1
|
Barkdull AP, Holcomb M, Forli S. A quantitative analysis of ligand binding at the protein-lipid bilayer interface. Commun Chem 2025; 8:89. [PMID: 40121339 PMCID: PMC11929912 DOI: 10.1038/s42004-025-01472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
The majority of drugs target membrane proteins, and many of these proteins contain ligand binding sites embedded within the lipid bilayer. However, targeting these therapeutically relevant sites is hindered by limited characterization of both the sites and the molecules that bind to them. Here, we introduce the Lipid-Interacting LigAnd Complexes Database (LILAC-DB), a curated dataset of 413 structures of ligands bound at the protein-bilayer interface. Analysis of these structures reveals that ligands binding to lipid-exposed sites exhibit distinct chemical properties, such as higher calculated partition coefficient (clogP), molecular weight, and a greater number of halogen atoms, compared to ligands that bind to soluble proteins. Additionally, we demonstrate that the atomic properties of these ligands vary significantly depending on their depth within and exposure to the lipid bilayer. We also find that ligand binding sites exposed to the bilayer have distinct amino acid compositions compared to other protein regions, which may aid in the identification of lipid-exposed binding sites. This analysis provides valuable guidelines for researchers pursuing structure-based drug discovery targeting underexploited ligand binding sites at the protein-lipid bilayer interface.
Collapse
Affiliation(s)
- Allison Pearl Barkdull
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
4
|
Towards Quantum-Chemical Modeling of the Activity of Anesthetic Compounds. Int J Mol Sci 2021; 22:ijms22179272. [PMID: 34502179 PMCID: PMC8431746 DOI: 10.3390/ijms22179272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
The modeling of the activity of anesthetics is a real challenge because of their unique electronic and structural characteristics. Microscopic approaches relevant to the typical features of these systems have been developed based on the advancements in the theory of intermolecular interactions. By stressing the quantum chemical point of view, here, we review the advances in the field highlighting differences and similarities among the chemicals within this group. The binding of the anesthetics to their partners has been analyzed by Symmetry-Adapted Perturbation Theory to provide insight into the nature of the interaction and the modeling of the adducts/complexes allows us to rationalize their anesthetic properties. A new approach in the frame of microtubule concept and the importance of lipid rafts and channels in membranes is also discussed.
Collapse
|
5
|
Sridhar A, Lummis SCR, Pasini D, Mehregan A, Brams M, Kambara K, Bertrand D, Lindahl E, Howard RJ, Ulens C. Regulation of a pentameric ligand-gated ion channel by a semiconserved cationic lipid-binding site. J Biol Chem 2021; 297:100899. [PMID: 34157288 PMCID: PMC8327344 DOI: 10.1016/j.jbc.2021.100899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are crucial mediators of electrochemical signal transduction in various organisms from bacteria to humans. Lipids play an important role in regulating pLGIC function, yet the structural bases for specific pLGIC-lipid interactions remain poorly understood. The bacterial channel ELIC recapitulates several properties of eukaryotic pLGICs, including activation by the neurotransmitter GABA and binding and modulation by lipids, offering a simplified model system for structure-function relationship studies. In this study, functional effects of noncanonical amino acid substitution of a potential lipid-interacting residue (W206) at the top of the M1-helix, combined with detergent interactions observed in recent X-ray structures, are consistent with this region being the location of a lipid-binding site on the outward face of the ELIC transmembrane domain. Coarse-grained and atomistic molecular dynamics simulations revealed preferential binding of lipids containing a positive charge, particularly involving interactions with residue W206, consistent with cation-π binding. Polar contacts from other regions of the protein, particularly M3 residue Q264, further support lipid binding via headgroup ester linkages. Aromatic residues were identified at analogous sites in a handful of eukaryotic family members, including the human GABAA receptor ε subunit, suggesting conservation of relevant interactions in other evolutionary branches. Further mutagenesis experiments indicated that mutations at this site in ε-containing GABAA receptors can change the apparent affinity of the agonist response to GABA, suggesting a potential role of this site in channel gating. In conclusion, this work details type-specific lipid interactions, which adds to our growing understanding of how lipids modulate pLGICs.
