1
|
Yakovleva E, Zhang B. Clinical, Laboratory, Molecular, and Reproductive Aspects of Combined Deficiency of Factors V and VIII. Semin Thromb Hemost 2025; 51:116-127. [PMID: 39209292 PMCID: PMC11839339 DOI: 10.1055/s-0044-1789019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Congenital combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D, OMIM 227300) is a rare hereditary coagulopathy and accounts for approximately 3% of cases of rare coagulation disorders. The prevalence of this disease in the general population is estimated to be 1:1,000,000 and is significantly higher in regions where consanguineous marriages are permitted, such as the Mideast and South Asia. The disease has an autosomal recessive mode of inheritance and therefore occurs with an equal incidence among males and females. Heterozygous mutation carriers usually do not have clinical manifestations. The molecular basis of this disease differs from that of stand-alone congenital deficiencies of FVIII and FV. F5F8D is caused by mutations in either LMAN1 or MCFD2, which encode components of a cargo receptor complex for endoplasmic reticulum to Golgi transport of FV and FVIII, leading to defects in an intracellular transport pathway shared by these two coagulation factors. Congenital combined deficiency of FV and FVIII is characterized by decreased activities of both FV and FVIII in plasma, usually to 5 to 30% of normal. Clinical manifestations in most cases are represented by mild or moderate hemorrhagic syndrome. The simultaneous decreases of two coagulation factors present complications in the diagnosis and management of the disease. In female patients, the disease requires a special approach for family planning, pregnancy management, and parturition. This review summarizes recent progress in clinical, laboratory, and molecular understanding of this disorder.
Collapse
Affiliation(s)
- Elena Yakovleva
- Clinical and Diagnostic Department of Hematology and Hemostasis Disorders, National Medical Research Center for Hematology, Moscow, Russia
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
2
|
Dahlbäck B, Tran S, Draczkowski P. Importance of individual residues in hydrophobic patch PLVIVGL (1481-1487) in FV-Short for synergistic TFPIα cofactor activity with protein S, an alanine-scanning study: AlphaFold-mediated prediction of FV-Short/TFPIα/protein S trimolecular complex structure. J Thromb Haemost 2025; 23:849-862. [PMID: 39617184 DOI: 10.1016/j.jtha.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND In the splice variant factor (F)V-Short, 702 residues are deleted from the B domain, resulting in exposure of an acid region (AR2; 1493-1537) that binds TFPIα. FV-Short and protein S serve as synergistic TFPIα cofactors in inhibition of FXa. In the preAR2 region, a hydrophobic patch PLVIVGL (1481-1487) is crucial for synergistic TFPIα-cofactor activity and assembly of FV-Short, TFPIα, and protein S. OBJECTIVES To elucidate the importance of individual residues in the PLVIVGL patch for synergism between FV-Short and protein S as TFPIα cofactors. METHODS An alanine scanning of the hydrophobic patch was performed in which 7 FV-Short variants were created. The synergistic TFPIα-cofactor activity was analyzed by FXa inhibition and a microtiter-based assay tested binding between the proteins. AlphaFold 3 was used to predict protein-protein interactions between FV-Short, protein S, and TFPIα. RESULTS Five of the 7 variants (V1483A, I1484A, V1485A, G1486A, and L1487A) demonstrated decreased synergistic TFPIα cofactor activity; in particular, G1486A and L1487A were severely affected. Neither wild-type FV-Short nor any of the mutants bound protein S in the absence of TFPIα. In the presence of TFPIα, wild-type FV-Short, P1481A, L1482A, and V1485A bound protein S, whereas V1483A, I1484A, G1486A, and L1487A did not. AlphaFold predicted an interaction between the hydrophobic patch in FV-Short and a hydrophobic patch in protein S involving residues 268-276 and 422-426. CONCLUSION Individual residues (V1483, I1484, G1486, and L1487) in the hydrophobic patch are demonstrated to be important for the synergistic TFPIα-cofactor activity and for the assembly of a trimolecular FXa-inhibitory complex.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden.
| | - Sinh Tran
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| | - Piotr Draczkowski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
3
|
Miyazawa K, Mast AE, Wufsus AR, Dockal M, Kjalke M, Leiderman K. Examining downstream effects of concizumab in hemophilia A with a mathematical modeling approach. J Thromb Haemost 2025; 23:480-491. [PMID: 39536817 DOI: 10.1016/j.jtha.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor (F)Xa, the TF-FVIIa-FXa complex, and early forms of the prothrombinase complex. Concizumab is a monoclonal antibody that blocks FXa inhibition by TFPI and reduces bleeding in hemophilia. OBJECTIVES To examine how concizumab impacts various reactions of TFPI to restore thrombin generation in hemophilia A using mathematical models. METHODS A compartment model was used to estimate plasma concentrations of free concizumab and its complexes with TFPIα and TFPIβ. Concizumab was integrated into a flow-mediated mathematical model of coagulation, and a small injury was simulated under hemophilia A conditions. Simulations were then analyzed to determine how concizumab's blockade of TFPI anticoagulant activities, specifically the inhibition of FXa in plasma and on platelets, inhibition of TF:FVIIa at the subendothelium, and prior sequestration of plasma TFPIα to the endothelium via TFPIβ, altered thrombin generation. RESULTS Concizumab improved simulated thrombin generation in hemophilia A by simultaneously altering all 3 mechanisms of the TFPI anticoagulant blockade examined. Concizumab sequestered ∼75% of plasma TFPIα through the formation of ternary TFPIα-concizumab-TFPIβ-complexes. For all TF levels, reducing the TFPIα plasma concentration had the largest impact on the lag time, followed by blocking TFPIα inhibition of TF:FVIIa:FXa and subsequently by blocking TFPIα inhibition of FXa in plasma and on the platelet surface. CONCLUSION The effectiveness of concizumab is mediated through the blockade of TFPI anticoagulant activities in plasma and on multiple physiological surfaces. An important and previously unrecognized function of concizumab was the sequestration of plasma TFPIα to the endothelium.
