1
|
Hillenaar T, Beekman J, van der Sluijs P, Braakman I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int J Mol Sci 2022; 23:15170. [PMID: 36499495 PMCID: PMC9735543 DOI: 10.3390/ijms232315170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Hillenaar
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands;
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science for Life, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands; (T.H.); (P.v.d.S.)
| |
Collapse
|
2
|
Mercurio SA, Chunn LM, Khursigara G, Nester C, Wray K, Botschen U, Kiel MJ, Rutsch F, Ferreira CR. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Hum Mutat 2022; 43:1673-1705. [PMID: 36150100 DOI: 10.1002/humu.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.
Collapse
Affiliation(s)
- Stephanie A Mercurio
- Department of Data Science, Curation Division, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Lauren M Chunn
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Gus Khursigara
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Catherine Nester
- Department of Physician and Patient Strategies, Inozyme Pharma, Boston, Massachusetts, USA
| | - Kathleen Wray
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Ulrike Botschen
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Mark J Kiel
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Frank Rutsch
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Structural and Functional Characterization of the ABCC6 Transporter in Hepatic Cells: Role on PXE, Cancer Therapy and Drug Resistance. Int J Mol Sci 2021; 22:ijms22062858. [PMID: 33799762 PMCID: PMC8000515 DOI: 10.3390/ijms22062858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.
Collapse
|
4
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
5
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
6
|
Reassessment of causality of ABCC6 missense variants associated with pseudoxanthoma elasticum based on Sherloc. Genet Med 2020; 23:131-139. [PMID: 32873932 DOI: 10.1038/s41436-020-00945-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Pseudoxanthoma elasticum (PXE) is a heritable disorder affecting elastic fibers in the skin, eyes, and cardiovascular system. It is caused by biallelic pathogenic variants in the ABCC6 gene. To date, over 300 ABCC6 variants are associated with PXE, more than half being missense variants. Correct variant interpretation is essential for establishing a direct link between the variant and the patient's phenotype and has important implications for diagnosis and treatment. METHODS We used a systematic approach for interpretation of 271 previously reported and 15 novel ABCC6 missense variants, based on the semiquantitative classification system Sherloc. RESULTS Only 35% of variants were very likely to contribute directly to disease, in contrast to reported interpretations in ClinVar, while 59% of variants are currently of uncertain significance (VUS). Subclasses were created to distinguish VUS that are leaning toward likely benign or pathogenic, increasing the number of (likely) pathogenic ABCC6 missense variants to 47%. CONCLUSION Besides highlighting discrepancies between the Sherloc, American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP), ClinVar, and Leiden Open Variation Database (LOVD) classification, our results emphasize the need for segregation analysis, functional assays, and detailed evidence sharing in variant databases to reach a confident interpretation of ABCC6 missense variants and subsequent appropriate genetic and preconceptual counseling.
Collapse
|
7
|
Ostuni A, Carmosino M, Miglionico R, Abruzzese V, Martinelli F, Russo D, Laurenzana I, Petillo A, Bisaccia F. Inhibition of ABCC6 Transporter Modifies Cytoskeleton and Reduces Motility of HepG2 Cells via Purinergic Pathway. Cells 2020; 9:cells9061410. [PMID: 32517079 PMCID: PMC7349786 DOI: 10.3390/cells9061410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
ABCC6, belonging to sub-family C of ATP-binding cassette transporter, is an ATP-dependent transporter mainly present in the basolateral plasma membrane of hepatic and kidney cells. Although the substrates transported are still uncertain, ABCC6 has been shown to promote ATP release. The extracellular ATP and its derivatives di- and mono-nucleotides and adenosine by acting on specific receptors activate the so-called purinergic pathway, which in turn controls relevant cellular functions such as cell immunity, inflammation, and cancer. Here, we analyzed the effect of Abcc6 knockdown and probenecid-induced ABCC6 inhibition on cell cycle, cytoskeleton, and motility of HepG2 cells. Gene and protein expression were evaluated by quantitative Reverse Transcription PCR (RT-qPCR) and western blot, respectively. Cellular cycle analysis was evaluated by flow cytometry. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by in vitro wound-healing migration assay. Cell migration is reduced both in Abcc6 knockdown HepG2 cells and in probenecid treated HepG2 cells by interfering with the extracellular reserve of ATP. Therefore, ABCC6 could contribute to cytoskeleton rearrangements and cell motility through purinergic signaling. Altogether, our findings shed light on a new role of the ABCC6 transporter in HepG2 cells and suggest that its inhibitor/s could be considered potential anti-metastatic drugs.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
- Correspondence: (A.O.); (F.B.); Tel.: +39-0971-205453 (A.O.); Tel.: +39-0971-205462 (F.B.)
