1
|
Al Hashami ZS, van der Vegt B, Mourits MJ, Kluiver J, van den Berg A. miRNA-dependent resistance mechanisms to anti-hormonal therapies in estrogen receptor-positive breast cancer patients. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200941. [PMID: 40190354 PMCID: PMC11969448 DOI: 10.1016/j.omton.2025.200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The estrogen receptor (ERα) is expressed in 70%-80% of breast cancers and is a target of endocrine therapy. However, resistance to endocrine therapy poses a significant clinical challenge. MicroRNAs (miRNAs) have emerged as critical players in oncogenesis and as modulators of therapy response. This review provides an overview of miRNAs that modulate anti-hormonal drug responses. We identified 56 miRNAs associated with resistance to endocrine therapy. These miRNAs had a total of 40 proven target genes that were grouped based on their function under currently known resistance mechanisms, including ER modulation, signaling pathway activation, cell-cycle modulation, and other mechanisms. For a limited number of miRNA-target gene interactions, the relevance of the identified target gene(s) was confirmed by copy or rescue of the miRNA-induced phenotype. Overall, this review highlights critical roles of miRNAs as crucial mediators of resistance to anti-hormonal therapy. The identified miRNA-target gene interactions can serve as a foundation for future functional studies exploring the potential of selected miRNAs in overcoming drug resistance, which might improve outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Zainab Salam Al Hashami
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Marian J.E. Mourits
- Department of Gynaecological Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Khan FA, Fouad D, Ataya FS, Fang N, Dong J, Ji S. FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression. Biol Direct 2024; 19:104. [PMID: 39511680 PMCID: PMC11542266 DOI: 10.1186/s13062-024-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology. METHODS The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments. RESULTS FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01). CONCLUSIONS Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Qiao P, Zhang C, Shi Y, Du H. The role of alternative polyadenylation in breast cancer. Front Genet 2024; 15:1377275. [PMID: 38939531 PMCID: PMC11208690 DOI: 10.3389/fgene.2024.1377275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC), as a highly prevalent malignant tumor worldwide, is still unclear in its pathogenesis and has poor therapeutic outcomes. Alternative polyadenylation (APA) is a post-transcriptional regulatory mechanism widely found in eukaryotes. Precursor mRNA (pre-mRNA) undergoes the APA process to generate multiple mRNA isoforms with different coding regions or 3'UTRs, thereby greatly increasing the diversity and complexity of the eukaryotic transcriptome and proteome. Studies have shown that APA is involved in the progression of various diseases, including cancer, and plays a crucial role. Therefore, clarifying the biological mechanisms of APA and its regulators in breast cancer will help to comprehensively understand the pathogenesis of breast cancer and provide new ideas for its prevention and treatment.
Collapse
Affiliation(s)
- Ping Qiao
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caihong Zhang
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingxu Shi
- Department of Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Alahmari AA, Chaubey AH, Jonnakuti VS, Tisdale AA, Schwarz CD, Cornwell AC, Maraszek KE, Paterson EJ, Kim M, Venkat S, Gomez EC, Wang J, Gurova KV, Yalamanchili HK, Feigin ME. CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing. RNA (NEW YORK, N.Y.) 2024; 30:281-297. [PMID: 38191171 PMCID: PMC10870380 DOI: 10.1261/rna.079931.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that CPSF3 is highly expressed in PDAC and is associated with poor prognosis. CPSF3 knockdown blocks PDAC cell proliferation and colony formation in vitro and tumor growth in vivo. Chemical inhibition of CPSF3 by the small molecule JTE-607 also attenuates PDAC cell proliferation and colony formation, while it has no effect on cell proliferation of nontransformed immortalized control pancreatic cells. Mechanistically, JTE-607 induces transcriptional readthrough in replication-dependent histones, reduces core histone expression, destabilizes chromatin structure, and arrests cells in the S-phase of the cell cycle. Therefore, CPSF3 represents a potential therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aditi H Chaubey
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Venkata S Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arwen A Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Carla D Schwarz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Kathryn E Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Emily J Paterson