Collapse
Affiliation(s)
- Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Diletta Pasini
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Aujan Mehregan
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Faulkner C, de Leeuw NH. In silico studies of the interactions between propofol and fentanyl using Gaussian accelerated molecular dynamics. J Biomol Struct Dyn 2020; 40:312-324. [PMID: 32909527 DOI: 10.1080/07391102.2020.1814415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fentanyl is a potent opioid analgesic, which for decades has been used routinely in surgical and therapeutic applications. In addition to its analgesic properties, fentanyl also possesses anesthetic properties, which are not well understood. Fentanyl is used in the general anesthesia process to induce and maintain anesthesia in combination with the general anesthetic propofol, which fentanyl is known to potentiate. As the atomic-level mechanism behind the potentiation of propofol is unclear, we have used classical molecular dynamics simulations to study the interactions of these drugs with the Gloeobacter violaceus ion channel (GLIC). This ion channel has been identified as a target for many anesthetic drugs. We identified multiple binding sites using flooding style and Gaussian accelerated molecular dynamics (GaMD) simulations, showing fentanyl acting as a stabiliser that holds propofol within binding sites. Our extensive GaMD simulations were also able to show the pathway by which propofol blocks the channel pore, which has previously been suggested as a mechanism for ion channel modulation. General anesthesia is a multi-drug process and this study provides the first insight into the interactions between two different drugs in the anesthesia process in a relevant biological environment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Nora H de Leeuw
- School of Chemistry, Cardiff University, Cardiff, UK.,School of Chemistry, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Shahoei R, Tajkhorshid E. Menthol Binding to the Human α4β2 Nicotinic Acetylcholine Receptor Facilitated by Its Strong Partitioning in the Membrane. J Phys Chem B 2020; 124:1866-1880. [PMID: 32048843 PMCID: PMC7094167 DOI: 10.1021/acs.jpcb.9b10092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We utilize various computational methodologies to study menthol's interaction with multiple organic phases, a lipid bilayer, and the human α4β2 nicotinic acetylcholine receptor (nAChR), the most abundant nAChR in the brain. First, force field parameters developed for menthol are validated in alchemical free energy perturbation simulations to calculate solvation free energies of menthol in water, dodecane, and octanol and compare the results against experimental data. Next, umbrella sampling is used to construct the free energy profile of menthol permeation across a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The results from a flooding simulation designed to study the water-membrane partitioning of menthol in a POPC lipid bilayer are used to determine the penetration depth and the preferred orientation of menthol in the bilayer. Finally, employing both docking and flooding simulations, menthol is shown to bind to different sites on the human α4β2 nAChR. The most likely binding mode of menthol to a desensitized membrane-embedded α4β2 nAChR is identified to be via a membrane-mediated pathway in which menthol binds to the sites at the lipid-protein interface after partitioning in the membrane. A rare but distinct binding mode in which menthol binds to the extracellular opening of receptor's ion permeation pore is also reported.
Collapse
Affiliation(s)
- Rezvan Shahoei
- Department of Physics, NIH Center for Macromolecular Modeling and Bioinformatics, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Faulkner C, Plant DF, de Leeuw NH. Modulation of the Gloeobacter violaceus Ion Channel by Fentanyl: A Molecular Dynamics Study. Biochemistry 2019; 58:4804-4808. [PMID: 31718178 DOI: 10.1021/acs.biochem.9b00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fentanyl is an opioid analgesic, which is routinely used in general surgery to suppress the sensation of pain and as the analgesic component in the induction and maintenance of anesthesia. Fentanyl is also used as the main component to induce anesthesia and as a potentiator to the general anesthetic propofol. The mechanism by which fentanyl induces its anesthetic action is still unclear, and we have therefore employed fully atomistic molecular dynamics simulations to probe this process by simulating the interactions of fentanyl with the Gloeobacter violaceus ligand-gated ion channel (GLIC). In this paper, we identify multiple extracellular fentanyl binding sites, which are different from the transmembrane general anesthetic binding sites observed for propofol and other general anesthetics. Our simulations identify a novel fentanyl binding site within the GLIC that results in conformational changes that inhibit conduction through the channel.
