1
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Chen MC, Yang HS, Dong Z, Li LJ, Li XM, Luo HH, Li Q, Zhu Y. Immunogenomic features of radiologically distinctive nodules in multiple primary lung cancer. Cancer Immunol Immunother 2024; 73:217. [PMID: 39235522 PMCID: PMC11377372 DOI: 10.1007/s00262-024-03807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVES To provide molecular and immunological attributes mechanistic insights for the management of radiologically distinctive multiple primary lung cancer (MPLC). METHODS The Bulk RNA-seq data of MPLC were obtained from our center. The Bulk RNA-seq data and CT images of patients with single primary lung cancer (SPLC) were obtained from GSE103584. Immune infiltration algorithms were performed to investigate the disparities in the immunological microenvironment between the two groups. Single-cell gene analysis was used to explore immune cells composition and communication relationships between cells in MPLC. RESULTS In MPLC, 11 pure ground-glass opacity nodules (pGGN) and 10 mixed GGN (mGGN) were identified, while in SPLC, the numbers were 18 pGGN and 22 mGGN, respectively. In MPLC, compared to pGGN, mGGN demonstrated a significantly elevated infiltration of CD8+ T cells. Single-cell gene analysis demonstrated that CD8+ T cells play a central role in the signaling among immune cells in MPLC. The transcription factors including MAFG, RUNX3, and TBX21 may play pivotal roles in regulation of CD8+ T cells. Notably, compared to SPLC nodules for both mGGN and pGGN, MPLC nodules demonstrated a significantly elevated degree of tumor-infiltrating immune cells, with this difference being particularly pronounced in mGGN. There was a positive correlation between the proportion of immune cells and consolidation/tumor ratio (CTR). CONCLUSIONS Our findings provided a comprehensive description about the difference in the immune microenvironment between pGGN and mGGN in early-stage MPLC, as well as between MPLC and SPLC for both mGGN and pGGN. The findings may provide evidence for the design of immunotherapeutic strategies for MPLC.
Collapse
Affiliation(s)
- Mei-Cheng Chen
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Hao-Shuai Yang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Lu-Jie Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Xiang-Min Li
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516080, Guangdong, People's Republic of China
| | - Hong-He Luo
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiong Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center/Cancer Hospital, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Schmidt U, Uluca B, Vokic I, Malik B, Kolbe T, Lassnig C, Holcmann M, Moreno-Viedma V, Robl B, Mühlberger C, Gotthardt D, Sibilia M, Rülicke T, Müller M, Csiszar A. Inducible overexpression of a FAM3C/ILEI transgene has pleiotropic effects with shortened life span, liver fibrosis and anemia in mice. PLoS One 2023; 18:e0286256. [PMID: 37713409 PMCID: PMC10503705 DOI: 10.1371/journal.pone.0286256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/11/2023] [Indexed: 09/17/2023] Open
Abstract
FAM3C/ILEI is an important factor in epithelial-to-mesenchymal transition (EMT) induction, tumor progression and metastasis. Overexpressed in many cancers, elevated ILEI levels and secretion correlate with poor patient survival. Although ILEI's causative role in invasive tumor growth and metastasis has been demonstrated in several cellular tumor models, there are no available transgenic mice to study these effects in the context of a complex organism. Here, we describe the generation and initial characterization of a Tet-ON inducible Fam3c/ILEI transgenic mouse strain. We find that ubiquitous induction of ILEI overexpression (R26-ILEIind) at weaning age leads to a shortened lifespan, reduced body weight and microcytic hypochromic anemia. The anemia was reversible at a young age within a week upon withdrawal of ILEI induction. Vav1-driven overexpression of the ILEIind transgene in all hematopoietic cells (Vav-ILEIind) did not render mice anemic or lower overall fitness, demonstrating that no intrinsic mechanisms of erythroid development were dysregulated by ILEI and that hematopoietic ILEI hyperfunction did not contribute to death. Reduced serum iron levels of R26-ILEIind mice were indicative for a malfunction in iron uptake or homeostasis. Accordingly, the liver, the main organ of iron metabolism, was severely affected in moribund ILEI overexpressing mice: increased alanine transaminase and aspartate aminotransferase levels indicated liver dysfunction, the liver was reduced in size, showed increased apoptosis, reduced cellular iron content, and had a fibrotic phenotype. These data indicate that high ILEI expression in the liver might reduce hepatoprotection and induce liver fibrosis, which leads to liver dysfunction, disturbed iron metabolism and eventually to death. Overall, we show here that the novel Tet-ON inducible Fam3c/ILEI transgenic mouse strain allows tissue specific timely controlled overexpression of ILEI and thus, will serve as a versatile tool to model the effect of elevated ILEI expression in diverse tissue entities and disease conditions, including cancer.