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Minsuh Kim
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| |
Collapse
|
6
|
Gomez N, Hsieh C, Li X, Dykstra M, Waksmacki J, Altheim C, Bechar Y, Klim J, Zaepfel B, Rothstein J, Tank EE, Barmada SJ. Counter-regulation of RNA stability by UPF1 and TDP43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578310. [PMID: 38352350 PMCID: PMC10862862 DOI: 10.1101/2024.01.31.578310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
RNA quality control is crucial for proper regulation of gene expression. Disruption of nonsense mediated mRNA decay (NMD), the primary RNA decay pathway responsible for the degradation of transcripts containing premature termination codons (PTCs), can disrupt development and lead to multiple diseases in humans and other animals. Similarly, therapies targeting NMD may have applications in hematological, neoplastic and neurological disorders. As such, tools capable of accurately quantifying NMD status could be invaluable for investigations of disease pathogenesis and biomarker identification. Toward this end, we assemble, validate, and apply a next-generation sequencing approach (NMDq) for identifying and measuring the abundance of PTC-containing transcripts. After validating NMDq performance and confirming its utility for tracking RNA surveillance, we apply it to determine pathway activity in two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) characterized by RNA misprocessing and abnormal RNA stability. Despite the genetic and pathologic evidence implicating dysfunctional RNA metabolism, and NMD in particular, in these conditions, we detected no significant differences in PTC-encoding transcripts in ALS models or disease. Contrary to expectations, overexpression of the master NMD regulator UPF1 had little effect on the clearance of transcripts with PTCs, but rather restored RNA homeostasis through differential use and decay of alternatively poly-adenylated isoforms. Together, these data suggest that canonical NMD is not a significant contributor to ALS/FTD pathogenesis, and that UPF1 promotes neuronal survival by regulating transcripts with abnormally long 3'UTRs.
Collapse
|
7
|
Vembuli H, Gor R, Ramalingam S, Perales S, Rajasingh J. RNA binding proteins in cancer chemotherapeutic drug resistance. Front Cell Dev Biol 2024; 12:1308102. [PMID: 38328550 PMCID: PMC10847363 DOI: 10.3389/fcell.2024.1308102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Drug resistance has been a major obstacle in the quest for a cancer cure. Many chemotherapeutic treatments fail to overcome chemoresistance, resulting in tumor remission. The exact process that leads to drug resistance in many cancers has not been fully explored or understood. However, the discovery of RNA binding proteins (RBPs) has provided insight into various pathways and post-transcriptional gene modifications involved in drug tolerance. RBPs are evolutionarily conserved proteins, and their abnormal gene expression has been associated with cancer progression. Additionally, RBPs are aberrantly expressed in numerous neoplasms. RBPs have also been implicated in maintaining cancer stemness, epithelial-to-mesenchymal transition, and other processes. In this review, we aim to provide an overview of RBP-mediated mechanisms of drug resistance and their implications in cancer malignancy. We discuss in detail the role of major RBPs and their correlation with noncoding RNAs (ncRNAs) that are associated with the inhibition of chemosensitivity. Understanding and exploring the pathways of RBP-mediated chemoresistance will contribute to the development of improved cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Hemanathan Vembuli
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Johnson Rajasingh
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
9
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Huang D, Zhu Q, Xu Q. Relationship between HuR and tumor drug resistance. Clin Transl Oncol 2023:10.1007/s12094-023-03109-5. [PMID: 36947360 DOI: 10.1007/s12094-023-03109-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Human resistance protein R (HuR), also known as embryonic lethal abnormal visual-like protein (ELAVL1), is an RNA-binding protein widely expressed in vivo that affects the mRNA stability of targeted and is involved in post-transcriptional regulation. Recent studies have shown that HuR is aberrantly expressed in different human cancers and is an essential factor in poor clinical prognosis. The role of HuR in numerous tumors suggests that it could be a new target for tumor therapy and as a marker for efficacy and prognostic assessment. This review focuses on the relationship between HuR and drug resistance in different tumors and briefly describes the structure, function, and inhibitors of HuR. We summarize the mechanisms by which HuR causes tumor resistance and the molecular targets affected.
