1
|
Xu J, Ye W, Yang TT, Yan T, Cai H, Zhou A, Yang Y. DNA accelerates the protease inhibition of a bacterial serpin chloropin. Front Mol Biosci 2023; 10:1157186. [PMID: 37065444 PMCID: PMC10090351 DOI: 10.3389/fmolb.2023.1157186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Serine protease inhibitors (Serpins) are the most widely distributed protease inhibitors in nature and have been identified from all kingdoms of life. Eukaryotic serpins are most abundant with their activities often subject to modulation by cofactors; however, little is known about the regulation of prokaryotic serpins. To address this, here we prepared a recombinant bacteria serpin, termed chloropin, derived from green sulfur bacteria Chlorobium limicola and solved its crystal structure at 2.2 Å resolution. This showed a canonical inhibitory serpin conformation of native chloropin with a surface-exposed reactive loop and a large central beta-sheet. Enzyme activity analysis showed that chloropin could inhibit multiple proteases, such as thrombin and KLK7 with second order inhibition rate constants at 2.5×104 M−1s−1 and 4.5×104 M−1s−1 respectively, consistent with its P1 arginine residue. Heparin could accelerate the thrombin inhibition by ∼17-fold with a bell-shaped dose-dependent curve as seen with heparin-mediated thrombin inhibition by antithrombin. Interestingly, supercoiled DNA could accelerate the inhibition of thrombin by chloropin by 74-fold, while linear DNA accelerated the reaction by 142-fold through a heparin-like template mechanism. In contrast, DNA did not affect the inhibition of thrombin by antithrombin. These results indicate that DNA is likely a natural modulator of chloropin protecting the cell from endogenous or exogenous environmental proteases, and prokaryotic serpins have diverged during evolution to use different surface subsites for activity modulation.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Wei Ye
- Department of Preventive Dentistry, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Ting Yang
- Department of Preventive Dentistry, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Yan
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Cai
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Haiyan Cai, ; Aiwu Zhou, ; Yufeng Yang,
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Haiyan Cai, ; Aiwu Zhou, ; Yufeng Yang,
| | - Yufeng Yang
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
- *Correspondence: Haiyan Cai, ; Aiwu Zhou, ; Yufeng Yang,
| |
Collapse
|
2
|
Książek M, Goulas T, Mizgalska D, Rodríguez-Banqueri A, Eckhard U, Veillard F, Waligórska I, Benedyk-Machaczka M, Sochaj-Gregorczyk AM, Madej M, Thøgersen IB, Enghild JJ, Cuppari A, Arolas JL, de Diego I, López-Pelegrín M, Garcia-Ferrer I, Guevara T, Dive V, Zani ML, Moreau T, Potempa J, Gomis-Rüth FX. A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen Tannerella forsythia. Chem Sci 2023; 14:869-888. [PMID: 36755705 PMCID: PMC9890683 DOI: 10.1039/d2sc04166a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct β-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.