Collapse
Affiliation(s)
- Ulrike Schmidt
- IMP—Research Institute of Molecular Pathology, Vienna, Austria
| | - Betül Uluca
- IMP—Research Institute of Molecular Pathology, Vienna, Austria
| | - Iva Vokic
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Barizah Malik
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Bernhard Robl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Carina Mühlberger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnes Csiszar
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Malik B, Vokic I, Mohr T, Poppelaars M, Holcmann M, Novoszel P, Timelthaler G, Lendl T, Krauss D, Elling U, Mildner M, Penninger JM, Petzelbauer P, Sibilia M, Csiszar A. FAM3C/ILEI protein is elevated in psoriatic lesions and triggers psoriasiform hyperproliferation in mice. EMBO Mol Med 2023; 15:e16758. [PMID: 37226685 PMCID: PMC10331587 DOI: 10.15252/emmm.202216758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Barizah Malik
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Present address:
School of Biochemistry and Biotechnology, Quaid‐e‐Azam CampusUniversity of the PunjabLahorePakistan
| | - Iva Vokic
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Marle Poppelaars
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Martin Holcmann
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Philipp Novoszel
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Lendl
- Research Institute of Molecular PathologyViennaAustria
| | - Dana Krauss
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Michael Mildner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Agnes Csiszar
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| |
Collapse
|
5
|
Flores RMA, Pantaleão SQ, Araujo SC, Malpartida HMG, Honorio KM. Structural analysis of factors related to FAM3C/ILEI dimerization and identification of inhibitor candidates targeting cancer treatment. Comput Biol Chem 2023; 104:107869. [PMID: 37068312 DOI: 10.1016/j.compbiolchem.2023.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
FAM3 is a superfamily of four cytokines that maintain a single globular structure β -β -α of three classes: FAM3A, B, C and D. FAM3C was the first member of this family related to cancer and is functionally characterized as an essential factor for the epithelial-mesenchymal transition (EMT), leading to late delays in tumor progression. Due to its crucial role in EMT and metastasis, FAM3C has been termed an interleukin-like EMT (ILEI) inducer. There are several studies on the part of FAM3C in the progression of cancer and other diseases. However, little is known about its cellular receptors and possible inhibitors. In this study, based on in silico approaches, we performed structural analyses of factors related to FAM3C/ILEI dimerization. We also identified four possible inhibitor candidates, expected to be exciting prototypes and could be submitted to future biological tests targeting cancer treatment.
