectin (FN1) disrupts astrocyte-endothelium interactions. FN1 binds integrins and activates focal adhesion kinase (FAK), inhibiting VEGFA, which is required for endothelial HBEGF that in turn activates IGF1 signaling. Red symbols indicate inhibition of HBEGF, VEGFA, and IGF1 pathways, leading to BBB dysfunction. Highlights APOE-ε4 drives fibronectin deposition in Alzheimer's, disrupting astrocyte-endothelia interactions. APOE-ε4 and fibronectin co-localize, forming aggregates at blood-brain barrier (BBB). Fibronectin alters the signaling between VEGF, IGF1, and HBEGF impairing BBB function. Reducing fibronectin restores BBB integrity and offsets APOE-ε4 pathology.
Collapse
|
3
|
Bhattarai P, Gunasekaran TI, Belloy ME, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Turgutalp B, Sukumar G, Alba C, McGrath EM, Hupalo DN, Bacikova D, Le Guen Y, Lantigua R, Medrano M, Rivera D, Recio P, Nuriel T, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Greicius M, Dalgard CL, Zody M, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta Neuropathol 2024; 147:70. [PMID: 38598053 PMCID: PMC11006751 DOI: 10.1007/s00401-024-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Tamil Iniyan Gunasekaran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dörthe Jülich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Hüseyin Tayran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bengisu Turgutalp
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Camille Alba
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Elisa Martinez McGrath
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Daniel N Hupalo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Dagmar Bacikova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Lantigua
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Patricia Recio
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Scott Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Zody
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, NY, 10032, USA
| | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
5
|
Bhattarai P, Gunasekaran TI, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Lantigua R, Medrano M, Rivera D, Recio P, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in Fibronectin 1 ( FN1 ) protects against APOEe4 in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573895. [PMID: 38260431 PMCID: PMC10802344 DOI: 10.1101/2024.01.02.573895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
|
6
|
Gahlawat S, Nanda V, Shreiber DI. Purification of recombinant bacterial collagens containing structural perturbations. PLoS One 2023; 18:e0285864. [PMID: 37196046 DOI: 10.1371/journal.pone.0285864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Streptococcus pyogenes-derived recombinant bacterial collagen-like proteins (CLPs) are emerging as a potential biomaterial for biomedical research and applications. Bacterial CLPs form stable triple helices and lack specific interactions with human cell surface receptors, thus enabling the design of novel biomaterials with specific functional attributes. Bacterial collagens have been instrumental in understanding collagen structure and function in normal and pathological conditions. These proteins can be readily produced in E. coli, purified using affinity chromatography, and subsequently isolated after cleavage of the affinity tag. Trypsin is a widely used protease during this purification step since the triple helix structure is resistant to trypsin digestion. However, the introduction of Gly→X mutations or natural interruptions within CLPs can perturb the triple helix structure, making them susceptible to trypsin digestion. Consequently, removing the affinity tag and isolating collagen-like (CL) domains containing mutations is impossible without degradation of the product. We present an alternative method to isolate CL domains containing Gly→X mutations utilizing a TEV protease cleavage site. Protein expression and purification conditions were optimized for designed protein constructs to achieve high yield and purity. Enzymatic digestion assays demonstrated that CL domains from wild-type CLPs could be isolated by digestion with either trypsin or TEV protease. In contrast, CLPs containing Gly→Arg mutations are readily digested by trypsin while digestion with TEV protease cleaved the His6-tag, enabling the isolation of mutant CL domains. The developed method can be adapted to CLPs containing various new biological sequences to develop multifunctional biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| |
Collapse
|
7
|
Bateman JF, Shoulders MD, Lamandé SR. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connect Tissue Res 2022; 63:210-227. [PMID: 35225118 PMCID: PMC8977234 DOI: 10.1080/03008207.2022.2036735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations in collagen genes cause a broad range of connective tissue pathologies. Structural mutations that impact procollagen assembly or triple helix formation and stability are a common and important mutation class. How misfolded procollagens engage with the cellular proteostasis machinery and whether they can elicit a cytotoxic unfolded protein response (UPR) is a topic of considerable research interest. Such interest is well justified since modulating the UPR could offer a new approach to treat collagenopathies for which there are no current disease mechanism-targeting therapies. This review scrutinizes the evidence underpinning the view that endoplasmic reticulum stress and chronic UPR activation contributes significantly to the pathophysiology of the collagenopathies. While there is strong evidence that the UPR contributes to the pathology for collagen X misfolding mutations, the evidence that misfolding mutations in other collagen types induce a canonical, cytotoxic UPR is incomplete. To gain a more comprehensive understanding about how the UPR amplifies to pathology, and thus what types of manipulations of the UPR might have therapeutic relevance, much more information is needed about how specific misfolding mutation types engage differentially with the UPR and downstream signaling responses. Most importantly, since the capacity of the proteostasis machinery to respond to collagen misfolding is likely to vary between cell types, reflecting their functional roles in collagen and extracellular matrix biosynthesis, detailed studies on the UPR should focus as much as possible on the actual target cells involved in the collagen pathologies.