Collapse
Affiliation(s)
- Kenji Miyazawa
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
| | - Alan E Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Adam R Wufsus
- Rare Disease, Novo Nordisk, Inc., Plainsboro, NJ, USA
| | - Michael Dockal
- Rare Blood Disorders, Novo Nordisk A/S, Novo Nordisk Park, Maaloev, Denmark
| | - Marianne Kjalke
- Rare Blood Disorders, Novo Nordisk A/S, Novo Nordisk Park, Maaloev, Denmark
| | - Karin Leiderman
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
5
|
Shimonishi N, Morishita E, Ogiwara K, Maruyama K, Yoshida J, Horie K, Nogami K. A novel factor V compound heterozygous mutation associated with thrombosis (Y1961C; FV-Kanazawa, together with 1982_1983del). J Thromb Haemost 2024; 22:2810-2822. [PMID: 38950780 DOI: 10.1016/j.jtha.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Factor (F)V is pivotal in both procoagulant and anticoagulant mechanisms. The present report describes a novel F5 mutation in a FV-deficient patient (FV activity, 6 IU/dL; FV antigen, 32 IU/dL) complicated by recurrent deep vein thrombosis. The patient demonstrated activated protein C resistance (APCR) with compound heterozygous mutations consisting of FV-Y1961C (FVKanazawa) and FV-1982_1983del. OBJECTIVES To clarify thrombotic mechanisms associated with this FV abnormality. METHODS AND RESULTS Levels of FV-1982_1983del were below the detection sensitivity in our expression experiments using human embryonic kidney 293T cells, and analyses were targeted, therefore, on the FV-Y1961C mutation. Activated partial thromboplastin time-based clotting assays demonstrated that FV-Y1961C exhibited APCR and that the reduced activated protein C (APC) susceptibility in FVa-Y1961C resulted in a marked depression of APC-catalyzed inactivation with delayed cleavage at Arg506 and little cleavage at Arg306 with or without protein S. The APC cofactor activity of FV-Y1961C in APC-catalyzed FVIIIa inactivation promoted by Arg336 cleavage in FVIII was impaired. The binding affinity of FVa-Y1961C to phospholipid membranes was reduced in reactions involving APC/protein S-catalyzed inactivation and in prothrombinase activity. Furthermore, the addition of FVa-Y1961C to plasma failed to inhibit tissue factor-induced procoagulant function. These characteristics were similar to those of FV-W1920R (FVNara) and FV-A2086D (FVBesançon). CONCLUSION We identified a compound heterozygous FV-Y1961C mutation in the C1 domain representing a novel FV mutation (FVKanazawa) resulting in not only APCR due to impaired FVa susceptibility and FV cofactor activity for APC function but also impaired inhibition of tissue factor-induced procoagulant function. These defects in anticoagulant function associated with FV in FV-Y1961C contributed to a prothrombotic state.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan; The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan.
| | - Keiko Maruyama
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan; Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Wang R, Tang LV, Hu Y. Genetic factors, risk prediction and AI application of thrombotic diseases. Exp Hematol Oncol 2024; 13:89. [PMID: 39192370 DOI: 10.1186/s40164-024-00555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
In thrombotic diseases, coagulation, anticoagulation, and fibrinolysis are three key physiological processes that interact to maintain blood in an appropriate state within blood vessels. When these processes become imbalanced, such as excessive coagulation or reduced anticoagulant function, it can lead to the formation of blood clots. Genetic factors play a significant role in the onset of thrombotic diseases and exhibit regional and ethnic variations. The decision of whether to initiate prophylactic anticoagulant therapy is a matter that clinicians must carefully consider, leading to the development of various thrombotic risk assessment scales in clinical practice. Given the considerable heterogeneity in clinical diagnosis and treatment, researchers are exploring the application of artificial intelligence in medicine, including disease prediction, diagnosis, treatment, prevention, and patient management. This paper reviews the research progress on various genetic factors involved in thrombotic diseases, analyzes the advantages and disadvantages of commonly used thrombotic risk assessment scales and the characteristics of ideal scoring scales, and explores the application of artificial intelligence in the medical field, along with its future prospects.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Mohammed BM, Basore K, Summers B, Pelc LA, Di Cera E. Structural architecture of the acidic region of the B domain of coagulation factor V. J Thromb Haemost 2024; 22:709-714. [PMID: 38007061 PMCID: PMC10922652 DOI: 10.1016/j.jtha.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Coagulation factor (F)V features an A1-A2-B-A3-C1-C2 domain organization and functions as the inactive precursor of FVa, a component of the prothrombinase complex required for rapid thrombin generation in the penultimate step of the coagulation cascade. An intramolecular interaction within the large B domain (residues 710-1545) involves the basic region (BR, residues 963-1008) and acidic region (AR, residues 1493-1537) and locks FV in its inactive state. However, structural information on this important regulatory interaction or on the separate architecture of the AR and BR remains elusive due to conformational disorder of the B domain. OBJECTIVES To reveal the structure of the BR-AR interaction or of its separate components. METHODS The structure of FV is solved by cryogenic electron microscopy. RESULTS A new 3.05 Å resolution cryogenic electron microscopy structure of FV confirms the overall organization of the A and C domains but resolves the segment 1507 to 1545 within a largely disordered B domain. The segment contains most of the AR and is organized as recently reported in FV short, a spliced variant of FV with a significantly shorter and less disordered B domain. CONCLUSION The similar architecture of the AR in FV and FV short provides structural context for physiologically important interactions of this region with the BR in FV and with the basic C-terminal end of tissue factor pathway inhibitor α in FV short.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
8
|
Petri A, Sasikumar P, Folgado PB, Jones D, Xu Y, Ahnström J, Salles-Crawley II, Crawley JTB. TFPIα anticoagulant function is highly dependent on protein S in vivo. SCIENCE ADVANCES 2024; 10:eadk5836. [PMID: 38306422 PMCID: PMC11809661 DOI: 10.1126/sciadv.adk5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Tissue factor pathway inhibitor α (TFPIα) is the major physiological regulator of the initiation of blood coagulation. In vitro, TFPIα anticoagulant function is enhanced by its cofactor, protein S. To define the role of protein S enhancement in TFPIα anticoagulant function in vivo, we blocked endogenous TFPI in mice using a monoclonal antibody (14D1). This caused a profound increase in fibrin deposition using the laser injury thrombosis model. To explore the role of plasma TFPIα in regulating thrombus formation, increasing concentrations of human TFPIα were coinjected with 14D1, which dose-dependently reduced fibrin deposition. Inhibition of protein S cofactor function using recombinant C4b-binding protein β chain significantly reduced the anticoagulant function of human TFPIα in controlling fibrin deposition. We report an in vivo model that is sensitive to the anticoagulant properties of the TFPIα-protein S pathway and show the importance of protein S as a cofactor in the anticoagulant function of TFPIα in vivo.
Collapse
Affiliation(s)
- Anastasis Petri
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Parvathy Sasikumar
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Patricia Badia Folgado
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - David Jones
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Yaoxian Xu
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Josefin Ahnström
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Isabelle I. Salles-Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, London, UK
| | - James T. B. Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
9
|
Mohapatra AK, Todaro AM, Castoldi E. Factor V variants in bleeding and thrombosis. Res Pract Thromb Haemost 2024; 8:102330. [PMID: 38404937 PMCID: PMC10883835 DOI: 10.1016/j.rpth.2024.102330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
A state-of-the-art lecture titled "Factor V variants in bleeding and thrombosis" was presented at the International Society on Thrombosis and Haemostasis (ISTH) congress in 2023. Blood coagulation is a finely regulated cascade of enzymatic reactions culminating in thrombin formation and fibrin deposition at the site of injury. Factor V (FV) plays a central role in this process, as its activated form is an essential procoagulant cofactor in prothrombin activation. However, other molecular forms of FV act as anticoagulant cofactors of activated protein C and tissue factor pathway inhibitor α, respectively, thereby contributing to the regulation of coagulation. This dual procoagulant and anticoagulant character makes FV a central regulator of the hemostatic balance, and quantitative and qualitative alterations of FV may be associated with an increased risk of bleeding or venous thrombosis. Here, we review the procoagulant and anticoagulant functions of FV and the manifold mechanisms by which F5 gene mutations may affect the balance between these opposite functions and thereby predispose individuals to bleeding or venous thrombosis. In particular, we discuss our current understanding of the 3 main pathological conditions related to FV, namely FV deficiency, activated protein C resistance, and the overexpression of FV-short, a minor splicing isoform of FV with tissue factor pathway inhibitor α-dependent anticoagulant properties and an emerging role as a key regulator of the initiation of coagulation. Finally, we summarize relevant new data on this topic presented during the 2023 ISTH Congress.