Collapse
Affiliation(s)
| | - Simone Queiroz Pantaleão
- Center for Mathematics, Computing, and Cognition, Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Sheila Cruz Araujo
- Center for Sciences Natural and Human, Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | | | - Kathia Maria Honorio
- Center for Sciences Natural and Human, Federal University of ABC, 09210-170 Santo André, SP, Brazil; School of Arts, Sciences and Humanities, University of São Paulo, 03828-0000 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Thuya WL, Kong LR, Syn NL, Ding LW, Cheow ESH, Wong RTX, Wang T, Goh RMWJ, Song H, Jayasinghe MK, Le MT, Hu JC, Yong WP, Lee SC, Wong ALA, Sethi G, Hung HT, Ho PCL, Thiery JP, Sze SK, Guo T, Soo RA, Yang H, Lim YC, Wang L, Goh BC. FAM3C in circulating tumor-derived extracellular vesicles promotes non-small cell lung cancer growth in secondary sites. Theranostics 2023; 13:621-638. [PMID: 36632230 PMCID: PMC9830426 DOI: 10.7150/thno.72297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023] Open
Abstract
Rationale: Metastasis is a complex process with a molecular underpinning that remains unclear. We hypothesize that cargo proteins conducted by extracellular vesicles (EVs) released from tumors may confer growth and metastasis potential on recipient cells. Here, we report that a cytokine-like secreted protein, FAM3C, contributes to late-stage lung tumor progression. Methods: EV protein profiling was conducted with an unbiased proteomic mass spectrometry analysis on non-small cell lung cancer (NSCLC) and normal lung fibroblast cell lines. Expression of FAM3C was confirmed in a panel of NSCLC cell lines, and correlated to the invasive and metastatic potentials. Functional phenotype of endogenous FAM3C and tumor-derived EVs (TDEs) were further investigated using various biological approaches in RNA and protein levels. Metastasis potential of TDEs secreted by FAM3C-overexpressing carcinoma cells was validated in mouse models. Results: Transcriptomic meta-analysis of pan-cancer datasets confirmed the overexpression of FAM3C - a gene encoding for interleukin-like EMT inducer (ILEI) - in NSCLC tumors, with strong association with poor patient prognosis and cancer metastasis. Aberrant expression of FAM3C in lung carcinoma cells enhances cellular transformation and promotes distant lung tumor colonization. In addition, higher FAM3C concentrations were detected in EVs extracted from plasma samples of NSCLC patients compared to those of healthy subjects. More importantly, we defined a hitherto-unknown mode of microenvironmental crosstalk involving FAM3C in EVs, whereby the delivery and uptake of FAM3C via TDEs enhances oncogenic signaling - in recipient cells that phenocopies the cell-endogenous overexpression of FAM3C. The oncogenicity transduced by FAM3C is executed via a novel interaction with the Ras-related protein RalA, triggering the downstream activation of the Src/Stat3 signaling cascade. Conclusions: Our study describes a novel mechanism for FAM3C-driven carcinogenesis and shed light on EV FAM3C as a driver for metastatic lung tumors that could be exploited for cancer therapeutics.
Collapse
Affiliation(s)
- Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, China
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Esther Sok Hwee Cheow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Regina Tong Xin Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Tingting Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | | | - Hongyan Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Migara K Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian Cheng Hu
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huynh The Hung
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Jean-Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,INSERM Unit 1186, Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France
| | - Siu Kwan Sze
- Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tiannan Guo
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, China
| | - Ross A Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Yaw Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
7
|
Nakano M, Imamura R, Sugi T, Nishimura M. Human FAM3C restores memory-based thermotaxis of Caenorhabditis elegans famp-1/m70.4 loss-of-function mutants. PNAS NEXUS 2022; 1:pgac242. [PMID: 36712359 PMCID: PMC9802357 DOI: 10.1093/pnasnexus/pgac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The family with sequence similarity 3 (FAM3) superfamily represents a distinct class of signaling molecules that share a characteristic structural feature. Mammalian FAM3 member C (FAM3C) is abundantly expressed in neuronal cells and released from the synaptic vesicle to the extracellular milieu in an activity-dependent manner. However, the neural function of FAM3C has yet to be fully clarified. We found that the protein sequence of human FAM3C is similar to that of the N-terminal tandem domains of Caenorhabditis elegans FAMP-1 (formerly named M70.4), which has been recognized as a tentative ortholog of mammalian FAM3 members or protein-O-mannose β-1,2-N-acetylglucosaminyltransferase 1 (POMGnT1). Missense mutations in the N-terminal domain, named Fam3L2, caused defects in memory-based thermotaxis but not in chemotaxis behaviors; these defects could be restored by AFD neuron-specific exogenous expression of a polypeptide corresponding to the Fam3L2 domain but not that corresponding to the Fam3L1. Moreover, human FAM3C could also rescue defective thermotaxis behavior in famp-1 mutant worms. An in vitro assay revealed that the Fam3L2 and FAM3C can bind with carbohydrates, similar to the stem domain of POMGnT1. The athermotactic mutations in the Fam3L2 domain caused a partial loss-of-function of FAMP-1, whereas the C-terminal truncation mutations led to more severe neural dysfunction that reduced locomotor activity. Overall, we show that the Fam3L2 domain-dependent function of FAMP-1 in AFD neurons is required for the thermotaxis migration of C. elegans and that human FAM3C can act as a substitute for the Fam3L2 domain in thermotaxis behaviors.
