1
|
Datta SP, Dey CS. Evolutionary duplication of the leishmanial adaptor protein α-SNAP plays a role in its pathogenicity. J Biol Chem 2025; 301:108427. [PMID: 40118450 PMCID: PMC12019078 DOI: 10.1016/j.jbc.2025.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025] Open
Abstract
Essential-gene duplication during evolution promotes specialized functions beyond the typical role. Our in silico study unveiled two α-SNAP paralogs in Leishmania, a crucial component that, along with NSF, triggers disassembly of the cis-SNARE complex, formed during vesicle fusion with target membranes. While multiple α-SNAPs are common in many flagellated protists, including the trypanosomatids, they are unusual among other eukaryotes. This study explores the evolutionary and functional relevance of α-SNAP gene duplication in Leishmania donovani, emphasizing both subfunctionalization and neofunctionalization. We discovered that L. donovani α-SNAP (Ldα-SNAP) genes are transcribed in promastigote and amastigote stages, indicating they are not pseudogenes. Although the two paralogs share essential residues and structural features, only Ldα-SNAP1660 (Ldα-SNAP1) can effectively substitute the function of its yeast counterpart, while Ldα-SNAP3040 (Ldα-SNAP2) cannot. This functional difference is attributed to a replacement of alanine with phosphorylatable-serine in Ldα-SNAP1 during evolution from the most common ancestral ortholog. This modification is rarely observed in corresponding orthologs of other trypanosomatids. Incidentally, Ldα-SNAP paralogs exhibit differential localization in the ER and flagellar pocket. However, both paralogs, either actively or passively, regulate the secretion of exosomes and PM blebs, containing the virulence protein GP63. This indicates functional division and their indirect participation in the host's macrophage inactivation. Moreover, a small fraction of Ldα-SNAP1's presence in the flagellum hints at a potential role in sensing environmental cues and aiding the parasite's attachment to the sandfly's hindgut. Our findings underscore that duplicated Ldα-SNAPs have retained ancestral functions through subfunctionalization, and subsequently, they acquired parasite-specific neofunction(s) through the accumulation of natural mutation(s).
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
2
|
Kumar K, Basak R, Rai A, Mukhopadhyay A. GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Mol Microbiol 2024; 121:1063-1078. [PMID: 38558112 DOI: 10.1111/mmi.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aakansha Rai
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Ansari I, Singh AK, Kapoor A, Mukhopadhyay A. Unconventional role of Rab4 in the secretory pathway in Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119687. [PMID: 38342312 DOI: 10.1016/j.bbamcr.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.
Collapse
Affiliation(s)
- Irshad Ansari
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amir Kumar Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Haus Khas, New Delhi 110016, India.
| |
Collapse
|
4
|
Sood C, Verma JK, Basak R, Kapoor A, Gupta S, Mukhopadhyay A. Leishmania highjack host lipid body for its proliferation in macrophages by overexpressing host Rab18 and TRAPPC9 by downregulating miR-1914-3p expression. PLoS Pathog 2024; 20:e1012024. [PMID: 38412149 PMCID: PMC10898768 DOI: 10.1371/journal.ppat.1012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Lipids stored in lipid-bodies (LBs) in host cells are potential sources of fatty acids for pathogens. However, the mechanism of recruitment of LBs from the host cells by pathogens to acquire fatty acids is not known. Here, we have found that Leishmania specifically upregulates the expression of host Rab18 and its GEF, TRAPPC9 by downregulating the expression of miR-1914-3p by reducing the level of Dicer in macrophages via their metalloprotease gp63. Our results also show that miR-1914-3p negatively regulates the expression of Rab18 and its GEF in cells. Subsequently, Leishmania containing parasitophorous vacuoles (Ld-PVs) recruit and retain host Rab18 and TRAPPC9. Leishmania infection also induces LB biogenesis in host cells and recruits LBs on Ld-PVs and acquires FLC12-labeled fatty acids from LBs. Moreover, overexpression of miR-1914-3p in macrophages significantly inhibits the recruitment of LBs and thereby suppresses the multiplication of parasites in macrophages as parasites are unable to acquire fatty acids. These results demonstrate a novel mechanism how Leishmania acquire fatty acids from LBs for their growth in macrophages.