Collapse
Affiliation(s)
- Mirosław Książek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly Temponera str. Karditsa 43100 Greece
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Irena Waligórska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Alicja M. Sochaj-Gregorczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityGronostajowa 7Kraków 30-387Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Anna Cuppari
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Joan L. Arolas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| | - Iñaki de Diego
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Sample Environment and Characterization Group, European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany
| | - Mar López-Pelegrín
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Irene Garcia-Ferrer
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), ERL CNRS 9004Gif-sur-Yvette 91191France
| | - Marie-Louise Zani
- Departement de Biochimie, Université de Tours10 Bd. TonelléTours Cedex 37032France
| | | | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| |
Collapse
|
3
|
Cortez-de-la-Fuente LJ, García-González G, Hernández-Bello R, González GM, Palma-Nicolás JP. Expression of Trichinella spiralis serpin Tsp_01570 in Pichia pastoris: a first insight of its biomodulatory activity. Parasitol Res 2023; 122:245-255. [PMID: 36376587 DOI: 10.1007/s00436-022-07723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Serpins represent one of the most diverse families of serine protease inhibitors. Despite their complexity, they are virtually found in all organisms and play an important role in homeostasis processes such as blood coagulation, inflammation, fibrinolysis, immune responses, chromatin condensation, tumor suppression, and apoptosis. There has recently been particular interest in studying serpin functions in infection and inflammation, especially since more serpins from parasites have been identified and characterized. Among helminths, Trichinella spiralis is one of the few parasites with an extremely strong ability to induce host immune suppression. Previous studies show that serpins are present in Trichinella and are expressed differentially at different parasite stages. More interesting, there is evidence of a recombinant serpin from Trichinella pseudospiralis that alters macrophage polarization in vitro. This finding could be relevant to comprehend the modulation process of the immune response. We expressed Tsp_01570, a putative serpin gene from Trichinella spiralis, in the eukaryotic system Pichia pastoris SMD1168H and evaluated its presence at different parasite stages, finding the serine protease inhibitor in the crude extract of adult worms. The effect of recombinant serpin on THP-1 cells was tested by quantification of IL-12p40, TNF-α, IL-4, and IL-10 cytokines released by ELISA. We also evaluated the expression of the M1 markers, CCR7 and CD86, and the M2 markers, CD163 and CD206, by immunofluorescence staining. This study represents the first insight in elucidating the importance of serpin Tsp_01570 as a potential molecular modulator.
Collapse
Affiliation(s)
- Luis Jesús Cortez-de-la-Fuente
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina Y Hospital Universitario "Dr, José Eleuterio González", Av. Francisco I. Madero Y Calle Dr. Eduardo Aguirre Pequeño S/N, Colonia Mitras Centro, Monterrey, Nuevo León, C.P. 64460, México
| | - Gerardo García-González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina Y Hospital Universitario "Dr, José Eleuterio González", Av. Francisco I. Madero Y Calle Dr. Eduardo Aguirre Pequeño S/N, Colonia Mitras Centro, Monterrey, Nuevo León, C.P. 64460, México
| | - Romel Hernández-Bello
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina Y Hospital Universitario "Dr, José Eleuterio González", Av. Francisco I. Madero Y Calle Dr. Eduardo Aguirre Pequeño S/N, Colonia Mitras Centro, Monterrey, Nuevo León, C.P. 64460, México
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina Y Hospital Universitario "Dr, José Eleuterio González", Av. Francisco I. Madero Y Calle Dr. Eduardo Aguirre Pequeño S/N, Colonia Mitras Centro, Monterrey, Nuevo León, C.P. 64460, México
| | - José Prisco Palma-Nicolás
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina Y Hospital Universitario "Dr, José Eleuterio González", Av. Francisco I. Madero Y Calle Dr. Eduardo Aguirre Pequeño S/N, Colonia Mitras Centro, Monterrey, Nuevo León, C.P. 64460, México.
| |
Collapse
|
4
|
Strand 1A variant in neuroserpin shows increased aggregation and no loss of inhibition: implication in ameliorating polymerization to retain activity. Biosci Rep 2022; 42:232125. [PMID: 36408789 PMCID: PMC9760604 DOI: 10.1042/bsr20221825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroserpin (NS) is predominantly expressed in the brain and is the primary inhibitor of tissue plasminogen activator (tPA). NS variants are associated with the neurogenerative disease termed familial encephalopathy with neuroserpin inclusion bodies (FENIB). The disease is characterized by variable age of onset and severity. The reactive center loop (RCL) insertion-based inhibitory mechanism of NS requires a coordinated conformational change leading to a shift in the strands of the β-sheet A and movement of helix F. Strand 1A is connected to the helix F at its C terminal end and with the strand 2A at its N terminal, both these domain move for accommodating the inserting loop; therefore, a variant that influences their movement may alter the inhibition rates. A molecular dynamic simulation analysis of a H138C NS variant from strand 1A showed a large decrease in conformational fluctuations as compared with wild-type NS. H138 was mutated, expressed, purified and a native-PAGE and transmission electron microscopy (TEM) analysis showed that this variant forms large molecular weight aggregates on a slight increase in temperature. However, a circular dichroism analysis showed its secondary structure to be largely conserved. Surprisingly, its tPA inhibition activity and complex formation remain unhindered even after the site-specific labeling of H138C with Alexa fluor C5 maleimide. Further, a helix F-strand 1A (W154C-H138C) double variant still shows appreciable inhibitory activity. Increasingly, it appears that aggregation and not loss of inhibition is the more likely cause of shutter region-based variants phenotypes, indicating that hindering polymer formation using small molecules may retain inhibitory activity in pathological variants of NS.