Collapse
Affiliation(s)
- Adarsh K. Mohapatra
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Alice M. Todaro
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Gierula M, Noakes VM, Salles-Crawley II, Crawley JTB, Ahnström J. The TFPIα C-terminal tail is essential for TFPIα-FV-short-protein S complex formation and synergistic enhancement of TFPIα. J Thromb Haemost 2023; 21:3568-3580. [PMID: 37739040 DOI: 10.1016/j.jtha.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND For maximal TFPIα functionality, 2 synergistic cofactors, protein S and FV-short, are required. Both interact with TFPIα, protein S through Kunitz 3 residues Arg199/Glu226 and FV-short with the C-terminus. How these interactions impact the synergistic enhancement remains unclear. OBJECTIVES To determine the importance of the TFPIα-protein S and TFPIα-FV-short interactions for TFPIα enhancement. METHODS TFPIα variants unable to bind protein S (K3m [R199Q/E226Q]) or FV-short (ΔCT [aa 1-249]) were generated. TFPIα-FV-short binding was studied by plate-binding and co-immunoprecipitation assays; functional TFPIα enhancement by FXa inhibition and prothrombin activation. RESULTS While WT TFPIα and TFPIα K3m bound FV-short with high affinity (Kd∼2nM), TFPIα ΔCT did not. K3m, in contrast to WT, did not incorporate protein S in a TFPIα-FV-short-protein S complex while TFPIα ΔCT bound neither FV-short nor protein S. Protein S enhanced WT TFPIα-mediated FXa inhibition, but not K3m, in the absence of FV-short. However, once FV-short was present, protein S efficiently enhanced TFPIα K3m (EC50: 4.7nM vs 2.0nM for WT). FXa inhibition by ΔCT was not enhanced by protein S alone or combined with FV-short. In FXa-catalyzed prothrombin activation assays, FV-short enhanced TFPIα K3m function in the presence of protein S (5.5 vs 10.4-fold enhancement of WT) whereas ΔCT showed reduced or lack of enhancement by FV-short and protein S, respectively. CONCLUSION Full TFPIα function requires the presence of both cofactors. While synergistic enhancement can be achieved in the absence of TFPIα-protein S interaction, only TFPIα with an intact C-terminus can be synergistically enhanced by protein S and FV-short.
Collapse
|
11
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
12
|
Mohammed BM, Pelc LA, Rau MJ, Di Cera E. Cryo-EM structure of coagulation factor V short. Blood 2023; 141:3215-3225. [PMID: 36862974 PMCID: PMC10356581 DOI: 10.1182/blood.2022019486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Shimonishi N, Ogiwara K, Yoshida J, Horie K, Nakajima Y, Furukawa S, Takeyama M, Nogami K. Impaired factor V-related anticoagulant mechanisms and deep vein thrombosis associated with A2086D and W1920R mutations. Blood Adv 2023; 7:2831-2842. [PMID: 36780344 PMCID: PMC10279549 DOI: 10.1182/bloodadvances.2022008918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Factor V (FV) plays pivotal roles in both procoagulant and anticoagulant mechanisms. Genetic mutations, FV-W1920R (FVNara) and FV-A2086D (FVBesançon), in the C1 and C2 domains of FV light chain, respectively, seem to be associated with deep vein thrombosis. However, the detailed mechanism(s) through which these mutations are linked to thrombophilia remains to be fully explored. The aim of this study was to clarify thrombotic mechanism(s) in the presence of these FV abnormalities. Full-length wild-type (WT) and mutated FV were prepared using stable, human cell lines (HEK293T) and the piggyBac transposon system. Susceptibility of FVa-A2086D to activated protein C (APC) was reduced, resulting in significant inhibition of APC-catalyzed inactivation with limited cleavage at Arg306 and delayed cleavage at Arg506. Furthermore, APC cofactor activity of FV-A2086D in APC-catalyzed inactivation of FVIIIa through cleavage at Arg336 was impaired. Surface plasmon resonance-based assays demonstrated that FV-A2086D bound to Glu-Gly-Arg-chloromethylketone active site-blocked APC and protein S (P) with similar affinities to that of FV-WT. However, weakened interaction between FVa-A2086D and phospholipid membranes was evident through the prothrombinase assay. Moreover, addition of FVa-A2086D to plasma failed to inhibit tissue factor (TF)-induced thrombin generation and reduce prothrombin times. This inhibitory effect was independent of PC, PS, and antithrombin. The coagulant and anticoagulant characteristics of FV(a)-W1920R were similar to those of FV(a)-A2086D. FV-A2086D presented defects in the APC mechanisms associated with FVa inactivation and FV cofactor activity, similar to FV-W1920R. Moreover, both FV proteins that were mutated in the light chain impaired inhibition of TF-induced coagulation reactions. These defects were consistent with congenital thrombophilia.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | | | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
14
|
De Pablo-Moreno JA, Miguel-Batuecas A, de Sancha M, Liras A. The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. Int J Mol Sci 2023; 24:ijms24076243. [PMID: 37047215 PMCID: PMC10093859 DOI: 10.3390/ijms24076243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Proteostasis, i.e., the homeostasis of proteins, responsible for ensuring protein turnover, is regulated by proteases, which also participate in the etiopathogenesis of multiple conditions. The magic of proteases is such that, in blood coagulation, one same molecule, such as coagulation factor V, for example, can perform both a procoagulant and an anticoagulant function as a result of the activity of proteases. However, this magic has an insidious side to it, as it may also prevent the completion of the clinical value chain of factor V deficiency. This value chain encompasses the discovery of knowledge, the transfer of this knowledge, and its translation to clinical practice. In the case of rare and ultra-rare diseases like factor V deficiency, this value chain has not been completed as the knowledge acquisition phase has dragged out over time, holding up the transfer of knowledge to clinical practice. The reason for this is related to the small number of patients afflicted with these conditions. As a result, new indications must be found to make the therapies cost-effective. In the case of factor V, significant research efforts have been directed at developing a recombinant factor V capable of resisting the action of the proteases capable of inactivating this factor. This is where bioethics and health equity considerations come into the equation.
