1
|
Zhang H, Liu TT, Ricke EA, Ricke WA. Prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice. Sci Rep 2024; 14:30302. [PMID: 39638850 PMCID: PMC11621416 DOI: 10.1038/s41598-024-79879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease that affects millions of aging males globally. While the pathogenesis of BPH remains incompletely understood, emerging evidence suggests a pivotal role for the androgen receptor (AR) in mediating prostate growth and function. Understanding age-related AR signaling alteration may inform novel BPH treatments. Here, we analyzed the prostatic protein expressions of AR, NKX3.1, and Ki-67 in young (2 months) and aged (24 months) mice. We also examined the potential mechanism of AR protein expression. Compared to young mice, decreased AR and NKX3.1 protein expression was observed in the anterior prostate (AP) and ventral prostate (VP) of aged mice, indicating reduced AR signaling in these prostate lobes. Additionally, we observed decreased protein expression of proliferation maker Ki-67 in aged AP, VP, and dorsal-lateral prostate (DLP), with no difference in apoptosis as compared to young counterparts. We conclude that prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Teresa T Liu
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William A Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Wang S, Yu Y, Li Y, Zhang T, Jiang W, Wang X, Liu R. Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1. Stem Cell Res Ther 2024; 15:274. [PMID: 39218930 PMCID: PMC11367998 DOI: 10.1186/s13287-024-03886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yangyang Yu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yinglei Li
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Xinghuan Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Ran Liu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Vasilatis DM, Batra N, Lucchesi CA, Abria CJ, Packeiser EM, Murua Escobar H, Ghosh PM. Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines. Int J Mol Sci 2024; 25:8628. [PMID: 39201315 PMCID: PMC11354774 DOI: 10.3390/ijms25168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics. Three AR-null canine PCa lines (1508, Leo, 1258) were transfected with canine wild-type AR and treated with dihydrotestosterone (DHT). In 1508, AR restoration decreased clonogenicity (p = 0.03), viability (p = 0.004), migration (p = 0.03), invasion (p = 0.01), and increased expression of the tumor suppressor NKX3.1, an AR transcriptional target (p = 0.001). In Leo, AR decreased clonogenicity (p = 0.04) and the expression of another AR transcriptional target FOLH1 (p < 0.001) and increased the expression of NKX3.1 (p = 0.01). In 1258, AR increased migration (p = 0.006) and invasion (p = 0.03). Epithelial-mesenchymal transition (EMT) marker (Vimentin, N-cadherin, SNAIL1) expression increased with AR restoration in Leo and 1258 but not 1508; siRNA vimentin knockdown abrogated AR-induced 1258 migration only. Overall, 1508 showed AR-mediated tumor suppression; AR affected proliferation in Leo but not migration or invasion; and EMT and AR regulated migration and invasion in 1258 but not proliferation. This study highlights the heterogeneous nature of PCa in dogs and cell line-specific effects of AR abrogation on aggressive behaviors.
Collapse
Affiliation(s)
- Demitria M. Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Neelu Batra
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Christopher A. Lucchesi
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Christine J. Abria
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Hugo Murua Escobar
- Department of Medicine, Medical Clinic III, Hematology Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Paramita M. Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
4
|
Ahmad A, Samat S, Tan Y, Bumpers H. Case Report: A challenging diagnosis of an apocrine sweat gland carcinoma. Front Surg 2024; 11:1307647. [PMID: 38571559 PMCID: PMC10987736 DOI: 10.3389/fsurg.2024.1307647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
The differential diagnosis for an axillary mass in a patient with a previously treated malignancy is broad and definitive tissue diagnosis is required to guide treatment and surveillance strategies. We present the case of a 76-year-old African American male with a history of prostate cancer who presented with a left axillary mass two years after achieving remission from his prostate malignancy. Due to the diagnostic challenge, this excisional biopsy was reviewed at four different academic centers. Although no universal consensus among these institutions' pathologists, but in the context of clinical presentation and anatomic location, the overall clinical findings are consistent with apocrine sweat gland carcinoma. The mass was treated with complete local surgical excision, though regional lymph node metastasis occurred 2 years later. Multimodal treatment with surgery and radiation was done with removal of regional metastasis and no distant disease was identified. Primary apocrine carcinoma is a rare cutaneous neoplasm with less than 100 reported cases in the literature. A combination of clinical history and presentation, histomorphology, anatomical location, and immunohistochemistry is used to support the diagnosis and ultimately drive management.