Collapse
Affiliation(s)
- Chandni Sood
- National Institute of Immunology, New Delhi, India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Swarnima Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
5
|
Díaz E, Febres A, Giammarresi M, Silva A, Vanegas O, Gomes C, Ponte-Sucre A. G Protein-Coupled Receptors as Potential Intercellular Communication Mediators in Trypanosomatidae. Front Cell Infect Microbiol 2022; 12:812848. [PMID: 35651757 PMCID: PMC9149261 DOI: 10.3389/fcimb.2022.812848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism’s survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Section of Infectious Diseases, Baylor College of Medicine, TX, United States
| | - Michelle Giammarresi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrian Silva
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Pediatric Gastroenterology, University of Iowa, Iowa City, IA, United States
| | - Carlos Gomes
- Royal Berkshire NHS, Foundation Trust, Light House Lab, Bracknell, United Kingdom
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Würzburg, Germany
- *Correspondence: Alicia Ponte-Sucre,
| |
Collapse
|
6
|
Ansari I, Basak R, Mukhopadhyay A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022; 11:585. [PMID: 35631106 PMCID: PMC9143042 DOI: 10.3390/pathogens11050585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; (I.A.); (R.B.)
| |
Collapse
|
7
|
Wei FR, Gao CH, Wang JY, Yang YT, Shi F, Zheng B. Label-Free Quantitative Proteomic Analysis of Three Strains of Viscerotropic Leishmania Isolated from Patients with Different Epidemiological Types of Visceral Leishmaniasis in China. Acta Parasitol 2021; 66:1366-1386. [PMID: 34019278 DOI: 10.1007/s11686-021-00387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are three epidemiological types of visceral leishmaniasis in China, which are caused by Leishmania strains belonging to the L. donovani complex. The mechanisms underlying their differences in the population affected, disease latency, and animal host, etc., remain unclear. We investigated the protein abundance differences among Leishmania strains isolated from three types of visceral leishmaniasis endemic areas in China. METHODS Promastigotes of the three Leishmania strains were cultured to the log phase and harvested. The protein tryptic digests were analyzed with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free quantitative analysis. The MS experiment was performed on a Q Exactive mass spectrometer. Raw spectra were quantitatively analyzed with the MaxQuant software (ver 1.3.0.5) and matched with the reference database. Differentially expressed proteins were analyzed using the bioinformatics method. The MS analysis was repeated three times for each sample. RESULTS A total of 5012 proteins were identified across the KS-2, JIASHI-5 and SC6 strains in at least 2 of the three samples replicate. Of them, 1758 were identified to be differentially expressed at least between 2 strains, including 349 with known names. These differentially expressed proteins with known names are involved in biological functions such as energy and lipid metabolic process, nucleotide acid metabolic process, amino acid metabolic process, response to stress, cell membrane/cytoskeleton, cell cycle and proliferation, biological adhesion and proteolysis, localization and transport, regulation of the biological process, and signal transduction. CONCLUSION The differentially expressed proteins and their related biological functions may shed light on the pathogenicity of Leishmania and targets for the development of vaccines and medicines.