Collapse
|
15
|
Dahlbäck B. Natural anticoagulant discovery, the gift that keeps on giving: finding FV-Short. J Thromb Haemost 2023; 21:716-727. [PMID: 36746318 DOI: 10.1016/j.jtha.2023.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The complex reactions of blood coagulation are balanced by several natural anticoagulants resulting in tuned hemostasis. During several decades, the knowledge base of the natural anticoagulants has greatly increased and we have also learned about antiinflammatory and cytoprotective activities expressed by antithrombin and activated protein C (APC). Some coagulation proteins have also been found to function as anticoagulants; e.g., thrombin when bound to thrombomodulin activates protein C. Another example is factor V (FV), which in addition to being a procofactor to FVa has emerged as an anticoagulant. The discovery of APC resistance, caused by FVLeiden, as a thrombosis risk factor resulted in the identification of FV as an APC cofactor working in synergy with protein S in the regulation of FVIIIa in the Xase complex. More recently, a natural anticoagulant FV splice isoform (FV-Short) was discovered when investigating the East Texas bleeding disorder. In FV-Short, the truncated B domain exposes a high-affinity binding site for tissue factor pathway inhibitor alpha (TFPIα), and together with protein S a high-affinity trimolecular complex is generated. The FXa-inhibitory activity of TFPIα is synergistically stimulated by FV-Short and protein S. The circulating FV-Short/protein S/TFPIα complex concentration is normally low (≈0.2 nM) but provides an anticoagulant threshold. In the East Texas bleeding, the concentration of the complex, and thus the threshold, is increased 10-fold, which results in bleeding manifestations. The anticoagulant properties of FV were discovered during investigations of individual patients and follow the great tradition of bed-to-bench and bench-to-bed research in the coagulation field.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, University Hospital, Lund University, 21428 Malmö, Sweden.
| |
Collapse
|
16
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
17
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
18
|
Development and Characterization of a Factor V-Deficient CRISPR Cell Model for the Correction of Mutations. Int J Mol Sci 2022; 23:ijms23105802. [PMID: 35628611 PMCID: PMC9148015 DOI: 10.3390/ijms23105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Factor V deficiency, an ultra-rare congenital coagulopathy, is characterized by bleeding episodes that may be more or less intense as a function of the levels of coagulation factor activity present in plasma. Fresh-frozen plasma, often used to treat patients with factor V deficiency, is a scarcely effective palliative therapy with no specificity to the disease. CRISPR/Cas9-mediated gene editing, following precise deletion by non-homologous end-joining, has proven to be highly effective for modeling on a HepG2 cell line a mutation similar to the one detected in the factor V-deficient patient analyzed in this study, thus simulating the pathological phenotype. Additional CRISPR/Cas9-driven non-homologous end-joining precision deletion steps allowed correction of 41% of the factor V gene mutated cells, giving rise to a newly developed functional protein. Taking into account the plasma concentrations corresponding to the different levels of severity of factor V deficiency, it may be argued that the correction achieved in this study could, in ideal conditions, be sufficient to turn a severe phenotype into a mild or asymptomatic one.
Collapse
|
19
|
Teraz-Orosz A, Gierula M, Petri A, Jones D, Keniyopoullos R, Folgado PB, Santamaria S, Crawley JTB, Lane DA, Ahnström J. Laminin G1 residues of protein S mediate its TFPI cofactor function and are competitively regulated by C4BP. Blood Adv 2022; 6:704-715. [PMID: 34731882 PMCID: PMC8791571 DOI: 10.1182/bloodadvances.2021005382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein S is a cofactor in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. It enhances TFPIα-mediated inhibition of factor (F)Xa activity and generation. The enhancement is dependent on a TFPIα-protein S interaction involving TFPIα Kunitz 3 and protein S laminin G-type (LG)-1. C4b binding protein (C4BP), which binds to protein S LG1, almost completely abolishes its TFPI cofactor function. However, neither the amino acids involved in TFPIα enhancement nor the mechanisms underlying the reduced TFPI cofactor function of C4BP-bound protein S are known. To screen for functionally important regions within protein S LG1, we generated 7 variants with inserted N-linked glycosylation attachment sites. Protein S D253T and Q427N/K429T displayed severely reduced TFPI cofactor function while showing normal activated protein C (APC) cofactor function and C4BP binding. Based on these results, we designed 4 protein S variants in which 4 to 6 surface-exposed charged residues were substituted for alanine. One variant, protein S K255A/E257A/D287A/R410A/K423A/E424A, exhibited either abolished or severely reduced TFPI cofactor function in plasma and FXa inhibition assays, both in the presence or absence of FV-short, but retained normal APC cofactor function and high-affinity C4BP binding. The C4BP β-chain was expressed to determine the mechanisms behind the reduced TFPI cofactor function of C4BP-bound protein S. Like C4BP-bound protein S, C4BP β-chain-bound protein S had severely reduced TFPI cofactor function. These results show that protein S Lys255, Glu257, Asp287, Arg410, Lys423, and Glu424 are critical for protein S-mediated enhancement of TFPIα and that binding of the C4BP β-chain blocks this function.
Collapse
Affiliation(s)
| | | | | | - David Jones
- Centre for Haematology, Imperial College London, London, UK
| | | | | | | | | | - David A. Lane
- Centre for Haematology, Imperial College London, London, UK
| | | |
Collapse
|
20
|
Dahlbäck B, Tran S. The preAR2 region (1458-1492) in factor V-Short is crucial for the synergistic TFPIα-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-Short, protein S, and TFPIα. J Thromb Haemost 2022; 20:58-68. [PMID: 34623729 DOI: 10.1111/jth.15547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Factor V-Short (FV756-1458) is a natural splice variant in which 702 residues are deleted from the B domain. It exposes an acid region (AR2; 1493-1537) that binds tissue factor pathway inhibitor alpha (TFPIα). Protein S also interacts with TFPIα and serves as TFPIα-cofactor in factor Xa (FXa) inhibition. FV-Short and protein S function as synergistic TFPIα-cofactors in inhibition of FXa. FV810-1492 is an artificial FV-Short variant that cannot synergize with protein S as TFPIα cofactor even though it contains AR2 and binds TFPIα. OBJECTIVE To elucidate the mechanisms for the synergism between FV756-1458 and protein S as TFPIα cofactors. METHODS Four FV-Short variants were created, FV756-1458 and FV712-1458 contained the preAR2 region (1458-1492), whereas FV810-1492 and FV713-1492 lacked this region. The synergistic TFPIα cofactor activity between FV-Short variants and protein S was analyzed by FXa-inhibition. A microtiter-based assay tested binding between FV-Short variants, protein S, and TFPIα. RESULTS The two preAR2-containing FV-Short variants were active as synergistic TFPIα cofactors, whereas the other two were inactive. All variants bound to TFPIα. None of the FV-Short variants bound directly to protein S. The combination of TFPIα and preAR2-containing FV-Short variants bound protein S, whereas TFPIα together with the preAR2-minus variants did not. Protein S potentiated TFPIα-binding to the preAR2-containing variants and binding between TFPIα and protein S was stimulated only by the preAR2-containing variants. CONCLUSION The preAR2 region is demonstrated to be crucial for the synergistic TFPIα-cofactor activity between FV-Short and protein S and for the assembly of a trimolecular FXa-inhibitory complex comprising FV-Short, protein S, and TFPIα.