Collapse
Affiliation(s)
- Masaki Nakano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Ryuki Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | | | | |
Collapse
|
8
|
Ding M, Malhotra R, Ottosson T, Lundqvist M, Mebrahtu A, Brengdahl J, Gehrmann U, Bäck E, Ross-Thriepland D, Isaksson I, Magnusson B, Sachsenmeier KF, Tegel H, Hober S, Uhlén M, Mayr LM, Davies R, Rockberg J, Schiavone LH. Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells. Sci Rep 2021; 11:16767. [PMID: 34408239 PMCID: PMC8373891 DOI: 10.1038/s41598-021-96184-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
Collapse
Affiliation(s)
- Mei Ding
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Ottosson
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Lundqvist
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Aman Mebrahtu
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan Brengdahl
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- grid.418151.80000 0001 1519 6403Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Douglas Ross-Thriepland
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ida Isaksson
- grid.418151.80000 0001 1519 6403Sample Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hanna Tegel
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lorenz M. Mayr
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rick Davies
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Zhu Y, Pu Z, Wang G, Li Y, Wang Y, Li N, Peng F. FAM3C: an emerging biomarker and potential therapeutic target for cancer. Biomark Med 2021; 15:373-384. [PMID: 33666514 DOI: 10.2217/bmm-2020-0179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FAM3C is a member of the FAM3 family. Recently, overexpression of FAM3C has been reported in numerous types of cancer, including breast and colon cancer. Increasing evidence suggests that elevated FAM3C and its altered subcellular localization are closely associated with tumor formation, invasion, metastasis and poor survival. Moreover, FAM3C has been found to be the regulator of various proteins that associate with cancer, including Ras, STAT3, TGF-β and LIFR. This review summarizes the current knowledge regarding FAM3C, including its structure, expression patterns, regulation, physiological roles and regulatory functions in various malignancies. These findings highlight the importance of FAM3C in cancer development and provide evidence that FAM3C is a novel biomarker and potential therapeutic target for various cancers.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Guoqiang Wang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Yubin Li
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| |
Collapse
|
10
|
Schmidt U, Heller G, Timelthaler G, Heffeter P, Somodi Z, Schweifer N, Sibilia M, Berger W, Csiszar A. The FAM3C locus that encodes interleukin-like EMT inducer (ILEI) is frequently co-amplified in MET-amplified cancers and contributes to invasiveness. J Exp Clin Cancer Res 2021; 40:69. [PMID: 33596971 PMCID: PMC7890988 DOI: 10.1186/s13046-021-01862-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene amplification of MET, which encodes for the receptor tyrosine kinase c-MET, occurs in a variety of human cancers. High c-MET levels often correlate with poor cancer prognosis. Interleukin-like EMT inducer (ILEI) is also overexpressed in many cancers and is associated with metastasis and poor survival. The gene for ILEI, FAM3C, is located close to MET on chromosome 7q31 in an amplification "hotspot", but it is unclear whether FAMC3 amplification contributes to elevated ILEI expression in cancer. In this study we have investigated FAMC3 copy number gain in different cancers and its potential connection to MET amplifications. METHODS FAMC3 and MET copy numbers were investigated in various cancer samples and 200 cancer cell lines. Copy numbers of the two genes were correlated with mRNA levels, with relapse-free survival in lung cancer patient samples as well as with clinicopathological parameters in primary samples from 49 advanced stage colorectal