Collapse
|
5
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
6
|
The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 2021; 22:ijms22126351. [PMID: 34198546 PMCID: PMC8231800 DOI: 10.3390/ijms22126351] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.
Collapse
|
7
|
Mkaouar H, Mariaule V, Rhimi S, Hernandez J, Kriaa A, Jablaoui A, Akermi N, Maguin E, Lesner A, Korkmaz B, Rhimi M. Gut Serpinome: Emerging Evidence in IBD. Int J Mol Sci 2021; 22:ijms22116088. [PMID: 34200095 PMCID: PMC8201313 DOI: 10.3390/ijms22116088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global socioeconomic impact are increasing. While the role of host genetics and immunity is well documented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and the maintenance of the disease. The intestinal proteolytic balance is the result of an equilibrium between the proteases and their corresponding inhibitors. Interestingly, the serine protease inhibitors (serpins) encoded by the host are well reported; in contrast, those from the gut microbiota remain poorly studied. In this review, we provide a concise analysis of the roles of serine protease in IBD physiopathology and we focus on the serpins from the gut microbiota (gut serpinome) and their relevance as a promising therapeutic approach.
Collapse
Affiliation(s)
- Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases” and University of Tours, 37032 Tours, France;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (H.M.); (V.M.); (S.R.); (A.K.); (A.J.); (N.A.); (E.M.)
- Correspondence:
| |
Collapse
|
8
|
Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Mol Biol Evol 2021; 38:2915-2929. [PMID: 33744972 PMCID: PMC8233489 DOI: 10.1093/molbev/msab081] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Serine protease inhibitors (serpins) are found in all kingdoms of life and play essential roles in multiple physiological processes. Owing to the diversity of the superfamily, phylogenetic analysis is challenging and prokaryotic serpins have been speculated to have been acquired from Metazoa through horizontal gene transfer due to their unexpectedly high homology. Here, we have leveraged a structural alignment of diverse serpins to generate a comprehensive 6,000-sequence phylogeny that encompasses serpins from all kingdoms of life. We show that in addition to a central “hub” of highly conserved serpins, there has been extensive diversification of the superfamily into many novel functional clades. Our analysis indicates that the hub proteins are ancient and are similar because of convergent evolution, rather than the alternative hypothesis of horizontal gene transfer. This work clarifies longstanding questions in the evolution of serpins and provides new directions for research in the field of serpin biology.
Collapse
Affiliation(s)
- Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Matthew D Mortimer
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, Australia
| | - Bui Quang Minh
- Research School of Computing and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Edogawa S, Edwinson AL, Peters SA, Chikkamenahalli LL, Sundt WJ, Graves S, Gurunathan SV, Breen-Lyles MK, Johnson S, Dyer RB, Graham RP, Chen J, Kashyap P, Farrugia G, Grover M. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut 2020; 69:62-73. [PMID: 30923071 PMCID: PMC6765451 DOI: 10.1136/gutjnl-2018-317416] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The intestinal lumen contains several proteases. Our aim was to determine the role of faecal proteases in mediating barrier dysfunction and symptoms in IBS. DESIGN 39 patients with IBS and 25 healthy volunteers completed questionnaires, assessments of in vivo permeability, ex vivo colonic barrier function in Ussing chambers, tight junction (TJ) proteins, ultrastructural morphology and 16 s sequencing of faecal microbiota rRNA. A casein-based assay was used to measure proteolytic activity (PA) in faecal supernatants (FSNs). Colonic barrier function was determined in mice (ex-germ free) humanised with microbial communities associated with different human PA states. RESULTS Patients with IBS had higher faecal PA than healthy volunteers. 