Collapse
Affiliation(s)
- Fu-Rong Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Chun-Hua Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Jun-Yun Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| | - Yue-Tao Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Feng Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
8
|
Rastogi R, Kapoor A, Verma JK, Ansari I, Sood C, Kumar K, Mukhopadhyay A. Rab5b function is essential to acquire heme from hemoglobin endocytosis for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118868. [PMID: 33011192 DOI: 10.1016/j.bbamcr.2020.118868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023]
Abstract
Previously, we showed that Rab5a and Rab5b differentially regulate fluid-phase and receptor-mediated endocytosis in Leishmania, respectively. To unequivocally demonstrate the role of Rab5b in hemoglobin endocytosis in Leishmania, we generated null-mutants of Rab5b parasites by sequentially replacing both copies of LdRab5b with the hygromycin and neomycin resistance gene cassettes. LdRab5b-/- null-mutant parasite was confirmed by qPCR analysis of genomic DNA using LdRab5b specific primers. LdRab5b-/- cells showed severe growth defect indicating essential function of LdRab5b in parasite. To characterize the role of Rab5b in Hb endocytosis in parasites, LdRab5b-/- cells were rescued by exogenous addition of hemin in growth medium. Our results showed that LdRab5b-/- cells are relatively smaller in size. Ultrastructural analysis revealed the presence of relatively enlarged flagellar pocket and bigger intracellular vesicles in these cells in comparison to control cells. Both promastigotes and amastigotes of Rab5b null-mutant parasites were unable to internalize Hb but fluid phase endocytosis of different markers was not affected. However, complementation of LdRab5b:WT in LdRab5b-/- cells (LdRab5b-/-:pRab5b:WT) rescued Hb internalization in these cells. Interestingly, LdRab5b-/- cells showed significantly less Hb-receptor on cell surface in comparison to control cells indicating a block in HbR trafficking. Finally, we showed that LdRab5b-/- parasites can infect the macrophages but are unable to survive after 96 h of infection in comparison to control cells. However, supplementation of hemin in the growth medium significantly rescued LdRab5b-/-Leishmania survival in macrophage indicating that LdRab5b function is essential for the acquisition of heme from internalized Hb for the survival of Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Irshad Ansari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chandni Sood
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
9
|
Yu Y, Zhao P, Cao L, Gong P, Yuan S, Yao X, Guo Y, Dong H, Jiang W. A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote In Vitro. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:173-179. [PMID: 32418386 PMCID: PMC7231825 DOI: 10.3347/kjp.2020.58.2.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Yanhui Yu
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Clinical laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuxian Yuan
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Xinhua Yao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Yanbing Guo
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Hang Dong
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
10
|
Cao L, Jiang W, Cao S, Zhao P, Liu J, Dong H, Guo Y, Liu Q, Gong P. In vitro leishmanicidal activity of antimicrobial peptide KDEL against Leishmania tarentolae. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1286-1292. [PMID: 31761925 DOI: 10.1093/abbs/gmz128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis, caused by the intracellular protozoan parasite Leishmania, remains an important neglected tropical infectious disease. Infection may be lethal if untreated. Currently, the available drugs for the disease are limited by high toxicity and drug resistance. There is an urgent need to develop novel anti-leishmanial strategies. Antimicrobial peptides (AMPs) have been described as the first-line immune defense against pathogenic microbes and are being developed as emerging anti-parasitic therapies. In the present study, we showed the anti-leishmanial activity of the synthetic 4-amino acid peptide lysine, aspartic acid, glutamic acid, and leucine (KDEL), the endoplasmic reticulum retention sequence, against Leishmania tarentolae promastigote and amastigote. Different concentrations of KDEL peptides were incubated with promastigotes, MTT viability assay, and promastigote assay were carried out. Macrophages infected with GFP-transfected L. tarentolae promastigotes were incubated with KDEL peptides, and the anti-amastigote activity of the KDEL peptides was measured by fluorescence microscopy. The damage of L. tarentolae was observed by light microscopy and electron microscopy. The cell apoptosis was analyzed using the Annexin V-FITC/PI apoptosis detection kit and mitochondrial membrane potential assay kit and by flow cytometry. Results showed that L. tarentolae was susceptible to KDEL peptides in a dose-dependent manner, and KDEL peptides disrupted the surface membrane integrity and caused cell apoptosis. In our study, we found for the first time an AMP KDEL from Pseudomonas aeruginosa and proved its significant therapeutic potential as a novel anti-leishmanial drug.