cancer patients. ILEI knock-down and c-MET inhibition effects on proliferation and invasiveness of five cancer cell lines and growth of xenograft tumors in mice were then investigated. RESULTS FAMC3 was amplified in strict association with MET amplification in several human cancers and cancer cell lines. Increased FAM3C and MET copy numbers were tightly linked and correlated with increased gene expression and poor survival in human lung cancer and with extramural invasion in colorectal carcinoma. Stable ILEI shRNA knock-down did not influence proliferation or sensitivity towards c-MET-inhibitor induced proliferation arrest in cancer cells, but impaired both c-MET-independent and -dependent cancer cell invasion. c-MET inhibition reduced ILEI secretion, and shRNA mediated ILEI knock-down prevented c-MET-signaling induced elevated expression and secretion of matrix metalloproteinase (MMP)-2 and MMP-9. Combination of ILEI knock-down and c-MET-inhibition significantly reduced the invasive outgrowth of NCI-H441 and NCI-H1993 lung tumor xenografts by inhibiting proliferation, MMP expression and E-cadherin membrane localization. CONCLUSIONS These novel findings suggest MET amplifications are often in reality MET-FAM3C co-amplifications with tight functional cooperation. Therefore, the clinical relevance of this frequent cancer amplification hotspot, so far dedicated purely to c-MET function, should be re-evaluated to include ILEI as a target in the therapy of c-MET-amplified human carcinomas.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gerald Timelthaler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Zsolt Somodi
- Department of Oncology, Bacs-Kiskun County Teaching Hospital, Kecskemet, Hungary
- Present Address: Parexel International, 2 Federal St, Billerica, MA USA
| | | | - Maria Sibilia
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Agnes Csiszar
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Nakano M, Mitsuishi Y, Liu L, Watanabe N, Hibino E, Hata S, Saito T, Saido TC, Murayama S, Kasuga K, Ikeuchi T, Suzuki T, Nishimura M. Extracellular Release of ILEI/FAM3C and Amyloid-β Is Associated with the Activation of Distinct Synapse Subpopulations. J Alzheimers Dis 2021; 80:159-174. [PMID: 33492290 DOI: 10.3233/jad-201174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain amyloid-β (Aβ) peptide is released into the interstitial fluid (ISF) in a neuronal activity-dependent manner, and Aβ deposition in Alzheimer's disease (AD) is linked to baseline neuronal activity. Although the intrinsic mechanism for Aβ generation remains to be elucidated, interleukin-like epithelial-mesenchymal transition inducer (ILEI) is a candidate for an endogenous Aβ suppressor. OBJECTIVE This study aimed to access the mechanism underlying ILEI secretion and its effect on Aβ production in the brain. METHODS ILEI and Aβ levels in the cerebral cortex were monitored using a newly developed ILEI-specific ELISA and in vivo microdialysis in mutant human Aβ precursor protein-knockin mice. ILEI levels in autopsied brains and cerebrospinal fluid (CSF) were measured using ELISA. RESULTS Extracellular release of ILEI and Aβ was dependent on neuronal activation and specifically on tetanus toxin-sensitive exocytosis of synaptic vesicles. However, simultaneous monitoring of extracellular ILEI and Aβ revealed that a spontaneous fluctuation of ILEI levels appeared to inversely mirror that of Aβ levels. Selective activation and inhibition of synaptic receptors differentially altered these levels. The evoked activation of AMPA-type receptors resulted in opposing changes to ILEI and Aβ levels. Brain ILEI levels were selectively decreased in AD. CSF ILEI concentration correlated with that of Aβ and were reduced in AD and mild cognitive impairment. CONCLUSION ILEI and Aβ are released from distinct subpopulations of synaptic terminals in an activity-dependent manner, and ILEI negatively regulates Aβ production in specific synapse types. CSF ILEI might represent a surrogate marker for the accumulation of brain Aβ.