8/20 postinfection IBS (PI-IBS) and 3/19 constipation- predominant IBS had high PA (>95th percentile). High-PA patients had more and looser bowel movements, greater symptom severity and higher in vivo and ex vivo colonic permeability. High-PA FSNs increased paracellular permeability, decreased occludin and increased phosphorylated myosin light chain (pMLC) expression. Serine but not cysteine protease inhibitor significantly blocked high-PA FSN effects on barrier. The effects on barrier were diminished by pharmacological or siRNA inhibition of protease activated receptor-2 (PAR-2). Patients with high-PA IBS had lower occludin expression, wider TJs on biopsies and reduced microbial diversity than patients with low PA. Mice humanised with high-PA IBS microbiota had greater in vivo permeability than those with low-PA microbiota. CONCLUSION A subset of patients with IBS, especially in PI-IBS, has substantially high faecal PA, greater symptoms, impaired barrier and reduced microbial diversity. Commensal microbiota affects luminal PA that can influence host barrier function.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam L Edwinson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Stephanie A Peters
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Wendy J Sundt
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sara Graves
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stephen Johnson
- Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Roy B Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna Kashyap
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA,Correspondence: Madhusudan Grover, MD, Assistant Professor of Medicine and Physiology, Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Tel: 507-284-2478, Fax: 507-266-0350,
| |
Collapse
|
11
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Sochaj-Gregorczyk A, Ksiazek M, Waligorska I, Straczek A, Benedyk M, Mizgalska D, Thøgersen IB, Enghild JJ, Potempa J. Plasmin inhibition by bacterial serpin: Implications in gum disease. FASEB J 2019; 34:619-630. [PMID: 31914706 DOI: 10.1096/fj.201901490rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Tannerella forsythia is a periodontopathogen that expresses miropin, a protease inhibitor in the serpin superfamily. In this study, we show that miropin is also a specific and efficient inhibitor of plasmin; thus, it represents the first proteinaceous plasmin inhibitor of prokaryotic origin described to date. Miropin inhibits plasmin through the formation of a stable covalent complex triggered by cleavage of the Lys368-Thr369 (P2-P1) reactive site bond with a stoichiometry of inhibition of 3.8 and an association rate constant (kass) of 3.3 × 105 M-1s-1. The inhibition of the fibrinolytic activity of plasmin was nearly as effective as that exerted by α2-antiplasmin. Miropin also acted in vivo by reducing blood loss in a mice tail bleeding assay. Importantly, intact T. forsythia cells or outer membrane vesicles, both of which carry surface-associated miropin, strongly inhibited plasmin. In intact bacterial cells, the antiplasmin activity of miropin protects envelope proteins from plasmin-mediated degradation. In summary, in the environment of periodontal pockets, which are bathed in gingival crevicular fluid consisting of 70% of blood plasma, an abundance of T. forsythia in the bacterial biofilm can cause local inhibition of fibrinolysis, which could have possible deleterious effects on the tooth-supporting structures of the periodontium.
Collapse
Affiliation(s)
| | - Miroslaw Ksiazek
- Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Irena Waligorska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Straczek
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Benedyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
13
|
Mkaouar H, Akermi N, Kriaa A, Abraham AL, Jablaoui A, Soussou S, Mokdad-Gargouri R, Maguin E, Rhimi M. Serine protease inhibitors and human wellbeing interplay: new insights for old friends. PeerJ 2019; 7:e7224. [PMID: 31531264 PMCID: PMC6718151 DOI: 10.7717/peerj.7224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes and their dysfunction is associated to various diseases. Thus, increasing interest is given to these proteins as new therapeutic targets. Several studies provided functional and structural data about human serpins. By comparison, only little knowledge regarding bacterial serpins exists. Through the emergence of metagenomic studies, many bacterial serpins were identified from numerous ecological niches including the human gut microbiota. The origin, distribution and function of these proteins remain to be established. In this report, we shed light on the key role of human and bacterial serpins in health and disease. Moreover, we analyze their function, phylogeny and ecological distribution. This review highlights the potential use of bacterial serpins to set out new therapeutic approaches.