Collapse
Affiliation(s)
- Lili Cao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Songgao Cao
- Pingdu People’s Hospital, Qingdao 266700, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juan Liu
- Pingdu People’s Hospital, Qingdao 266700, China
| | - Hang Dong
- Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Yanbing Guo
- Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Quan Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528000, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Garg G, Ali V, Singh K, Gupta P, Ganguly A, Sahasrabuddhe AA, Das P. Quantitative secretome analysis unravels new secreted proteins in Amphotericin B resistant Leishmania donovani. J Proteomics 2019; 207:103464. [PMID: 31357030 DOI: 10.1016/j.jprot.2019.103464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is second most neglected disease after malaria and seems to be a worldwide concern because of increased drug resistance and non-availability of approved vaccine. The underlying molecular mechanism of drug resistance (Amp B) in Leishmania parasites still remains elusive. Herein, the present study investigated differentially expressed secreted proteins of Amphotericin B sensitive (S) and resistant (R) isolate of Leishmania donovani by using label free quantitative LC-MS/MS approach. A total of 406 differentially expressed secreted proteins were found between sensitive (S) and resistant (R) isolate. Among 406 proteins, 32 were significantly up regulated (>2.0 fold) while 22 were down regulated (<0.5 fold) in resistant isolate of L. donovani. Further, differentially expressed proteins were classified into 11 various biological processes. Interestingly, identified up regulated proteins in resistant parasites were dominated in carbohydrate metabolism, stress response, transporters and proteolysis. Western blot and enzymatic activity of identified proteins validate our proteomic findings. Finally, our study demonstrated some new secreted proteins associated with Amp B resistance which provides a basis for further investigations to understand the role of proteins in L. donovani. BIOLOGICAL SIGNIFICANCE: Although great advances have been achieved in the diagnosis and treatment of leishmaniasis, still drug resistance is major hurdle in control of disease. Present study will enhance the deeper understanding of altered metabolic pathways involved in Amp B resistance mechanism and provide possible new proteins which can be potential candidate either for exploring as new drug target or vaccine. Protein-protein interactions highlighted the up-regulated metabolic pathways in resistant parasites which further unravel the adaptive mechanism of parasites.
Collapse
Affiliation(s)
- Gaurav Garg
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Parool Gupta
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Ashish Ganguly
- CSIR- Institute of Microbial Technology, Chandigarh, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| |
Collapse
|
12
|
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int J Mol Sci 2019; 20:ijms20010138. [PMID: 30609697 PMCID: PMC6337498 DOI: 10.3390/ijms20010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.
Collapse
|
13
|
Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, Ouellette M. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:165-173. [PMID: 29602064 PMCID: PMC6039308 DOI: 10.1016/j.ijpddr.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Increasing drug resistance towards first line antimony-derived compounds has forced the introduction of novel therapies in leishmaniasis endemic areas including amphotericin B and miltefosine. However, their use is threatened by the emergence and spread of drug-resistant strains. In order to discover stage-dependent resistance genes, we have adapted the Cos-Seq approach through the introduction of macrophage infections in the pipeline. A L. infantum intracellular amastigote population complemented with a L. infantum cosmid library was submitted to increasing concentrations of miltefosine, amphotericin B and pentavalent antimonials in experimental infections of THP-1 cells. For each step of selection, amastigotes were extracted and cosmids were isolated and submitted to next-generation sequencing, followed by subsequent gene-enrichment analyses. Cos-Seq screen in amastigotes revealed four highly enriched loci for antimony, five for miltefosine and one for amphotericin B. Of these, a total of seven cosmids were recovered and tested for resistance in both promastigotes and amastigotes. Candidate genes within the pinpointed genomic regions were validated using single gene overexpression in wild-type parasites and/or gene disruption by means of a CRISPR-Cas9-based approach. This led to the identification and validation of a stage-independent antimony-resistance gene (LinJ.06.1010) coding for a putative leucine rich repeat protein and a novel amastigote-specific miltefosine-resistance gene (LinJ.32.0050) coding for a member of the SEC13 family of WD-repeat proteins. This study further reinforces the power of Cos-Seq approach to discover novel drug-resistance genes, some of which are life-stages specific. The Cos-Seq led to the discovery of several new genomic regions selected with drugs. This work led to the validation of novel drug-resistance genes in Leishmania. Gene LinJ.06.1010 is involved in antimony resistance in both life stages of the parasite. Gene LinJ.32.0050 is involved in miltefosine resistance in amastigotes. The amastigote screen is labour intensive but complements screens in promastigotes.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mansi Sharma
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie Plourde
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Eva Bresson
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|