Collapse
Affiliation(s)
- Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | | | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Liao Y, Liao Y, Li J, Li Y, Fan Y. The Prognostic Role of HuR Varies Between Different Subtypes of Breast Cancer Patients: Data Mining and Retrospective Analysis. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:135-146. [PMID: 36816839 PMCID: PMC9930679 DOI: 10.2147/bctt.s395984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 02/13/2023]
Abstract
Objective Human-antigen R (HuR) is an RNA-binding protein, which regulates the expression of several oncogenes and tumor suppressor genes through post-transcriptional mechanisms. But the role of HuR in breast cancer remains controversial. The aim of this study was to verify the association between cytoplasmic HuR level and prognosis of breast cancer patients. Methods Data mining from the Human Protein Atlas (HPA) and Kaplan-Meier Plotter (KMP) databases was performed. Then, 394 patients with stage I-III primary breast cancer were enrolled between January 2005 and December 2016. We investigated the association between cytoplasmic HuR level and clinicopathological characteristics or survival of these patients. Immunohistochemical analysis was performed to determine HuR expression level. SPSS 21.0 statistical software was used for analysis. Results In the HPA and KMP datasets, HuR protein and mRNA expression level were not significantly associated with overall survival of all breast cancer patients enrolled. Results from our 394 patients indicated that higher expression level of cytoplasmic HuR was associated with larger tumor size, lymph node positive, ER negative and triple-negative subtype. For all patients enrolled, the results indicated that compared with HuR negative patients, the DFS (disease-free survival) of HuR 1+ was longer (60.5% vs 78.8, P=0.053, HR=0.616, 95% CI: 0.378-1.005), the P value was borderline. In the triple-negative breast cancer (TNBC) subgroup, HuR positive patients had significantly longer DFS than HuR negative patients (65.5% vs 30.8%, P=0.001, HR=0.345, 95% CI: 0.180-0.658). In the HR+HER2- subgroup, HuR low (0~1+) patients had significantly longer OS than HuR high (2+~3+) patients (97.0% vs 89.5%, P=0.033, HR=2.482, 95% CI: 1.074-5.736). Conclusion In conclusion, our results revealed that higher expression level of HuR was related to aggressive biological characteristics which supported the findings from previous researches. In the HR+HER2- subgroup, lower HuR expression level patients had better survival time, while in the TNBC subgroup we got the opposite results. Our work indicated that HuR might play different roles in different breast cancer subtypes.
Collapse
Affiliation(s)
- Yuqian Liao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yulu Liao
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jun Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yong Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China,Yong Li, Department of Oncology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizhengjie, Donghu, Nanchang, 330006, Jiangxi Province, People’s Republic of China, Tel +86 15879155066, Email
| | - Ying Fan
- Department of Medical Oncology, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People’s Republic of China,Correspondence: Ying Fan, Department of Medical Oncology, Cancer institute and hospital, Peking Union Medical college, Chinese Academy of Medical science, No. 17, Nan Li, Panjiayuan, Beijing, 100021, People’s Republic of China, Tel +86 13693656671, Email
| |
Collapse
|
11
|
Cen Y, Chen L, Liu Z, Lin Q, Fang X, Yao H, Gong C. Novel roles of RNA-binding proteins in drug resistance of breast cancer: from molecular biology to targeting therapeutics. Cell Death Discov 2023; 9:52. [PMID: 36759501 PMCID: PMC9911762 DOI: 10.1038/s41420-023-01352-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Therapy resistance remains a huge challenge for current breast cancer treatments. Exploring molecular mechanisms of therapy resistance might provide therapeutic targets for patients with advanced breast cancer and improve their prognosis. RNA-binding proteins (RBPs) play an important role in regulating therapy resistance. Here we summarize the functions of RBPs, highlight their tremendously important roles in regulating therapy sensitivity and resistance and we also reveal current therapeutic approaches reversing abnormal functions of RBPs in breast cancer.