Collapse
Affiliation(s)
- John F. Bateman
- Murdoch Children’s Research Institute, Australia,Department of Paediatrics, University of Melbourne, Australia
| | | | - Shireen R. Lamandé
- Murdoch Children’s Research Institute, Australia,Department of Paediatrics, University of Melbourne, Australia
| |
Collapse
|
8
|
Varma S, Orgel JPRO, Schieber JD. Contrasting Local and Macroscopic Effects of Collagen Hydroxylation. Int J Mol Sci 2021; 22:ijms22169068. [PMID: 34445791 PMCID: PMC8396666 DOI: 10.3390/ijms22169068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Collagen is heavily hydroxylated. Experiments show that proline hydroxylation is important to triple helix (monomer) stability, fibril assembly, and interaction of fibrils with other molecules. Nevertheless, experiments also show that even without hydroxylation, type I collagen does assemble into its native D-banded fibrillar structure. This raises two questions. Firstly, even though hydroxylation removal marginally affects macroscopic structure, how does such an extensive chemical change, which is expected to substantially reduce hydrogen bonding capacity, affect local structure? Secondly, how does such a chemical perturbation, which is expected to substantially decrease electrostatic attraction between monomers, affect collagen's mechanical properties? To address these issues, we conduct a benchmarked molecular dynamics study of rat type I fibrils in the presence and absence of hydroxylation. Our simulations reproduce the experimental observation that hydroxylation removal has a minimal effect on collagen's D-band length. We also find that the gap-overlap ratio, monomer width and monomer length are minimally affected. Surprisingly, we find that de-hydroxylation also has a minor effect on the fibril's Young's modulus, and elastic stress build up is also accompanied by tightening of triple-helix windings. In terms of local structure, de-hydroxylation does result in a substantial drop (23%) in inter-monomer hydrogen bonding. However, at the same time, the local structures and inter-monomer hydrogen bonding networks of non-hydroxylated amino acids are also affected. It seems that it is this intrinsic plasticity in inter-monomer interactions that preclude fibrils from undergoing any large changes in macroscopic properties. Nevertheless, changes in local structure can be expected to directly impact collagen's interaction with extra-cellular matrix proteins. In general, this study highlights a key challenge in tissue engineering and medicine related to mapping collagen chemistry to macroscopic properties but suggests a path forward to address it using molecular dynamics simulations.
Collapse
Affiliation(s)
- Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, Department of Physics, University of South Florida, Tampa, FL 33620, USA
- Correspondence:
| | - Joseph P. R. O. Orgel
- Department of Biology, Department of Physics, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Jay D. Schieber
- Department of Chemical and Biological Engineering, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
9
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
10
|
Zhu Y, Huang C, Su M, Ge Z, Gao L, Shi Y, Wang X, Chen J. Characterization of amino acid residues of T-cell receptors interacting with HLA-A*02-restricted antigen peptides. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:495. [PMID: 33850892 PMCID: PMC8039679 DOI: 10.21037/atm-21-835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background The present study aimed to explore residues’ properties interacting with HLA-A*02-restricted peptides on T-cell receptors (TCRs) and their effects on bond types of interaction and binding free energy. Methods We searched the crystal structures of HLA-A*02-restricted peptide-TCR complexes from the Protein Data Bank (PDB) database and subsequently collected relevant parameters. We then employed Schrodinger to analyze the bond types of interaction and Gromacs 2019 to evaluate the TCR-antigen peptide complex’s molecular dynamics simulation. Finally, we compared the changes of bond types of interaction and binding free energy before and after residue substitution to ensure consistency of the conditions before and after residue substitution. Results The main sites on the antigen peptides that formed the intermolecular interaction [hydrogen bond (HB) and pi stack] with TCRs were P4, P8, P2, and P6. The hydrophobicity of the amino acids inside or outside the disulfide bond of TCRs may be related to the intermolecular interaction and binding free energy between TCRs and peptides. Residues located outside the disulfide bond of TCR α or β chains and forming pi stack force played favorable roles in the complex intermolecular interaction and binding free energy. The residues of the TCR α or β chains that interacted with peptides were replaced by alanine (Ala) or glycine (Gly), and their intermolecular binding free energy of the complex had been improved. However, it had nothing to do with the formation of HB. Conclusions The findings of this study suggest that the hydrophobic nature of the amino acids inside or outside the disulfide bonds on the TCR may be associated with the intermolecular interaction and binding between the TCR and polypeptide. The residues located outside the TCR α or β single-chain disulfide bond and forming the pi-stack force showed a beneficial effect on the intermolecular interaction and binding of the complex. In addition, the part of the residues on the TCR α or β single chain that produced bond types of interaction with the polypeptide after being replaced by Ala or Gly, the intermolecular binding free energy of the complex was increased, regardless of whether HB was formed.