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Wu JF, Hong XD, Jin J, Fei YHH, Zhang MY, Si TT, Fan H, Zhang XD. [Effects of N-trimethyl chitosan-recombinant tissue factor pathway inhibitor complex on avulsion flap with roll compaction in rat]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:1158-1165. [PMID: 34839594 PMCID: PMC11917342 DOI: 10.3760/cma.j.cn501120-20200914-00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the effect of N-trimethyl chitosan-recombinant tissue factor pathway inhibitor (rTFPI) complex on avulsion flap with roll compaction in rat. Methods: The experimental methods were adopted. The N-trimethyl chitosan-rTFPI complex solution was prepared by ion cross-linking method. The morphology of the complex was observed by scanning electron microscope, and its diameter was measured. The encapsulation rate of rTFPI in the complex and drug loading rate of the complex was determined and calculated by enzyme-linked immunosorbent assay (ELISA) method (n=3). The concentration of rTFPI in the solution at 0, 10, 30, 45, 60, 90, 120, 240 minutes of storage was measured by ELISA method to observe the release of rTFPI, and its half-life was calculated (n=3). Twenty-four 6-week-old male Sprague-Dawley rats were divided into phosphate buffered saline (PBS) group, N-trimethyl chitosan alone group, rTFPI alone group, and N-trimethyl chitosan-rTFPI group according to the random number table, with 6 rats in each group. The avulsion flaps with roll compaction were prepared on the backs of rats with pedicles located on the line of the bilateral iliac spine and lifted from the surface of the muscle membrane. One injection of corresponding reagents was carried out immediately after in-situ suture and on post operation day (POD) 1, 2, and 3. General changes of the flap were observed on POD 1, 3, and 7. On POD 7, the survival area of the flap was measured and the survival rate of the flap was calculated; the flaps were divided into pedicle, proximal, middle, and distal segments, and the blood perfusion in the proximal, middle, and distal segment tissue of the flap was detected by the laser speckle blood flow imager; tissue samples in the middle of the flap were cut and stained with hematoxylin and eosin to observe the changes in tissue structure and the infiltration of inflammatory cells, and the numbers of embolized blood vessels and new blood vessels per 100 times visual field were counted. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: The N-trimethyl chitosan-rTFPI complex had an irregular spherical structure with a diameter of 150-200 nm. The encapsulation rate of rTFPI in the complex and drug loading rate of the complex were (88.7±2.1)% and (2.83±0.09)%, respectively. The concentration of rTFPI in the solution of the N-trimethyl chitosan-rTFPI complex gradually increased with prolonged storage time, and the release was basically stable at 90 min, with half-life of (651±36) min. On POD 1, the distal parts of flaps of rats in N-trimethyl chitosan alone group darkened significantly. On POD 3, scabs and necrosis were relatively mild on the distal segment of the flaps of rats in rTFPI alone group and N-trimethyl chitosan-rTFPI group as compared with those of the other two groups. On POD 7, the necrosis boundaries of the flaps of rats in each group were clear. On POD 7, the flap survival rates of rats in rTFPI alone group and N-trimethyl chitosan-rTFPI group were (63±7)% and (73±5)%, respectively, which were significantly higher than (41±3)% in PBS group and (52±7)% in N-trimethyl chitosan alone group. Moreover, the flap survival rate of rats in N-trimethyl chitosan-rTFPI group was significantly higher than that in rTFPI alone group (P<0.05). On POD 7, the flaps of rats in each group had blood perfusion; the blood perfusion values in the proximal segment tissue of the rat flaps in N-trimethyl chitosan alone group and the blood perfusion values in the proximal, middle, and distal segment tissue of the rat flaps in rTFPI alone group and N-trimethyl chitosan-rTFPI group were significantly higher than those in PBS group (P<0.05 or P<0.01); the blood perfusion values in the distal segment tissue of the rat flaps in rTFPI alone group and the blood perfusion values in the middle and distal segment tissue of the rat flaps in N-trimethyl chitosan-rTFPI group were significantly higher than those in N-trimethyl chitosan alone group (P<0.05 or P<0.01); the blood perfusion value in the middle segment tissue of the rat flaps in N-trimethyl chitosan-rTFPI group was significantly higher than that in rTFPI alone group (P<0.01). On POD 7, inflammatory cells infiltrated more and cell edema was obvious in the middle segment tissue of the rat flaps in PBS group and N-trimethyl chitosan alone group. Compared with those of the previous two groups, the inflammation degrees in the middle segment tissue of the rat flaps in rTFPI alone group and N-trimethyl chitosan-rTFPI group were significantly milder, the number of embolized blood vessels was significantly decreased (P<0.05 or P<0.01), and the number of new blood vessels was significantly increased (P<0.05 or P<0.01). Compared with that of rTFPI alone group, the number of new blood vessels in the middle segment tissue of the rat flaps in N-trimethyl chitosan-rTFPI group increased significantly (P<0.05). Conclusions: The effect of sustained release of rTFPI can be achieved by loading rTFPI with N-trimethyl chitosan. Compared with rTFPI alone, the N-trimethyl chitosan-rTFPI complex can further improve the blood perfusion of the avulsion flaps with roll compaction in rat and improve the survival rate of the flap.
Collapse
Affiliation(s)
- J F Wu
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - X D Hong
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - J Jin
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - Y H H Fei
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - M Y Zhang
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - T T Si
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - H Fan
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| | - X D Zhang
- Department of Burns and Plastic Surgery, the 903th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Hangzhou 310013, China
| |
Collapse
|
22
|
Bernal S, Pelaez I, Alias L, Baena M, De Pablo-Moreno JA, Serrano LJ, Camero MD, Tizzano EF, Berrueco R, Liras A. High Mutational Heterogeneity, and New Mutations in the Human Coagulation Factor V Gene. Future Perspectives for Factor V Deficiency Using Recombinant and Advanced Therapies. Int J Mol Sci 2021; 22:9705. [PMID: 34575869 PMCID: PMC8465496 DOI: 10.3390/ijms22189705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.
Collapse
Affiliation(s)
- Sara Bernal
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Irene Pelaez
- Department of Pediatric and Oncohematology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Laura Alias
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
- CIBERER. U-705, 18014 Barcelona, Spain
| | - Manel Baena
- Department of Genetics, Santa Creu i Sant Pau Hospital and IIB Sant Pau, 08041 Barcelona, Spain; (S.B.); (L.A.); (M.B.)