Collapse
Affiliation(s)
- Yinghuan Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zihao Liu
- Department of Breast and Thyroid Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, 518020, Shenzhen, China
| | - Qun Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Xiaolin Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| |
Collapse
|
12
|
Zheng S, Wang X, Liu H, Zhao D, Lin Q, Jiang Q, Li L, Hu Y. iASPP suppression mediates terminal UPR and improves BRAF-inhibitor sensitivity of colon cancers. Cell Death Differ 2023; 30:327-340. [PMID: 36380064 PMCID: PMC9950372 DOI: 10.1038/s41418-022-01086-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Unfolded protein response (UPR) signaling is activated under endoplasmic reticulum (ER) stress, an emerging cancer hallmark, leading to either adaptive survival or cell death, while the mechanisms underlying adaptation-death switch remain poorly understood. Here, we examined whether oncogene iASPP regulates the switch and how the mechanisms can be used in colon cancer treatment. iASPP is downregulated when cells undergo transition from adaptation to death during therapy-induced ER stress. Blocking iASPP's downregulation attenuates stress-induced cell death. Mechanistically, Hu-antigen R (HuR)-mediated stabilization of iASPP mRNA and subsequent iASPP protein production is significantly impaired with prolonged ER stress, which facilitates the degradation of GRP78, a key regulator of the UPR, in the cytosol. Because iASPP competes with GRP78 in binding the ER-resident E3 ligase RNF185, and tips the balance in favor of cell death. Positive correlation between the levels of HuR, iASPP, and GRP78 are detectable in colon cancer tissues in vivo. Genetic inhibition of iASPP/GRP78 or chemical inhibition of HuR not only inhibits tumor growth, but also sensitizes colon cancer cells' responses to BRAF inhibitor-induced ER stress and cell death. This study provides mechanistic insights into the switch between adaptation and death during ER stress, and also identifies a potential strategy to improve BRAF-inhibitor efficiency in colon cancers.
Collapse
Affiliation(s)
- Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Li Li
- The third affiliated hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
13
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
14
|
Soares NC, Ali A, Srinivasulu V, Sharaf BM, Giddey AD, Okendo J, Al-Hroub HM, Semreen MH, Hamad M, Al-Tel TH. Unveiling the mechanism of action of nature-inspired anti-cancer compounds using a multi-omics approach. J Proteomics 2022; 265:104660. [PMID: 35728772 DOI: 10.1016/j.jprot.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.
Collapse
Affiliation(s)
- Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates.
| | - Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma M Sharaf
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Alexander D Giddey
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Hamza M Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
16
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
17
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
18
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
19
|
Wang X, Yang D. The regulation of RNA metabolism in hormone signaling and breast cancer. Mol Cell Endocrinol 2021; 529:111221. [PMID: 33711334 PMCID: PMC8262629 DOI: 10.1016/j.mce.2021.111221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
As the most frequent women's cancer, breast cancer causes the second most cancer-related death in women worldwide. Majority of the breast cancers are hormone receptor-positive and commonly treated by hormone therapy. Thus, the expression levels of hormone receptors signaling pathways are pivotal in the development and therapy of breast cancer. The expression of hormone receptors signaling pathways is not only regulated at the transcription level but also at the post-transcription level by both proteins and RNAs. In addition to that, the function of hormone receptors can also be regulated by RNAs. In this review, we summarize the roles of RNAs in hormone receptor-positive breast cancer. We introduce how mRNA stability and protein function of genes in hormone receptors signaling pathways are regulated by RNA-binding proteins, miRNAs, and lncRNAs. We believe these proteins and RNAs can be potential therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA; UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
20
|
Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. ENVIRONMENTAL TOXICOLOGY 2021; 36:267-275. [PMID: 33009882 DOI: 10.1002/tox.23032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Ursolic acid (UA) has been shown to suppress various tumor progression, however, its roles in Adriamycin resistance of human ovarian cancer (OC) cells are still unclear. This work aims to investigate the effects of UA on the Adriamycin resistance of human OC cells. Here, we constructed Adriamycin-resistant OC SKOV3-Adr cells and found that UA attenuated Adriamycin resistance in SKOV3-Adr cells. Additionally, UA enhanced Adriamycin sensitivity in the parental SKOV3 and another OC cell line A2780 cells. Mechanistic studies showed that HuR mRNA level was similar between SKOV3 and SKOV3-Adr cells, but the cytoplasmic expression of HuR protein was increased in SKOV3-Adr cells compared with that in SKOV3 cells, and subsequently enhancing the mRNA stability of multidrug resistance gene 1 (MDR1). Moreover, UA had no effects on HuR expression, but promoted the cytoplasm-nucleus translocation of HuR protein, decreased MDR1 mRNA stability and thus reduced MDR1 expression. Furthermore, overexpression of MDR1 rescued the effects of UA on Adriamycin resistance and sensitivity. This work reveals a novel HuR/MDR1 axis responsible for UA-mediated attenuation on Adriamycin resistance in OC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Gynaecology, The Forth Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Lanlan Luo