Collapse
Affiliation(s)
- Christopher Faulkner
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| | - David F Plant
- Atomic Weapons Establishment (AWE) , Aldermaston, Reading RG7 4PR , United Kingdom
| | - Nora H de Leeuw
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
9
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
11
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Arvayo-Zatarain JA, Favela-Rosales F, Contreras-Aburto C, Urrutia-Bañuelos E, Maldonado A. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes. J Mol Model 2018; 25:4. [PMID: 30554281 DOI: 10.1007/s00894-018-3890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022]
Abstract
We report results of a molecular dynamics simulation study of the effect of one general anesthetic, halothane, on some properties of mixed DPPC/DPPE phospholipid membranes. This is a suitable model for the study of simple, two-phospholipid membrane systems. From the simulation runs, we determined several membrane properties for five different molecular proportions of DPPC/DPPE. The effect of halothane on the studied membrane properties (area per lipid molecule, density of membrane, order parameter, etc.) was rather small. The distribution of halothane is not uniform through the bilayer thickness. Instead, there is a maximum of anesthetic concentration around 1.2 nm from the center of the membrane. The anesthetic molecule is located close to the phospholipid headgroups. The position of the halothane density maximum depends slightly on the DPPC/DPPE molar proportion. Snapshots taken over the plane of the membrane, as well as calculated two-dimensional radial distribution functions show that the anesthetic has no preference for either phospholipid (DPPC or DPPE). Our results indicate that this anesthetic molecule has only small effects on DPPC/DPPE mixed membranes. In addition, halothane displays no preferential location around DPPC or DPPE. This is probably due to the hydrophobic nature of halothane and to the fact that the chosen phospholipids have the same hydrophobic tails.
Collapse
Affiliation(s)
| | - Fernando Favela-Rosales
- Departamento de Investigación, Instituto Tecnológico Superior Zacatecas Occidente, Ave. Tecnológico 2000, 99102, Sombrerete, Zacatecas, Mexico
| | - Claudio Contreras-Aburto
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata km 8, 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Efrain Urrutia-Bañuelos
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas s/n, 83000, Hermosillo, Sonora, Mexico
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas s/n, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
13
|
Stock L, Hosoume J, Cirqueira L, Treptow W. Binding of the general anesthetic sevoflurane to ion channels. PLoS Comput Biol 2018; 14:e1006605. [PMID: 30475796 PMCID: PMC6283617 DOI: 10.1371/journal.pcbi.1006605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/06/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
The direct-site hypothesis assumes general anesthetics bind ion channels to impact protein equilibrium and function, inducing anesthesia. Despite advancements in the field, a first principle all-atom demonstration of this structure-function premise is still missing. We focus on the clinically used sevoflurane interaction to anesthetic-sensitive Kv1.2 mammalian channel to resolve if sevoflurane binds protein’s well-characterized open and closed structures in a conformation-dependent manner to shift channel equilibrium. We employ an innovative approach relying on extensive docking calculations and free-energy perturbation of all potential binding sites revealed by the latter, and find sevoflurane binds open and closed structures at multiple sites under complex saturation and concentration effects. Results point to a non-trivial interplay of site and conformation-dependent modes of action involving distinct binding sites that increase channel open-probability at diluted ligand concentrations. Given the challenge in exploring more complex processes potentially impacting channel-anesthetic interaction, the result is revealing as it demonstrates the process of multiple anesthetic binding events alone may account for open-probability shifts recorded in measurements. General anesthetics are central to modern medicine, yet their microscopic mechanism of action is still unknown. Here, we demonstrate that a clinically used anesthetic, sevoflurane, binds the mammalian voltage-gated potassium channel Kv1.2 effecting a shift in its open probability, even at low concentrations. The results, supported by recent experimental measurements, are promising as they demonstrate that the molecular process of direct binding of anesthetic to ion channels play a relevant role in anesthesia.