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Rocchina Miglionico
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Fabio Martinelli
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Daniela Russo
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy;
| | - Agata Petillo
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
- Correspondence: (A.O.); (F.B.); Tel.: +39-0971-205453 (A.O.); Tel.: +39-0971-205462 (F.B.)
| |
Collapse
|
8
|
Ran Y, Zheng A, Thibodeau PH. Structural analysis reveals pathomechanisms associated with pseudoxanthoma elasticum-causing mutations in the ABCC6 transporter. J Biol Chem 2018; 293:15855-15866. [PMID: 30154241 DOI: 10.1074/jbc.ra118.004806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Indexed: 11/06/2022] Open
Abstract
Mutations in ABC subfamily C member 6 (ABCC6) transporter are associated with pseudoxanthoma elasticum (PXE), a disease resulting in ectopic mineralization and affecting multiple tissues. A growing number of mutations have been identified in individuals with PXE. For most of these variants, no mechanistic information is available regarding their role in normal and pathophysiologies. To assess how PXE-associated mutations alter ABCC6 biosynthesis and structure, we biophysically and biochemically evaluated the N-terminal nucleotide-binding domain. A high-resolution X-ray structure of nucleotide-binding domain 1 (NBD1) of human ABCC6 was obtained at 2.3 Å that provided a template on which to evaluate PXE-causing mutations. Biochemical analysis of mutations in this domain indicated that multiple PXE-causing mutations altered its structural properties. Analyses of the full-length protein revealed a strong correlation between the alterations in NBD properties and the processing and expression of ABCC6. These results suggest that a significant fraction of PXE-associated mutations located in NBD1 causes changes in its structural properties and that these mutation-induced alterations directly affect the maturation of the full-length ABCC6 protein.
Collapse
Affiliation(s)
- Yanchao Ran
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Aiping Zheng
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Patrick H Thibodeau
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
9
|
Uitto J, Li Q, van de Wetering K, Váradi A, Terry SF. Insights into Pathomechanisms and Treatment Development in Heritable Ectopic Mineralization Disorders: Summary of the PXE International Biennial Research Symposium-2016. J Invest Dermatol 2017; 137:790-795. [PMID: 28340679 PMCID: PMC5831331 DOI: 10.1016/j.jid.2016.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 02/06/2023]
Abstract
Pseudoxanthoma elasticum is a prototype of heritable ectopic mineralization disorders, with phenotypic overlap with generalized arterial calcification of infancy and arterial calcification due to CD73 deficiency. Recent observations have suggested that the reduced inorganic pyrophosphate/phosphate ratio is the cause of soft connective tissue mineralization in these disorders. PXE International, a patient advocacy organization, supports research in part by sponsoring biennial research symposia on these disorders; the latest meeting was held in September 2016 at Thomas Jefferson University, Philadelphia. This report summarizes the progress in pseudoxanthoma elasticum and other ectopic mineralization disorders, as presented in the symposium, with focus on translational aspects of precision medicine toward improved diagnostics and treatment development for these currently intractable disorders.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - András Váradi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sharon F Terry
- PXE International, Washington, District of Columbia, USA
| |
Collapse
|