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Wenyin Shi
- Department of Gynaecology, the Fourth People's Hospital Affiliated to Jiangsu University, 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Yujun Yin
- Department of Obstetrics and Gynecology, Dantu District People's Hospital of Zhenjiang, Zhenjiang, China
| | - Shan Gao
- Department of Obstetrics and Gynecology, Second Provincial People's Hospital of Gansu, the Affiliated Hospital of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
21
|
Metformin-induced suppression of Nemo-like kinase improves erythropoiesis in preclinical models of Diamond–Blackfan anemia through induction of miR-26a. Exp Hematol 2020; 91:65-77. [DOI: 10.1016/j.exphem.2020.09.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
|
22
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
23
|
Zhou H, Rao Y, Sun Q, Liu Y, Zhou X, Chen Y, Chen J. MiR-4458/human antigen R (HuR) modulates PBX3 mRNA stability in melanoma tumorigenesis. Arch Dermatol Res 2020; 312:665-673. [PMID: 32157373 DOI: 10.1007/s00403-020-02051-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Melanoma, a malignancy of the melanocyte, is characterized as the most fatal skin cancer with an increasing incidence. Of note, in spite of great attempts made for better treatment, the therapeutic outcome is barely satisfactory. Abnormal expression of microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes, is frequently implicated in multiple human cancers, including melanoma. Here, we found that miRNA-4458, a reportedly tumor-suppressive miRNA in several cancers, was downregulated in melanoma cells. Besides, our findings indicated that microRNA-4458 (miR-4458) hindered cell proliferation and migration, yet induced apoptosis in melanoma. Mechanical interaction of miR-4458 and PBX3 mRNA, thereby inhibiting PBX3 expression in melanoma cells, was also presented in this work. Human antigen R (HuR) was reported to be greatly upregulated in diverse cancers and HuR-dependent stabilization of target gene contributed a lot to tumor progression. In this study, it revealed the stabilization of PBX3 mRNA by HuR, thereby boosting PBX3 expression. Lastly, we concluded that miR-4458 and HuR modulated the expression of PBX3 in a competitive manner in melanoma tumorigenesis, which might yield a novel insight into the molecular pathogenesis of melanoma.
Collapse
Affiliation(s)
- Henghua Zhou
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China
| | - Qilin Sun
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yang Liu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaobo Zhou
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying Chen
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, Shanghai, 200011, China.
| | - Jun Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai JiaoTong University China Hospital Development Institute, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
24
|
Huang S, Wang H, Chen W, Zhan M, Xu S, Huang X, Lin R, Shen H, Wang J. Tamoxifen inhibits cell proliferation by impaired glucose metabolism in gallbladder cancer. J Cell Mol Med 2020; 24:1599-1613. [PMID: 31782270 PMCID: PMC6991689 DOI: 10.1111/jcmm.14851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the leading malignancy of biliary system showing refractory chemoresistance to current first-line drugs. Growing epidemiological evidences have established that the incidence of GBC exhibits significant gender predominance with females two-threefold higher than males, suggesting oestrogen/oestrogen receptors (ERs) signalling might be a critical driver of tumorigenesis in gallbladder. This study aims to evaluate the antitumour activity of tamoxifen (TAM), a major agent of hormonal therapy for breast cancer, in preclinical GBC model. Quantitative real-time PCR was used to investigate mRNA levels. Protein expression was measured by immunohistochemistry and Western blot. Glycolytic levels were measured by glucose consumption and lactic acid measurement. The antitumour activity of TAM alone or with cisplatin was examined with CCK8 assay, colony formation, flow cytometry and in vivo models. The results revealed that ERɑ expression was higher in GBC tissues and predicted poor clinical outcomes. TAM was showed effective against a variety of GBC cell lines. Mechanical investigations revealed that TAM enabled potent reactive oxygen species (ROS) production by reduced nuclear factor Nrf2 expression and its target genes, leading to the activation of AMPK, which subsequently induced impaired glycolysis and survival advantages. Notably, TAM was demonstrated to sensitize GBC cells to cisplatin (CDDP) both in vitro and in vivo. In agreement with these findings, elimination of oestrogens by ovariectomy in nude mice prevented CDDP resistance. In summary, these results provide basis for TAM treatment for GBC and shed novel light on the potential application of endocrine therapy for patients with GBC.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hui Wang