Collapse
Affiliation(s)
- Masaki Nakano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Yachiyo Mitsuishi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Lei Liu
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Naoki Watanabe
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Emi Hibino
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
12
|
Phenotypic Screen with the Human Secretome Identifies FGF16 as Inducing Proliferation of iPSC-Derived Cardiac Progenitor Cells. Int J Mol Sci 2019; 20:ijms20236037. [PMID: 31801200 PMCID: PMC6928864 DOI: 10.3390/ijms20236037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.
Collapse
|
13
|
Yang W, Feng B, Meng Y, Wang J, Geng B, Cui Q, Zhang H, Yang Y, Yang J. FAM3C-YY1 axis is essential for TGFβ-promoted proliferation and migration of human breast cancer MDA-MB-231 cells via the activation of HSF1. J Cell Mol Med 2019; 23:3464-3475. [PMID: 30887707 PMCID: PMC6484506 DOI: 10.1111/jcmm.14243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Family with sequence similarity three member C (FAM3C) (interleukin‐like EMT inducer [ILEI]), heat shock factor 1 (HSF1) and Ying‐Yang 1 (YY1) have been independently reported to be involved in the pathogenesis of various cancers. However, whether they are coordinated to trigger the development of cancer remains unknown. This study determined the role and mechanism of YY1 and HSF1 in FAM3C‐induced proliferation and migration of breast cancer cells. In human MDA‐MB‐231 breast cancer cell line, transforming growth factor‐β (TGFβ) up‐regulated FAM3C, HSF1 and YY1 expressions. FAM3C overexpression promoted the proliferation and migration of MDA‐MB‐231 cells with YY1 and HSF1 up‐regulation, whereas FAM3C silencing exerted the opposite effects. FAM3C inhibition repressed TGFβ‐induced HSF1 activation, and proliferation and migration of breast cancer cells. YY1 was shown to directly activate HSF1 transcription to promote the proliferation and migration of breast cancer cells. YY1 silencing blunted FAM3C‐ and TGFβ‐triggered activation of HSF1‐Akt‐Cyclin D1 pathway, and proliferation and migration of breast cancer cells. Inhibition of HSF1 blocked TGFβ‐, FAM3C‐ and YY1‐induced proliferation and migration of breast cancer cells. YY1 and HSF1 had little effect on FAM3C expression. Similarly, inhibition of HSF1 also blunted FAM3C‐ and TGFβ‐promoted proliferation and migration of human breast cancer BT‐549 cells. In human breast cancer tissues, FAM3C, YY1 and HSF1 protein expressions were increased. In conclusion, FAM3C activated YY1‐HSF1 signalling axis to promote the proliferation and migration of breast cancer cells. Furthermore, novel FAM3C‐YY1‐HSF1 pathway plays an important role in TGFβ‐triggered proliferation and migration of human breast cancer MDA‐MB‐231 cells.
Collapse
Affiliation(s)
- Weili Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, Peking University Health Science Center, CAMS & PUMC, Beijing, China
| | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
15
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
16
|
Kral M, Klimek C, Kutay B, Timelthaler G, Lendl T, Neuditschko B, Gerner C, Sibilia M, Csiszar A. Covalent dimerization of interleukin-like epithelial-to-mesenchymal transition (EMT) inducer (ILEI) facilitates EMT, invasion, and late aspects of metastasis. FEBS J 2017; 284:3484-3505. [DOI: 10.1111/febs.14207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Maria Kral
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Austria
| | - Christoph Klimek
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Austria
| | - Betül Kutay
- Research Institute of Molecular Pathology; Vienna Austria
| | - Gerald Timelthaler
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology; Vienna Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry; Faculty of Chemistry; University of Vienna; Austria
| | - Christopher Gerner
- Department of Analytical Chemistry; Faculty of Chemistry; University of Vienna; Austria
| | - Maria Sibilia
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Austria
| | - Agnes Csiszar
- Institute of Cancer Research; Department of Medicine I; Medical University of Vienna; Austria
| |
Collapse
|