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Changxin Huang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Meng Su
- Master Class, Zhejiang Chinese Medical University, Fourth School of Clinical Medicine, Hangzhou, China
| | - Zuanmin Ge
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Lanlan Gao
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Yanfei Shi
- Master Class, Hangzhou Normal University, School of Medicine, Hangzhou, China
| | - Xuechun Wang
- Master Class, Zhejiang Chinese Medical University, Fourth School of Clinical Medicine, Hangzhou, China
| | - Jianfeng Chen
- Department of Proctology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
11
|
Steinle J, Hossain WA, Lovell S, Veatch OJ, Butler MG. ADAMTSL2 gene variant in patients with features of autosomal dominant connective tissue disorders. Am J Med Genet A 2020; 185:743-752. [PMID: 33369194 DOI: 10.1002/ajmg.a.62030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/08/2022]
Abstract
Ehlers-Danlos syndrome (EDS) consists of a heterogeneous group of genetically inherited connective tissue disorders. A family with three affected members over two generations with features of Dermatosparaxic EDS (dEDS) autosomal dominant transmission was reported by Desai et al. and having a heterozygous nonsynonymous missense variant of ADAMTSL2 (c.1261G > A; p. Gly421Ser). Variation in this gene is also reported to cause autosomal recessive geleophysic dysplasia. We report five unrelated patients with the Gly421Ser variant identified from a large series of patients presenting with features of connective tissue disorders, each with a positive family history consistent with autosomal dominant transmission. Clinical features of a connective tissue disorder included generalized joint hypermobility and pain with fragility of internal and external tissues including of skin, dura, and arteries. Overall, our analyses including bioinformatics, protein modeling, and gene-protein interactions with the cases described would add evidence for the Gly421Ser variant in ADAMTSL2 as causative for variable expressivity of autosomal dominant connective tissue disorders.
Collapse
Affiliation(s)
- Jacob Steinle
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Waheeda A Hossain
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
12
|
Yeo J, Qiu Y, Jung GS, Zhang YW, Buehler MJ, Kaplan DL. Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. Biomaterials 2020; 240:119857. [PMID: 32085975 DOI: 10.1016/j.biomaterials.2020.119857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/28/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Patients with Alport syndrome (AS) exhibit blood and elevated protein levels in their urine, inflamed kidneys, and many other abnormalities. AS is attributed to mutations in type IV collagen genes, particularly glycine missense mutations in the collagenous domain of COL4A5 that disrupt common structural motifs in collagen from the repeat (Gly-Xaa-Yaa)n amino acid sequence. To characterize and elucidate the molecular mechanisms underlying how AS-related mutations perturb the structure and function of type IV collagen, experimental studies and molecular simulations were integrated to investigate the structure, stability, protease sensitivity, and integrin binding affinity of collagen-like proteins containing amino acid sequences from the α5(IV) chain and AS-related Gly missense mutations. We show adverse effects where (i) three AS-related Gly missense mutations significantly reduced the structural stability of the collagen in terms of decreased melting temperatures and calorimetric enthalpies, in conjunction with a collective drop in the external work needed to unfold the peptides containing mutation sequences; (ii) due to local unwinding around the sites of mutations, these triple helical peptides were also degraded more rapidly by trypsin and chymotrypsin, as these enzymes could access the collagenous triple helix more easily and increase the number of contacts; (iii) the mutations further abolished the ability of the recombinant collagens to bind to integrins and greatly reduced the binding affinities between collagen and integrins, thus preventing cells from adhering to these mutants. Our unified experimental and computational approach provided underlying insights needed to guide potential therapies for AS that ameliorate the adverse effects from AS disease onset and progression.