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Chen
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Zhan
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Sunwang Xu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xince Huang
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ruirong Lin
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hui Shen
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jian Wang
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
25
|
Cao S, Zheng J, Liu X, Liu Y, Ruan X, Ma J, Liu L, Wang D, Yang C, Cai H, Li Z, Feng Z, Xue Y. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:37. [PMID: 30691465 PMCID: PMC6348679 DOI: 10.1186/s13046-018-0991-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/04/2018] [Indexed: 02/04/2023]
Abstract
Background Accumulating evidence has highlighted the potential role of RNA binding proteins (RBPs) in the biological behaviors of glioblastoma cells. Herein, the expression and function of RNA binding proteins FXR1 were investigated in human glioma cells. Methods Quantitative real-time PCR were conducted to evaluate the expression of MIR17HG and miR-346, miRNA-425-5p in glioma tissues and cells. Western blot were used to explore the expression of FXR1, TAL1 and DEC1 in glioma tissues and cells. Stable knockdown of FXR1 and MIR17HG in glioma cells were established to explore the function of FXR1, MIR17HG in glioma cells. Further, RIP and RNA pull-down assays were used to investigate the correlation between FXR1 and MIR17HG. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate the function of FXR1 and MIR17HG in malignant biological behaviors of glioma cells. ChIP assays were employed to ascertain the correlations between TAL1 and MIR17HG. Results FXR1and MIR17HG were upregulated in glioma tissues and cell lines. Downregulation of FXR1 or MIR17HG resulted in inhibition of glioma cells progression. We also found that FXR1 regulates the biological behavior of glioma cells via stabilizing MIR17HG. In addition, downregulated MIR17HG increased miR-346/miR-425-5p expression and MIR17HG acted as ceRNA to sponge miR-346/miR-425-5p. TAL1 was a direct target of miR-346/miR-425-5p, and played oncogenic role in glioma cells. More importantly, TAL1 activated MIR17HG promoter and upregulated its expression, forming a feedback loop. Remarkably, FXR1 knockdown combined with inhibition of MIR17HG resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. Conclusions FXR1/MIR17HG/miR-346(miR-425-5p)/TAL1/DEC1 axis plays a novel role in regulating the malignant behavior of glioma cells, which may be a new potential therapeutic strategy for glioma therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0991-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Ziyi Feng
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,The 102th Class, experimental class of clinical medicine discipline, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
26
|
Gandhi N, Das GM. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019; 8:E89. [PMID: 30691108 PMCID: PMC6406734 DOI: 10.3390/cells8020089] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors' metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
27
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Yang GH, Zhang C, Wang N, Meng Y, Wang YS. Anacardic acid suppresses fibroblast-like synoviocyte proliferation and invasion and ameliorates collagen-induced arthritis in a mouse model. Cytokine 2018; 111:350-356. [PMID: 30273785 DOI: 10.1016/j.cyto.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/01/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Anacardic acid, which is abundant in nutshell of Anacardium occidentale, has multiple pharmacological activities. In this study, we examined the therapeutic potential of anacardic acid in treating rheumatoid arthritis (RA). We explored the effects of anacardic acid on collagen-induced arthritis (CIA) in mice and on the proliferation and invasion of RA fibroblast-like synoviocytes (RA-FLSs). The underlying molecular mechanism was investigated. Anacardic acid treatment markedly suppressed paw swelling, joint destruction, and arthritis scores in CIA mice. The serum levels of tumor necrosis factor alpha (TNF- α) and interleutkin-1beta (IL- 1β) were significantly lowered by anacardic acid. In vitro assays demonstrated that anacardic acid impaired the proliferation and invasion abilities of RA-FLSs in the presence of TNF- α or IL- 1β. Western blot analysis revealed the reduction of Akt protein expression and phoshporylation in RA-FLSs by anacardic acid. However, the mRNA level of Akt remained unchanged. Anacardic acid treatment significantly increased the expression of miR-633 in RA-FLSs. Akt was identified as a novel target of miR-633. Overexpression of miR-633 significantly inhibited the proliferation and invasion of RA-FLSs, which was rescued by enforced expression of Akt. Depletion of miR-633 prevented anacardic acid-mediated suppression of proliferation and invasion of RA-FLSs, which was accompanied by increased expression of Akt protein. In conclusion, anacardic acid may serve as a promising agent in the treatment of RA.