| | - Juan A. De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis J. Serrano
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - M. Dolores Camero
- Association for the Investigation and Cure of Factor V Deficiency, 23002 Jaén, Spain;
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron and Medicine Genetics Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Ruben Berrueco
- Pediatric Hematology Department, Hospital Sant Joan de Déu, University of Barcelona and Research Institute Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| |
Collapse
|
23
|
Castoldi E. F5-Atlanta: Factor V-short strikes again. J Thromb Haemost 2021; 19:1638-1640. [PMID: 34176223 PMCID: PMC8362210 DOI: 10.1111/jth.15351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabetta Castoldi
- Department of BiochemistryCARIMMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
24
|
Castoldi E, Hézard N, Mourey G, Wichapong K, Poggi M, Ibrahim-Kosta M, Thomassen MCLGD, Fournel A, Hayward CPM, Alessi MC, Hackeng TM, Rosing J, Morange PE. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J Thromb Haemost 2021; 19:1186-1199. [PMID: 33605529 DOI: 10.1111/jth.15274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Coagulation factor V (FV), present in plasma and platelets, has both pro- and anticoagulant functions. OBJECTIVE We investigated an FV-deficient patient (FV:C 3%, FV:Ag 4%) paradoxically presenting with recurrent venous thrombosis (11 events) instead of bleeding. METHODS/RESULTS Thrombophilia screening revealed only heterozygosity for the F2 20210G>A mutation. Although thrombin generation in the patient's platelet-poor plasma was suggestive of a hypocoagulable state, thrombin generation in the patient's platelet-rich plasma (PRP) was higher than in control PRP and extremely resistant to activated protein C (APC). This was partially attributable to the complete abolition of the APC-cofactor activity of FV and a marked reduction of plasma tissue factor pathway inhibitor antigen and activity. The patient was homozygous for a novel missense mutation (Ala2086Asp, FVBesançon ) that favors a "closed conformation" of the C2 domain, predicting impaired binding of FV(a) to phospholipids. Recombinant FVBesançon was hardly secreted, indicating that this mutation is responsible for the patient's FV deficiency. Model system experiments performed using highly diluted plasma as a source of FV showed that, compared with normal FVa, FVaBesançon has slightly (≤1.5-fold) unfavorable kinetic parameters (Km , Vmax ) of prothrombin activation, but also a lower rate of APC-catalyzed inactivation in the presence of protein S. CONCLUSIONS FVBesançon induces a hypercoagulable state via quantitative (markedly decreased FV level) and qualitative (phospholipid-binding defect) effects that affect anticoagulant pathways (anticoagulant activities of FV, FVa inactivation, tissue factor pathway inhibitor α level) more strongly than the prothrombinase activity of FVa. A possible specific role of platelet FV cannot be excluded.
Collapse
Affiliation(s)
- Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nathalie Hézard
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Guillaume Mourey
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Marjorie Poggi
- C2VN, INSERM, INRA, Aix Marseille University, Marseille, France
| | | | | | - Alexandra Fournel
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | | | | | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Jan Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | | |
Collapse
|
25
|
Ahnström J, Gilbert GE. Factor V mutation illuminates the dominant anticoagulant role and importance of an unidentified platelet modifier. J Thromb Haemost 2021; 19:1168-1170. [PMID: 33880872 DOI: 10.1111/jth.15273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Gary E Gilbert
- Department of Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Athar M, Abduljaleel Z, Ghita IS, Albagenny AA, Halawani SH, Alkazmi MM, Elbjeirami WM, Alquthami K, Alkhuzae MM, Ragab FM, Al-Allaf FA. Prevalence of the Factor V Leiden Mutation Arg534Gln in Western Region of Saudi Arabia: Functional Alteration and Association Study With Different Populations. Clin Appl Thromb Hemost 2021; 27:1076029620978532. [PMID: 33448877 PMCID: PMC7812389 DOI: 10.1177/1076029620978532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The rare Gln534 (Factor V Leiden; FVL) allele (1:169,519,049 T>C) is associated with an increased risk of venous thrombosis. The purpose of this study was to measure the prevalence of Factor V Leiden mutation in thrombophilia patients with deep vein thrombosis. Also, we investigated the functional and structural characteristics of this mutation p.(Arg534Gln) to be examined the cumulative impact on venous thrombosis risk as well correlated with different populations by Genome Wide Association Studies (GWAS). A total of 108 patients with idiopathic deep vein thrombosis were examined for Factor V Leiden gene mutation. Our preliminary data show that about 10% of patients were detected with the heterozygous and homozygous form of the Factor V Leiden mutation. An association analysis confirmed that the Factor V SNP variant (rs6025) was highly associated (P-value 4.91 x10-^ -39) with an increased risk of venous thrombosis. Also, we found that the recognized SNP was important among HapMap populations. Our results indicated that among the 3 populations (Asian, African, and American) studied, this association was highest in the African population based on the r(2) significant threshold (P-value 5e-190). In addition, this mutation was located at the domain F5/8 type A 2, which can disturb this domain and abolish its function. Because of aspartic acid nearby wild type position as form in the salt bridge due to this discharge will disturb the ionic interaction made by the wild type residue Arg534. This residue was not found to be in contact with other domains of which the function was known. However, contact with other molecules or domains (THPH2: MIM: 188055) were still possible and might be affected by this mutation that may cause thrombophilia due to activated protein C resistance.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim S Ghita
- Hematology Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Amani A Albagenny
- Laboratory and Blood Bank Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Saeed H Halawani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad M Alkazmi
- Hematology Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Wafa M Elbjeirami
- Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Khalid Alquthami
- Laboratory and Blood Bank Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Mohammad M Alkhuzae
- Laboratory and Blood Bank Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Fadel M Ragab
- Laboratory and Blood Bank Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
27
|
Petrillo T, Ayombil F, Van't Veer C, Camire RM. Regulation of factor V and factor V-short by TFPIα: Relationship between B-domain proteolysis and binding. J Biol Chem 2021; 296:100234. [PMID: 33376137 PMCID: PMC7948760 DOI: 10.1074/jbc.ra120.016341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963–1008 and acidic region 2, AR2; 1493–1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which forms of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ∼1 nM) to TFPIα-BR, which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (μM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full-length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.
Collapse
Affiliation(s)
- Teodolinda Petrillo
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rodney M Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
Brinkman HJM, Ahnström J, Castoldi E, Dahlbäck B, Marlar RA. Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19:281-286. [PMID: 33405384 DOI: 10.1111/jth.15108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023]
Abstract
Hereditary deficiencies of protein S (PS) increase the risk of thrombosis. However, assessing the plasma levels of PS is complicated by its manifold physiological interactions, while the large inter-individual variability makes it problematic to establish reliable cut-off values. PS has multiple physiological functions, with only two appearing to have significant anticoagulant properties: the activated protein C (APC) and tissue factor pathway inhibitor alpha (TFPIα) cofactor activities. Current clinical laboratory investigations for deficiency in PS function rely only on the APC-dependent activity. This communication presents an argument for reclassifying the qualitative PS deficiencies to differentiate the two major anticoagulant functions of PS. Reliable assays are necessary for accurate evaluation of PS function when making a specific diagnosis of PS deficiency based on the anticoagulant phenotype alone. This report emphasizes the pleiotropic anticoagulant functions of PS and presents evidence-based recommendations for their implementation in the clinical laboratory.