Collapse
Affiliation(s)
- Jingjie Yeo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yimin Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, 430064, PR China
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
13
|
Chen EA, Lin YS. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118458. [DOI: 10.1016/j.bbamcr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
14
|
Rodimova SA, Meleshina AV, Kalabusheva EP, Dashinimaev EB, Reunov DG, Torgomyan HG, Vorotelyak EA, Zagaynova EV. Metabolic activity and intracellular pH in induced pluripotent stem cells differentiating in dermal and epidermal directions. Methods Appl Fluoresc 2019; 7:044002. [PMID: 31412329 DOI: 10.1088/2050-6120/ab3b3d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSC) are a promising tool for personalized cell therapy, in particular, in the field of dermatology. Metabolic plasticity of iPSC are not completely understood due to the fact that iPSC have a mixed mitochondrial phenotype, which still resembles that of somatic cells. In this study we investigated the metabolic changes in iPSC undergoing differentiation in two directions, dermal and epidermal, using two-photon fluorescence microscopy combined with FLIM. Directed differentiation of iPSC into dermal fibroblasts and keratinocyte progenitor cells was induced. Cellular metabolism was examined on the basis of the fluorescence of the metabolic cofactors NAD(P)H and FAD. The optical redox ratio (FAD/NAD(P)H) and the fluorescence lifetimes of NAD(P)H and FAD were traced using two-photon fluorescence microscopy combined with FLIM. Evaluation of the intracellular pH was carried out with the fluorescent pH sensor SypHer-2 and fluorescence microscopy. In this study, evaluation of the metabolic status of iPSC during dermal and epidermal differentiation was accomplished for the first time with the use of optical metabolic imaging. Based on the data on the FAD/NAD(P)H redox ratio and on the fluorescence lifetimes of protein-bound form of NAD(P)H and closed form of FAD, we registered a metabolic shift toward a more oxidative status in the process of iPSC differentiation into dermal fibroblasts and keratinocyte progenitor cells. Biosynthetic processes occurring in dermal fibroblasts associated with the synthesis of fibronectin and versican, that stimulate increased energy metabolism and lower the intracellular pH. No intracellular pH shift is observed in the culture of keratinocyte progenitor cells, which reflects the incomplete process of differentiation in this type of cells. Presented results provide the basis for further understanding the metabolic features of iPSC during differentiation process, which is essential for developing new treatment strategies in cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Svetlana A Rodimova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603950, Russia. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, 603950, Russia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hoop CL, Kemraj AP, Wang B, Gahlawat S, Godesky M, Zhu J, Warren HR, Case DA, Shreiber DI, Baum J. Molecular underpinnings of integrin binding to collagen-mimetic peptides containing vascular Ehlers-Danlos syndrome-associated substitutions. J Biol Chem 2019; 294:14442-14453. [PMID: 31406019 DOI: 10.1074/jbc.ra119.009685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2β1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2β1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin α2β1 interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2-inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-α2I interaction. The Gly → Arg substitution destabilized CMP-α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Allysa P Kemraj
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Baifan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Madison Godesky
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Haley R Warren
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
16
|
Dasa V, Eastwood JRB, Podgorski M, Park H, Blackstock C, Antoshchenko T, Rogala P, Bieganski T, Jazwinski SM, Czarny-Ratajczak M. Exome sequencing reveals a novel COL2A1 mutation implicated in multiple epiphyseal dysplasia. Am J Med Genet A 2019; 179:534-541. [PMID: 30740902 DOI: 10.1002/ajmg.a.61049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
Mutations in the COMP, COL9A1, COL9A2, COL9A3, MATN3, and SLC26A2 genes cause approximately 70% of multiple epiphyseal dysplasia (MED) cases. The genetic changes involved in the etiology of the remaining cases are still unknown, suggesting that other genes contribute to MED development. Our goal was to identify a mutation causing an autosomal dominant form of MED in a large multigenerational family. Initially, we excluded all genes known to be associated with autosomal dominant MED by using microsatellite and SNP markers. Follow-up with whole-exome sequencing analysis revealed a mutation c.2032G>A (p.Gly678Arg) in the COL2A1 gene (NCBI Reference Sequence: NM_001844.4), which co-segregated with the disease phenotype in this family, manifested by severe hip dysplasia and osteoarthritis. One of the affected family members had a double-layered patella, which is frequently seen in patients with autosomal recessive MED caused by DTDST mutations and sporadically in the dominant form of MED caused by COL9A2 defect.