Collapse
Affiliation(s)
- Adeel Ahmad
- Department of Surgery, Sparrow Health Systems, Lansing, MI, United States
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI, United States
| | - Sajjaad Samat
- Department of Surgery, Sparrow Health Systems, Lansing, MI, United States
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI, United States
| | - Yaohong Tan
- Department of Pathology, Sparrow Health Systems, Lansing, MI, United States
| | - Harvey Bumpers
- Department of Surgery, College of Human Medicine, Michigan State University, Lansing, MI, United States
| |
Collapse
|
5
|
Takahashi S, Takada I, Hashimoto K, Yokoyama A, Nakagawa T, Makishima M, Kume H. ESS2 controls prostate cancer progression through recruitment of chromodomain helicase DNA binding protein 1. Sci Rep 2023; 13:12355. [PMID: 37524814 PMCID: PMC10390525 DOI: 10.1038/s41598-023-39626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Molecular targeted therapy using poly (ADP-ribose) polymerase inhibitors has improved survival in patients with castration-resistant prostate cancer (CRPC). However, this approach is only effective in patients with specific genetic mutations, and additional drug discovery targeting epigenetic modulators is required. Here, we evaluated the involvement of the transcriptional coregulator ESS2 in prostate cancer. ESS2-knockdown PC3 cells dramatically inhibited proliferation in tumor xenografts in nude mice. Microarray analysis revealed that ESS2 regulated mRNA levels of chromodomain helicase DNA binding protein 1 (CHD1)-related genes and other cancer-related genes, such as PPAR-γ, WNT5A, and TGF-β, in prostate cancer. ESS2 knockdown reduced nuclear factor (NF)-κB/CHD1 recruitment and histone H3K36me3 levels on the promoters of target genes (TNF and CCL2). In addition, we found that the transcriptional activities of NF-κB, NFAT and SMAD2/3 were enhanced by ESS2. Tamoxifen-inducible Ess2-knockout mice showed delayed prostate development with hypoplasia and disruption of luminal cells in the ventral prostate. Overall, these findings identified ESS2 acts as a transcriptional coregulator in prostate cancer and ESS2 can be novel epigenetic therapeutic target for CRPC.
Collapse
Affiliation(s)
- Sayuri Takahashi
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Ichiro Takada
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Kenichi Hashimoto
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Haruki Kume
- Department of Urology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Urology, The Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
6
|
Diao Y, Wang G, Zhu B, Li Z, Wang S, Yu L, Li R, Fan W, Zhang Y, Zhou L, Yang L, Hao X, Liu J. Loading of "cocktail siRNAs" into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biol Ther 2022; 23:163-172. [PMID: 35171081 PMCID: PMC8855870 DOI: 10.1080/15384047.2021.2024040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived, membranous nanoparticles that mediate intercellular communication by transferring biomolecules between cells. As natural vehicles, EVs may exhibit higher delivery efficiency, lower immunogenicity, and better compatibility than existing RNA carriers. A major limitation of their therapeutic use is the shortage of efficient, robust, and scalable methods to load siRNA of interest. Here, we report a novel strategy using polycationic membrane-penetrating peptide TAT to encapsulate siRNAs into EVs. Three TAT peptides were co-expressed with DRBD as 3TD fusion protein. The sequence-independent binding of DRBD facilitates multiplex genes targeting of mixed siRNAs. Functional assays for siRNA-mediated gene silencing of CRPC were performed after engineered EVs treatment. EVs were isolated using differential centrifugation from WPMY-1 cell culture medium. The increase of merged yellow fluorescence in the engineered EVs showed by TIRFM and the decrease in zeta potential absolute values certified the co-localization of siRNA with EVs, which indicated that siRNA had been successfully delivered into WPMY-1 EVs. qRT-PCR analysis revealed that the mRNA level of FLOH1, NKX3, and DHRS7 was dramatically decreased when cells were treated with engineered EVs loaded with siRNAs mixtures relative to the level of untreated cells. Western and flow cytometry results indicate that delivery of siRNA mixtures by engineered EVs can effectively downregulate AR expression and induce LNCaP-AI cell apoptosis. The uptake efficiency of the EVs and the significantly downregulated expression of three genes suggested the potential of TAT as efficient siRNA carriers by keeping the function of the cargoes.