Collapse
Affiliation(s)
- Letícia Stock
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Juliana Hosoume
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Leonardo Cirqueira
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
- * E-mail:
| |
Collapse
|
14
|
Henderson BJ, Grant S, Chu BW, Shahoei R, Huard SM, Saladi SSM, Tajkhorshid E, Dougherty DA, Lester HA. Menthol Stereoisomers Exhibit Different Effects on α4β2 nAChR Upregulation and Dopamine Neuron Spontaneous Firing. eNeuro 2018; 5:ENEURO.0465-18.2018. [PMID: 30627659 PMCID: PMC6325563 DOI: 10.1523/eneuro.0465-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022] Open
Abstract
Menthol contributes to poor cessation rates among smokers, in part because menthol enhances nicotine reward and reinforcement. Mentholated tobacco products contain (-)-menthol and (+)-menthol, in varying proportions. We examined these two menthol stereoisomers for their ability to upregulate α4β2 nAChRs and to alter dopamine neuron firing frequency using long-term, low-dose (≤500 nm) exposure that is pharmacologically relevant to smoking. We found that (-)-menthol upregulates α4β2 nAChRs while (+)-menthol does not. We also found that (-)-menthol decreases dopamine neuron baseline firing and dopamine neuron excitability, while (+)-menthol exhibits no effect. We then examined both stereoisomers for their ability to inhibit α4β2 nAChR function at higher concentrations (>10 µm) using the Xenopus oocyte expression system. To probe for the potential binding site of menthol, we conducted flooding simulations and site-directed mutagenesis. We found that menthol likely binds to the 9´ position on the TM2 (transmembrane M2) helix. We found that menthol inhibition is dependent on the end-to-end distance of the side chain at the 9´ residue. Additionally, we have found that (-)-menthol is only modestly (∼25%) more potent than (+)-menthol at inhibiting wild-type α4β2 nAChRs and a series of L9´ mutant nAChRs. These data reveal that menthol exhibits a stereoselective effect on nAChRs and that the stereochemical effect is much greater for long-term, submicromolar exposure in mice than for acute, higher-level exposure. We hypothesize that of the two menthol stereoisomers, only (-)-menthol plays a role in enhancing nicotine reward through nAChRs on dopamine neurons.
Collapse
Affiliation(s)
- Brandon J. Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia 25703
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Betty W. Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Rezvan Shahoei
- Department of Physics, National Institutes of Health Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephanie M. Huard
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shyam S. M. Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Emad Tajkhorshid
- Department of Biochemistry, National Institutes of Health Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Henry A. Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
15
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
16
|
Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, Eckenhoff RG. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 2018; 32:4172-4189. [PMID: 29505303 DOI: 10.1096/fj.201701347r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most general anesthetics enhance GABA type A (GABAA) receptor activity at clinically relevant concentrations. Sites of action of volatile anesthetics on the GABAA receptor remain unknown, whereas sites of action of many intravenous anesthetics have been identified in GABAA receptors by using photolabeling. Here, we used photoactivatable analogs of isoflurane (AziISO) and sevoflurane (AziSEVO) to locate their sites on α1β3γ2L and α1β3 GABAA receptors. As with isoflurane and sevoflurane, AziISO and AziSEVO enhanced the currents elicited by GABA. AziISO and AziSEVO each labeled 10 residues in α1β3 receptors and 9 and 8 residues, respectively, in α1β3γ2L receptors. Photolabeled residues were concentrated in transmembrane domains and located in either subunit interfaces or in the interface between the extracellular domain and the transmembrane domain. The majority of these transmembrane residues were protected from photolabeling with the addition of excess parent anesthetic, which indicated specificity. Binding sites were primarily located within α+/β- and β+/α- subunit interfaces, but residues in the α+/γ- interface were also identified, which provided a basis for differential receptor subtype sensitivity. Isoflurane and sevoflurane did not always share binding sites, which suggests an unexpected degree of selectivity.-Woll, K. A., Zhou, X., Bhanu, N. V., Garcia, B. A., Covarrubias, M., Miller, K. W., Eckenhoff, R. G. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Nemecz Á, Hu H, Fourati Z, Van Renterghem C, Delarue M, Corringer PJ. Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biol 2017; 15:e2004470. [PMID: 29281623 PMCID: PMC5760087 DOI: 10.1371/journal.pbio.2004470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/09/2018] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD. Pentameric ligand-gated ion channels are an important class of receptors that are involved in many neurological diseases. They have been extensively studied but a full understanding of their mechanism of action has yet to be achieved. In an effort to bypass obstacles in the research of human receptors, bacterial versions have been used to characterize the family’s structure-function relationship. One key bacterial receptor, known as GLIC, has lead the way in structural resolution of various mechanistic states along the gating pathway, yet its activation by protons is significantly less understood than its human counterparts. To define the site(s) involved in proton gating, we systematically mutated all titratable residues near the pH50 of activation: Asp, Glu, and His. We determined that a previously established His residue in the transmembrane domain is structurally important but likely plays little or no role in proton gating. We instead found that proton activation is a complex multiple loci mechanism, with the key contribution stemming from the coupling interface between the extracellular and transmembrane domain, with E35 acting as a key proton-sensing residue.
Collapse
Affiliation(s)
- Ákos Nemecz
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Haidai Hu
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Zaineb Fourati
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Catherine Van Renterghem
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|