Collapse
Affiliation(s)
- Héla Mkaouar
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Nizar Akermi
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Aicha Kriaa
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | | | - Amin Jablaoui
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Souha Soussou
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Raja Mokdad-Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Emmanuelle Maguin
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Moez Rhimi
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| |
Collapse
|
14
|
Liu Y, Hou F, Qian Z, Liu X. Functional characterization of the clade B serine protease inhibitor SerpinB3 in the pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:10-17. [PMID: 29550271 DOI: 10.1016/j.dci.2018.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The clade B serpins contain predominantly intracellular proteins and were reported to be involved in multiple biological functions, especially in inflammation and immune system function. However, studies about the role of the invertebrate intracellular serpins in immune responses were still deficient. Therefore, this paper focused on the functional characterization of LvserpinB3 in white shrimp Litopenaeus vannamei. The pAc5.1-LvserpinB3-EGFP vector was transfected into Drosophila Schneider 2 (S2) cells to analyze the subcellular localization of LvserpinB3, and fluorescent imaging showed that LvserpinB3 were mainly localized to the mitochondria. Knockdown LvserpinB3 significantly increased the mRNA expression of LvSpätzle4 (LvSpz4) and LvPenaeidin4 (LvPen4) upon Vibrio anguillarum infection. Moreover, GST-Pull down analysis showed that LvserpinB3 could interact with serine protease 1 (LvSP1). The recombinant LvserpinB3 (rLvserpinB3) protein exhibited inhibitory roles on the proteolytic activity of trypsin, whereas, mutation at the P1 residue led to the disfunction of the inhibitor. Furthermore, the LvserpinB3 and trypsin mixture were incubated with Anti-SERPINB3 antibodies, and a peptide band with an apparent molecular weight of 30 kDa were detected by western blot analysis. These findings might be valuable in understanding the potential role for LvserpinB3 in inhibiting the target proteases during shrimp immune defences.
Collapse
Affiliation(s)
- Yongjie Liu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Fujun Hou
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaoying Qian
- School of Resource & Environmental Management, Guizhou University of Finance and Economics, Guizhou 550025, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Eckert M, Mizgalska D, Sculean A, Potempa J, Stavropoulos A, Eick S. In vivo expression of proteases and protease inhibitor, a serpin, by periodontal pathogens at teeth and implants. Mol Oral Microbiol 2018; 33:240-248. [PMID: 29498485 DOI: 10.1111/omi.12220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Porphyromonas gingivalis and Tannerella forsythia secrete proteases, gingipains and KLIKK-proteases. In addition, T. forsythia produces a serpin (miropin) with broad inhibitory spectrum. The aim of this pilot study was to determine the level of expression of miropin and individual proteases in vivo in periodontal and peri-implant health and disease conditions. Biofilm and gingival crevicular fluid (GCF)/ peri-implant sulcular fluid (PISF) samples were taken from healthy tooth and implant sites (n = 10), gingivitis and mucositis sites (n = 12), and periodontitis and peri-implantitis sites (n = 10). Concentration of interleukin-8 (IL-8), IL-1β and IL-10 in GCF was determined by enzyme-linked immunosorbent assay. Loads of P. gingivalis and T. forsythia and the presence of proteases and miropin genes were assessed in biofilm by quantitative PCR, whereas gene expression was estimated by quantitative RT-PCR. The presence of P. gingivalis and T. forsythia, as well as the level of IL-8 and IL-1β, were associated with disease severity in the periodontal and peri-implant tissues. In biofilm samples harboring T. forsythia, genes encoding proteases were found to be present at 72.4% for karilysin and 100% for other KLIKK-protease genes and miropin. At the same time, detectable mRNA expression of individual genes ranged from 20.7% to 58.6% of samples (for forsylisin and miropsin-1, respectively). In comparison with the T. forsythia proteases, miropin and the gingipains were highly expressed. The level of expression of gingipains was associated with those of miropin and certain T. forsythia proteases around teeth but not implants. Cumulatively, KLIKK-proteases and especially miropin, might play a role in pathogenesis of both periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- M Eckert
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| | - D Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Sculean
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - S Eick
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| |
Collapse
|
16
|
Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ 2018; 6:e4557. [PMID: 29632742 PMCID: PMC5889911 DOI: 10.7717/peerj.4557] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023] Open
Abstract
Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.,Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|