Collapse
Affiliation(s)
- Yanjun Diao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gangqiang Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bingbing Zhu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Shan Wang
- Department of Clinical Laboratory Medicine, The Fourth Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Lijuan Yu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weixiao Fan
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Zhang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Yang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoke Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Abstract
NKX3.1 is a multifaceted protein with roles in prostate development and protection from oxidative stress. Acting as a pioneer factor, NKX3.1 interacts with chromatin at enhancers to help integrate androgen regulated signalling. In prostate cancer, NKX3.1 activity is frequently reduced through a combination of mutational and post-translational events. Owing to its specificity for prostate tissue, NKX3.1 has found use as an immunohistochemical marker in routine histopathology practice.
Collapse
Affiliation(s)
- Jon Griffin
- Histopathology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK .,Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| | - Yuqing Chen
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - James W F Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK.,Urology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sherif El-Khamisy
- Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Vorontsova SK, Zavarzin IV, Shirinian VZ, Bozhenko EI, Andreeva OE, Sorokin DV, Scherbakov AM, Minyaev ME. Synthesis and crystal structures of D-annulated pentacyclic steroids: looking within and beyond AR signalling in prostate cancer. CrystEngComm 2022. [DOI: 10.1039/d1ce01417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocyclic steroids D-annulated at 16α and 17α positions with a 5-membered ring E are easily accessible via the interrupted Nazarov cyclization. Three steroid series have been structurally studied: chlorine-containing D-annulated...
Collapse
|
9
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Thompson-Elliott B, Johnson R, Khan SA. Alterations in TGFβ signaling during prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:318-328. [PMID: 34541030 PMCID: PMC8446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.
Collapse
Affiliation(s)
| | - Rarnice Johnson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
11
|
Safety and preliminary immunogenicity of JNJ-64041809, a live-attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2021; 25:219-228. [PMID: 34257408 PMCID: PMC9184270 DOI: 10.1038/s41391-021-00402-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
Background The safety and immunogenicity of JNJ-64041809 (JNJ-809), a live-attenuated, double-deleted Listeria monocytogenes (LADD Lm)-based immunotherapy targeting 4 relevant prostate cancer antigens, was evaluated in a phase 1 study in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods Men with progressive mCRPC who had received ≥2 prior approved therapies were enrolled. Primary study objectives were to determine the recommended phase 2 dose (RP2D) and to evaluate the safety and immunogenicity of JNJ-809. Results A total of 26 patients received JNJ-809 (1 × 108 CFU (n = 6); 1 × 109 CFU (n = 20)). No dose-limiting toxicities were reported, and 1 × 109 CFU was selected as the RP2D. The most common adverse events (AEs) reported were chills (92%), pyrexia (81%), and fatigue (62%). The most frequent grade ≥3 AEs were lymphopenia (27%) and hypertension (23%). Serious AEs were reported in 27% of patients including 1 patient with grade 3 intestinal obstruction. JNJ-809 transiently induced peripheral cytokines, including interferon-γ, interleukin-10, and tumor necrosis factor-α. Of the 7 patients evaluable for T cell responses at the 1 × 109 CFU dose, evidence of post-treatment antigenic responses were observed in 6 to the Listeria antigen listeriolysin O and in 5 to ≥1 of the 4 encoded tumor antigens. Best overall response was stable disease in 13/25 response-evaluable patients. The study was terminated early as data collected were considered sufficient to evaluate safety and immunogenicity. Conclusions JNJ-809 has manageable safety consistent with other LADD Lm-based therapies. Limited antigen-specific immune responses were observed, which did not translate into objective clinical responses.
Collapse
|
12
|
Sexual fate of murine external genitalia development: Conserved transcriptional competency for male-biased genes in both sexes. Proc Natl Acad Sci U S A 2021; 118:2024067118. [PMID: 34074765 DOI: 10.1073/pnas.2024067118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.