Collapse
MESH Headings
- Anacardic Acids/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/pharmacology
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred DBA
- MicroRNAs/metabolism
- Neoplasm Invasiveness/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Guo-Hui Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Zhang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Meng
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Sheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 2018; 17:34. [PMID: 29455658 PMCID: PMC5817867 DOI: 10.1186/s12943-018-0797-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a multifactorial disease and driven by aberrant regulation of cell signaling pathways due to the acquisition of genetic and epigenetic changes. An array of growth factors and their receptors is involved in cancer development and metastasis. Receptor Tyrosine Kinases (RTKs) constitute a class of receptors that play important role in cancer progression. RTKs are cell surface receptors with specialized structural and biological features which respond to environmental cues by initiating appropriate signaling cascades in tumor cells. RTKs are known to regulate various downstream signaling pathways such as MAPK, PI3K/Akt and JAK/STAT. These pathways have a pivotal role in the regulation of cancer stemness, angiogenesis and metastasis. These pathways are also imperative for a reciprocal interaction of tumor and stromal cells. Multi-faceted role of RTKs renders them amenable to therapy in breast cancer. However, structural mutations, gene amplification and alternate pathway activation pose challenges to anti-RTK therapy.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Vinoth Prasanna Gunasekaran
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Amit Singh Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
31
|
Ding K, Tan S, Huang X, Wang X, Li X, Fan R, Zhu Y, Lobie PE, Wang W, Wu Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem 2018; 293:3949-3964. [PMID: 29367342 DOI: 10.1074/jbc.ra117.001103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer remains a malignancy with poor survival outcome. We herein report that GSE1, a proline-rich protein, possesses a role in the progression of human gastric cancer. The expression of GSE1 was observed to be much higher in human gastric cancer tissues compared with normal gastric tissues, and GSE1 expression correlated positively with lymph node metastasis, histological grade, depth of invasion, and clinical stage in gastric cancer patients. Moreover, GSE1 expression was also associated with decreased post-operative relapse-free survival and overall survival in the cohort. The forced expression of GSE1 in gastric cancer cell lines resulted in increased cell proliferation, increased colony formation, enhanced cell migration, and invasion. Furthermore, forced expression of GSE1 also increased tumor size and enhanced lung metastasis in xenograft models. The depletion of endogenous GSE1 with shRNAs decreased the oncogenicity and invasiveness of gastric cancer cells both in vitro and in vivo In addition, GSE1 was determined to be a direct target of miR-200b and miR-200c. Furthermore, GSE1 positively regulated the downstream gene SLC7A5 (also known as LAT-1), which was scanned and verified from mRNA sequencing. GSE1 therefore possesses an oncogenic role in human gastric cancer, and targeted therapeutic approaches to inhibit GSE1 function in gastric cancer warrant further consideration.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China.,the Department of Pathology and
| | - Sheng Tan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xing Huang
- the Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.,the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaonan Wang
- the Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | | | - Rong Fan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Zhu
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peter E Lobie
- the Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China, and.,the Cancer Science Institute of Singapore and Department of Pharmacology, National University Health System, National University of Singapore, Singapore 117599
| | - Wenbin Wang
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China,
| | | |
Collapse
|
32
|
Nicolini A, Ferrari P, Diodati L, Carpi A. Recent Advances in Comprehending the Signaling Pathways Involved in the Progression of Breast Cancer. Int J Mol Sci 2017; 18:E2321. [PMID: 29099748 PMCID: PMC5713290 DOI: 10.3390/ijms18112321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
This review describes recent advances in the comprehension of signaling pathways involved in breast cancer progression. Calcium sensing receptor (CaSR), caveolae signaling, signaling referred to hypoxia-inducing factors and disturbances in the apoptotic machinery are related to more general biological mechanisms and are considered first. The others refer to signaling pathways of more specific biological mechanisms, namely the heparin/heparin-sulfate interactome, over-expression of miRNA-378a-5p, restriction of luminal and basal epithelial cells, fatty-acid synthesis, molecular pathways related to epithelial to mesenchimal transition (EMT), HER-2/neu gene amplification and protein expression, and the expression of other members of the epithelial growth factor receptor family. This progress in basic research is fundamental to foster the ongoing efforts that use the new genotyping technologies, and aim at defining new prognostic and predictive biomarkers for a better personalized management of breast cancer disease.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lucrezia Diodati
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|