Collapse
Affiliation(s)
- Herm Jan M Brinkman
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | | | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Björn Dahlbäck
- Department of Translational Medicine, Lund University, Malmō, Sweden
| | - Richard A Marlar
- Department of Pathology, University of New Mexico, TriCore Reference Laboratories, Albuquerque, NM, USA
| |
Collapse
|
29
|
Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18:2801-2811. [PMID: 32702208 DOI: 10.1111/jth.15025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023]
Abstract
Protein S is a critical regulator of coagulation that functions as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. It also has direct anticoagulant functions, inhibiting the intrinsic tenase and prothrombinase complexes. Through these functions, protein S regulates coagulation during both its initiation and its propagation phases. The importance of protein S in hemostatic regulation is apparent from the strong association between protein S deficiencies and increased risk for venous thrombosis. This is most likely because both APC and TFPIα are inefficient anticoagulants in the absence of any cofactors. The detailed molecular mechanisms involved in protein S cofactor functions remain to be fully clarified. However, recent advances in the field have greatly improved our understanding of these functions. Evidence suggests that protein S anticoagulant properties often depend on the presence of synergistic cofactors and the formation of multicomponent complexes on negatively charged phospholipid surfaces. Their high affinity binding to negatively charged phospholipids helps bring the anticoagulant proteins to the membranes, resulting in efficient and targeted regulation of coagulation. In this review, we provide an update on protein S and how it functions as a critical hemostatic regulator.
Collapse
|
30
|
Gierula M, Salles‐Crawley II, Santamaria S, Teraz‐Orosz A, Crawley JTB, Lane DA, Ahnström J. The roles of factor Va and protein S in formation of the activated protein C/protein S/factor Va inactivation complex. J Thromb Haemost 2019; 17:2056-2068. [PMID: 31364267 PMCID: PMC6916587 DOI: 10.1111/jth.14594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activated protein C (APC)-mediated inactivation of factor (F)Va is greatly enhanced by protein S. For inactivation to occur, a trimolecular complex among FVa, APC, and protein S must form on the phospholipid membrane. However, direct demonstration of complex formation has proven elusive. OBJECTIVES To elucidate the nature of the phospholipid-dependent interactions among APC, protein S, and FVa. METHODS We evaluated binding of active site blocked APC to phospholipid-coated magnetic beads in the presence and absence of protein S and/or FVa. The importance of protein S and FV residues were evaluated functionally. RESULTS Activated protein C alone bound weakly to phospholipids. Protein S mildly enhanced APC binding to phospholipid surfaces, whereas FVa did not. However, FVa together with protein S enhanced APC binding (>14-fold), demonstrating formation of an APC/protein S/FVa complex. C4b binding protein-bound protein S failed to enhance APC binding, agreeing with its reduced APC cofactor function. Protein S variants (E36A and D95A) with reduced APC cofactor function exhibited essentially normal augmentation of APC binding to phospholipids, but diminished APC/protein S/FVa complex formation, suggesting involvement in interactions dependent upon FVa. Similarly, FVaNara (W1920R), an APC-resistant FV variant, also did not efficiently incorporate into the trimolecular complex as efficiently as wild-type FVa. FVa inactivation assays suggested that the mutation impairs its affinity for phospholipid membranes and with protein S within the complex. CONCLUSIONS FVa plays a central role in the formation of its inactivation complex. Furthermore, membrane proximal interactions among FVa, APC, and protein S are essential for its cofactor function.
Collapse
Affiliation(s)
| | | | | | | | | | - David A. Lane
- Centre for HaematologyImperial College LondonLondonUK
| | | |
Collapse
|
31
|
Ellery PER, Hilden I, Thyregod P, Martinez ND, Maroney SA, Gill JC, Mast AE. Measurement of plasma and platelet tissue factor pathway inhibitor, factor V and Protein S in people with haemophilia. Haemophilia 2019; 25:1083-1091. [PMID: 31608540 DOI: 10.1111/hae.13860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tissue factor pathway inhibitor (TFPI) is a naturally occurring anticoagulant found in plasma, where it circulates bound to lipoproteins, factor V (FV) or Protein S (PS), and in platelets. Therapeutic agents targeting TFPI are under development for the treatment of haemophilia A and haemophilia B. AIM To begin to understand how TFPI, FV and PS interact to modulate haemophilia bleeding. METHODS Plasma and platelet antigen concentrations of these factors were determined in 73 people with haemophilia A and 18 with haemophilia B. Using multiple regression models, these were compared to the same analytes measured in 224 male blood donors. RESULTS There were no differences in plasma or platelet TFPI, FV or PS concentrations between haemophilia types or severities. However, compared to blood donors, people with haemophilia had approximately one-third lower plasma PS, 9% lower plasma TFPIα, 50% higher platelet FV and 26% lower platelet Protein S. CONCLUSION Together, the presented data suggest that individuals with haemophilia may have a compensatory procoagulant response of both plasma and platelet proteins to the decreased concentrations of FVIII or FIX.
Collapse
Affiliation(s)
- Paul E R Ellery
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Ida Hilden
- Global Drug Discovery, Novo Nordisk, MȧlØv, Denmark
| | | | | | | | - Joan C Gill
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Alan E Mast
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
|
33
|
Low factor V level ameliorates bleeding diathesis in patients with combined deficiency of factor V and factor VIII. Blood 2019; 134:1745-1754. [PMID: 31558466 DOI: 10.1182/blood.2018886069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Combined factor V and factor VIII deficiency is a rare disorder associated with relatively mild bleeding diathesis. Shao and colleagues elucidate the double role of factor V as both a pro- and anticoagulant protein, demonstrating that decreased factor V may ameliorate factor VIII deficiency through decreasing the level of tissue factor pathway inhibitor.
Collapse
|
34
|
Dahlbäck B, Guo LJ, Zöller B, Tran S. New functional test for the TFPIα cofactor activity of Protein S working in synergy with FV-Short. J Thromb Haemost 2019; 17:585-595. [PMID: 30740865 DOI: 10.1111/jth.14405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 08/31/2023]
Abstract
Essentials Protein S and FV-Short are synergistic cofactors to Tissue Factor Pathway Inhibitor α (TFPIα). An assay for the TFPIα synergistic cofactor activity of protein S with FV-Short was developed. The assay was specific for the synergistic TFPIα-cofactor activity of free protein S. Protein S deficient individuals with known mutations were correctly distinguished from controls. SUMMARY: Background Protein S is an anticoagulant cofactor to both activated protein C and tissue factor pathway inhibitor (TFPIα). The TFPIα-cofactor activity of protein S is stimulated by a short isoform of factor V (FV-Short), the two proteins functioning in synergy. Objective Using the synergistic TFPIα-cofactor activity between protein S and FV-Short to develop a functional test for plasma protein S. Patients/Methods TFPIα-mediated inhibition of FXa in the presence of FV-Short, protein S and negatively charged phospholipid vesicles was monitored in time by synthetic substrate S2765. TFPIα, FXa and FV-Short were purified proteins, whereas diluted plasma from protein S deficient patients or controls were used as source for protein S. Results The assay was specific for free protein S demonstrating good correlation to free protein S plasma levels (r = 0.92) with a Y-axis intercept of -5%. Correlation to concentrations of total protein S (free and C4BPβ+-bound) was lower (r = 0.88) and the Y-axis intercept was +46%, which is consistent with the specificity for free protein S. The test distinguished protein S-deficient individuals from 6 families with known ProS1 mutations from family members having no mutation. Protein S levels of warfarin-treated protein S deficient cases were lower than protein S in cases treated with warfarin for other causes. Conclusions We describe a new assay measuring the TFPIα-cofactor activity of plasma protein S. The test identifies type I/III protein S deficiencies and will be a useful tool to detect type II protein S deficiency having defective TFPIα-cofactor activity.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Li Jun Guo
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Bengt Zöller
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
35
|
Minor allele of the factor V K858R variant protects from venous thrombosis only in non-carriers of factor V Leiden mutation. Sci Rep 2019; 9:3750. [PMID: 30842582 PMCID: PMC6403374 DOI: 10.1038/s41598-019-40172-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Factor V serves an important role in the regulation of blood coagulation. The rs6025 (R534Q) and rs4524 (K858R) polymorphisms in the F5 gene, are known to influence the risk of venous thrombosis. While the rare Q534 (factor V Leiden) allele is associated with an increased risk of venous thrombosis, the minor R858 allele is associated with a lower risk of disease. However, no study has deeply examined the cumulative impact of these two variations on venous thrombosis risk. We study the association of these polymorphisms with the risk of venous thrombosis in 4 French case-control populations comprising 3719 patients and 4086 controls. We demonstrate that the Q534 allele has a dominant effect over R858. Besides, we show that in individuals not carrying the Q534 allele, the protective effect of the R858 allele acts in a dominant mode. Thrombin generation-based normalized activated protein C sensitivity ratio was lower in the 858R/R homozygotes than in the 858K/K homozygotes (1.92 ± 1.61 vs 2.81 ± 1.57, p = 0.025). We demonstrate that the R858 allele of the F5 rs4524 variant protects from venous thrombosis only in non-carriers of the Q534 allele of the F5 rs6025. Its protective effect is mediated by reduced factor VIII levels and reduced activated protein C resistance.