Collapse
|
13
|
Timofte AD, Giuşcă SE, Lozneanu L, Manole MB, Prutianu I, Gafton B, Rusu A, Căruntu ID. HOXB13 and TFF3 can contribute to the prognostic stratification of prostate adenocarcinoma. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:41-52. [PMID: 34609407 PMCID: PMC8597359 DOI: 10.47162/rjme.62.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Homeobox B13 (HOXB13) and trefoil factor 3 (TFF3) are novel candidates for the classification of prostate cancer (PC) in molecular subtypes that could predict the clinical evolution of patients. The aim of our study was to analyze the possible associations between HOXB13 and TFF3 immunohistochemical (IHC) expression in sporadic prostate adenocarcinoma (PAC), the potential prognostic value in relation to the classical clinico-pathological parameters, as well as their role in defining distinct molecular subtypes of this malignancy. The study group comprised 105 patients diagnosed with PAC who underwent radical prostatectomy. IHC exam was performed using anti-HOXB13 and anti-TFF3 antibodies and a scoring system that permit the separation of the cases into two subgroups, with low and high immunoexpression, respectively. The statistical analysis evaluated the relationship between the two immunomarkers and clinico-pathological parameters. The Kaplan-Meier curves and log-rank Mantel-Cox test were used for assessing the prostate-specific antigen (PSA)-progression free survival. Four subgroups of PAC were defined based on the IHC overexpression and low immunoexpression of HOXB13 and TFF3. High HOXB13 and TFF3 immunoexpression was commonly identified in cases characterized by a Gleason score over 7, a G4 or G5 dominant pattern, a grade group of 3 or 4 and a preoperatory PSA serum level over 20 ng/mL. HOXB13 overexpression was also associated with pathological tumor-node-metastasis (pTNM) stage. The subgroup with both low HOXB13 and TFF3 immunoexpression had the highest PSA-progression free interval, whereas the subgroup with high HOXB13 immunoexpression and low TFF3 immunoexpression presented the lowest rate, but no statistically significant differences were registered. Our results sustain the role of HOXB13 and TFF3 in the stratification of PAC. Further investigations in larger cohorts are imposed to validate the clinical significance of these subgroups in the diagnostic and prognostic of PAC.
Collapse
Affiliation(s)
- Andrei Daniel Timofte
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania;
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu C, Hu K, Nguyen D, Wang ZA. From genomics to functions: preclinical mouse models for understanding oncogenic pathways in prostate cancer. Am J Cancer Res 2019; 9:2079-2102. [PMID: 31720076 PMCID: PMC6834478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023] Open
Abstract
Next-generation sequencing has revealed numerous genomic alterations that induce aberrant signaling activities in prostate cancer (PCa). Among them are pathways affecting multiple cancer types, including the PI3K/AKT/mTOR, p53, Rb, Ras/Raf/MAPK, Myc, FGF, and Wnt signaling pathways, as well as ones that are prominent in PCa, including alterations in genes of AR signaling, the ETS family, NKX3.1, and SPOP. Cross talk among the oncogenic pathways can confer PCa resistance to therapy, particularly in advanced tumors, which are castration-resistant or show neuroendocrine features. Various experimental models, such as cancer cell lines, animal models, and patient-derived xenografts and organoids have been utilized to dissect PCa progression mechanisms. Here, we review the current preclinical mouse models for studying the most commonly altered pathways in PCa, with an emphasis on their interplays. We highlight the power of genetically engineered mouse models (GEMMs) in translating genomic discoveries into understanding of the functions of these oncogenic events in vivo. Developing and analyzing PCa mouse models will undoubtedly continue to offer new insights into tumor biology and guide novel rationalized therapy.
Collapse
Affiliation(s)
- Chuan Yu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Kevin Hu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Daniel Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| |
Collapse
|
15
|
Horton C, Liu Y, Yu C, Xie Q, Wang ZA. Luminal-contact-inhibition of epithelial basal stem cell multipotency in prostate organogenesis and homeostasis. Biol Open 2019; 8:bio.045724. [PMID: 31540905 PMCID: PMC6826291 DOI: 10.1242/bio.045724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prostate epithelial basal cells are highly plastic in their luminal differentiation capability. Basal stem cells actively produce luminal cells during organogenesis, but become restricted in the adult prostate unless receiving oncogenic or inflammatory stimuli. Given that the number of luminal cells increases relative to basal cells through development and that equilibrium is reached in the adulthood, we hypothesize that a negative-feedback mechanism exists to inhibit basal-to-luminal differentiation. We provide evidence supporting this hypothesis by comparing murine prostatic growth in a tissue reconstitution assay with cell recombinants of different basal-to-luminal ratios. Additionally, in organoid culture, hybrid organoids derived from adjacent basal and luminal cells showed reduced basal stem cell activities, suggesting contact inhibition. Importantly, removal of adult luminal cells in vivo via either an inducible Cre/loxP-Dre/rox dual-lineage-tracing system or orthotopic trypsin injection led to robust reactivation of basal stem cell activities, which acts independent of androgen. These data illustrate the prostate organ as a distinctive paradigm where cell contact from differentiated daughter cells restricts adult stem cell multipotency to maintain the steady-state epithelial architecture.