Collapse
Affiliation(s)
- Vinod Dasa
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James R B Eastwood
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michal Podgorski
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Christopher Blackstock
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tetyana Antoshchenko
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Piotr Rogala
- Department of Spine Surgery, Oncological Orthopedics and Traumatology, W. Dega University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Physiotherapy, H. Cegielski State College, Gniezno, Poland
| | - Tadeusz Bieganski
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Malwina Czarny-Ratajczak
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
17
|
Sun X, Liu Z, Zhao S, Xu X, Wang S, Guo C, Xiao J. A self-assembling collagen mimetic peptide system to simultaneously characterize the effects of osteogenesis imperfecta mutations on conformation, assembly and activity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00086k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have created a self-assembling collagen mimetic peptide system which for the first time facilitates simultaneous characterization of the effects of osteogenesis imperfecta mutations on stability, conformation, assembly and activity.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Zhao Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Sha Zhao
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Xiaojun Xu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Chengchen Guo
- Department of Biomedical Engineering
- Tufts University
- Medford
- USA
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
18
|
Qiu Y, Poppleton E, Mekkat A, Yu H, Banerjee S, Wiley SE, Dixon JE, Kaplan DL, Lin YS, Brodsky B. Enzymatic Phosphorylation of Ser in a Type I Collagen Peptide. Biophys J 2018; 115:2327-2335. [PMID: 30527445 DOI: 10.1016/j.bpj.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/13/2023] Open
Abstract
Phosphoproteomics studies have reported phosphorylation at multiple sites within collagen, raising the possibility that these post-translational modifications regulate the physical or biological properties of collagen. In this study, molecular dynamics simulations and experimental studies were carried out on model peptides to establish foundational principles of phosphorylation of Ser residues in collagen. A (Gly-Xaa-Yaa)11 peptide was designed to include a Ser-containing sequence from type I collagen that was reported to be phosphorylated. The physiological kinase involved in collagen phosphorylation is not known. In vitro studies showed that a model kinase ERK1 (extracellular signal-regulated protein kinase 1) would phosphorylate Ser within the consensus sequence if the collagen-like peptide is in the denatured state but not in the triple-helical state. The peptide was not a substrate for FAM20C, a kinase present in the secretory pathway, which has been shown to phosphorylate many extracellular matrix proteins. The unfolded single chain (Gly-Xaa-Yaa)11 peptide containing phosphoSer was able to refold to form a stable triple helix but at a reduced folding rate and with a small decrease in thermal stability relative to the nonphosphorylated peptide at neutral pH. These biophysical studies on model peptides provide a basis for investigations into the physiological consequences of collagen phosphorylation and the application of phosphorylation to regulate the properties of collagen biomaterials.
Collapse
Affiliation(s)
- Yimin Qiu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Erik Poppleton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Arya Mekkat
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - Hongtao Yu
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - Sourav Banerjee
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Sandra E Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
| |
Collapse
|
19
|
Mekkat A, Poppleton E, An B, Visse R, Nagase H, Kaplan DL, Brodsky B, Lin YS. Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage. J Struct Biol 2018; 203:247-254. [PMID: 29763735 DOI: 10.1016/j.jsb.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/18/2022]
Abstract
Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage.
Collapse
Affiliation(s)
- Arya Mekkat
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Erik Poppleton
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Bo An
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Robert Visse
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA.
| |
Collapse
|
20
|
Qiu Y, Mekkat A, Yu H, Yigit S, Hamaia S, Farndale RW, Kaplan DL, Lin YS, Brodsky B. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding. J Struct Biol 2018; 203:255-262. [PMID: 29758270 DOI: 10.1016/j.jsb.2018.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/31/2023]
Abstract
Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa)n sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding 502GFPGER507 sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system. Recombinant collagens were constructed with Gly substituted by Ala, Ser or Val at four positions within the integrin binding region. All constructs formed a stable triple-helix structure with a small decrease in melting temperature. Trypsin was used to probe local disruption of the triple helix, and Gly to Val replacements made the triple helix trypsin sensitive at three of the four sites. Any mutation at Gly505, eliminated integrin binding, while decreased integrin binding affinity was observed in the replacement of Gly residues at Gly502 following the order Val > Ser > Ala. Molecular dynamics simulations indicated that all Gly replacements led to transient disruption of triple-helix interchain hydrogen bonds in the region of the Gly replacement. These computational and experimental results lend insight into the complex molecular basis of the varying clinical severity of OI.
Collapse
Affiliation(s)
- Yimin Qiu
- Department of Biomedical Engineering, Tufts University, United States
| | - Arya Mekkat
- Department of Chemistry, Tufts University, United States
| | - Hongtao Yu
- Department of Biomedical Engineering, Tufts University, United States; Department of Chemistry, Tufts University, United States
| | - Sezin Yigit
- Department of Biomedical Engineering, Tufts University, United States
| | - Samir Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, United States
| | - Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, United States.
| |
Collapse
|