Collapse
|
36
|
Maruyama K, Akiyama M, Miyata T, Kokame K. Protein S K196E mutation reduces its cofactor activity for APC but not for TFPI. Res Pract Thromb Haemost 2018; 2:751-756. [PMID: 30349894 PMCID: PMC6178719 DOI: 10.1002/rth2.12152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein S (PS) is an anticoagulant molecule that functions as a cofactor for activated protein C (APC) in the inactivation of activated coagulation factors Va (FVa) and VIIIa. It also serves as a cofactor for tissue factor pathway inhibitor (TFPI) in the efficient inhibition of factor Xa (FXa). The Lys196-to-Glu (K196E, Tokushima) mutation in the EGF-2 domain of PS is a genetic risk factor for venous thromboembolism (VTE) in the Japanese population. OBJECTIVES To investigate the molecular basis of the thrombophilic phenotype of Japanese patients carrying the PS K196E mutation. METHODS We expressed recombinant human PS wild-type (PS-K) and K196E-mutant (PS-E) in CHO cells, and purified them by Ni2+-affinity and anion exchange column chromatography. We investigated the anticoagulant functions of PS-K and PS-E by measuring APC cofactor activity, TFPI cofactor activity, affinity for the β chain of complement component C4b-binding protein (C4BP), and cleavage by thrombin. RESULTS PS-E had approximately 40% APC cofactor activity compared with PS-K in a clotting-based assay and a FVa inactivation assay. The TFPI cofactor activity of PS-E in the FXa inactivation assay was equivalent to that of PS-K in the absence and presence of coagulation factor V. The strengths of PS-E and PS-K binding to the β chain of C4BP were comparable, and both were equally cleaved by thrombin. CONCLUSIONS The PS K196E mutation increases the risk of VTE because of reduced APC cofactor activity but does not alter various other properties, including the TFPI cofactor activity.
Collapse
Affiliation(s)
- Keiko Maruyama
- Department of Molecular PathogenesisNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Masashi Akiyama
- Department of Molecular PathogenesisNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Toshiyuki Miyata
- Department of Cerebrovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Koichi Kokame
- Department of Molecular PathogenesisNational Cerebral and Cardiovascular CenterSuitaJapan
| |
Collapse
|
37
|
Dahlbäck B, Guo LJ, Livaja‐Koshiar R, Tran S. Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIα) cofactors. Res Pract Thromb Haemost 2018; 2:114-124. [PMID: 30046712 PMCID: PMC6055574 DOI: 10.1002/rth2.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND FV-Short is a normal splice variant of Factor V (FV) having a short B domain, which exposes a high affinity-binding site for tissue factor pathway inhibitor α (TFPIα). FV-Short and TFPIα circulate in complex in plasma. OBJECTIVES The aim was to elucidate whether FV-Short affects TFPIα as inhibitor of coagulation FXa and to test whether the TFPIα-cofactor activity of protein S is influenced by FV-Short. METHODS Recombinant FV, wild-type FV-Short and a FV-Short thrombin-cleavage resistant variant were expressed and purified. The influence of FV and FV-Short variants and/or protein S on the FXa inhibitory activity of TFPIα was monitored both in a purified system and in a plasma-based thrombin generation assay. RESULTS FV-Short had intrinsically weak TFPIα-cofactor activity but with protein S present, FV-Short yielded efficient inactivation of FXa. Protein S alone did not promote full TFPIα-activity. Intact FV was inefficient at low protein S concentrations and had 10-fold lower activity compared to FV-Short at physiological protein S levels. Activation of FV-Short by thrombin resulted in the loss of the TFPIα-cofactor activity. The synergistic TFPIα-cofactor activity of FV-Short and protein S was also demonstrated in plasma using a thrombin generation assay. CONCLUSIONS FV-Short and protein S are highly efficient, synergistic cofactors to TFPIα in the regulation of FXa activity, whereas full length FV has lower activity. Our results suggest the formation of an efficient FXa-inhibitory complex between FV-Short, TFPIα and protein S on the surface of negatively charged phospholipids.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Li Jun Guo
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Ruzica Livaja‐Koshiar
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Sinh Tran
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| |
Collapse
|
38
|
TFPIα interacts with FVa and FXa to inhibit prothrombinase during the initiation of coagulation. Blood Adv 2017; 1:2692-2702. [PMID: 29291252 DOI: 10.1182/bloodadvances.2017011098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry. Removal of FXa active site binding by mutation or by deletion of the second Kunitz domain (K2) of TFPIα produced 17- or 34-fold weaker prothrombinase inhibition, respectively, establishing that K2 binding to the FXa active site is required for efficient inhibition. Substitution of the TFPIα basic region uncharged residues (Leu252, Ile253, Thr255) with Ala (TFPI-AAKA) produced 5.8-fold decreased inhibition. This finding was confirmed using a basic region peptide (Leu252-Lys261) and Ala substitution peptides, which established that the uncharged residues are required for prothrombinase inhibitory activity but not for binding the FVa acidic region. This suggests that the uncharged residues mediate a secondary interaction with FVa subsequent to acidic region binding. This secondary interaction seems to be with the FVa heavy chain, because the FV Leiden mutation weakened prothrombinase inhibition by TFPIα but did not alter TFPI-AAKA inhibitory activity. Thus, efficient inhibition of prothrombinase by TFPIα requires at least 3 intermolecular interactions: (1) the TFPIα basic region binds the FVa acidic region, (2) K2 binds the FXa active site, and (3) Leu252-Thr255 binds the FVa heavy chain.
Collapse
|