Collapse
Affiliation(s)
- Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
17
|
De Souza MF, Kuasne H, Barros-Filho MDC, Cilião HL, Marchi FA, Fuganti PE, Rogatto SR, Cólus IMDS. Circulating mRNA signature as a marker for high-risk prostate cancer. Carcinogenesis 2019; 41:139-145. [DOI: 10.1093/carcin/bgz129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Prostate cancer (PCa) is the second most common cancer in men. The indolent course of the disease makes the treatment choice a challenge for physicians and patients. In this study, a minimally invasive method was used to evaluate the potential of molecular markers in identifying patients with aggressive disease. Cell-free plasma samples from 60 PCa patients collected before radical prostatectomy were used to evaluate the levels of expression of eight genes (AMACR, BCL2, NKX3-1, GOLM1, OR51E2, PCA3, SIM2 and TRPM8) by quantitative real-time PCR. Overexpression of AMACR, GOLM1, TRPM8 and NKX3-1 genes was significantly associated with aggressive disease characteristics, including extracapsular extension, tumor stage and vesicular seminal invasion. A trio of genes (GOLM1, NKX3-1 and TRPM8) was able to identify high-risk PCa cases (85% of sensitivity and 58% of specificity), yielding a better overall performance compared with the biopsy Gleason score and prostate-specific antigen, routinely used in the clinical practice. Although more studies are required, these circulating markers have the potential to be used as an additional test to improve the diagnosis and treatment decision of high-risk PCa patients.
Collapse
Affiliation(s)
| | - Hellen Kuasne
- International Research Center—CIPE—A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | | |
Collapse
|
18
|
Elliott B, Millena AC, Matyunina L, Zhang M, Zou J, Wang G, Zhang Q, Bowen N, Eaton V, Webb G, Thompson S, McDonald J, Khan S. Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells. Cancer Lett 2019; 448:155-167. [PMID: 30763715 PMCID: PMC6414252 DOI: 10.1016/j.canlet.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
JunD, a member of the AP-1 family, is essential for cell proliferation in prostate cancer (PCa) cells. We recently demonstrated that JunD knock-down (KD) in PCa cells results in cell cycle arrest in G1-phase concomitant with a decrease in cyclin D1, Ki67, and c-MYC, but an increase in p21 levels. Furthermore, the over-expression of JunD significantly increased proliferation suggesting JunD regulation of genes required for cell cycle progression. Here, employing gene expression profiling, quantitative proteomics, and validation approaches, we demonstrate that JunD KD is associated with distinct gene and protein expression patterns. Comparative integrative analysis by Ingenuity Pathway Analysis (IPA) identified 1) cell cycle control/regulation as the top canonical pathway whose members exhibited a significant decrease in their expression following JunD KD including PRDX3, PEA15, KIF2C, and CDK2, and 2) JunD dependent genes are associated with cell proliferation, with MYC as the critical downstream regulator. Conversely, JunD over-expression induced the expression of the above genes including c-MYC. We conclude that JunD is a crucial regulator of cell cycle progression and inhibiting its target genes may be an effective approach to block prostate carcinogenesis.
Collapse
Affiliation(s)
- Bethtrice Elliott
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Ana Cecilia Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Lilya Matyunina
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Mengnan Zhang
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Vanessa Eaton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Gabrielle Webb
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Shadyra Thompson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - John McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA
| | - Shafiq Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|
19
|
McAuley E, Moline D, VanOpstall C, Lamperis S, Brown R, Vander Griend DJ. Sox2 Expression Marks Castration-Resistant Progenitor Cells in the Adult Murine Prostate. Stem Cells 2019; 37:690-700. [PMID: 30720908 DOI: 10.1002/stem.2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Identification of defined epithelial cell populations with progenitor properties is critical for understanding prostatic development and disease. Here, we demonstrate that Sox2 expression is enriched in the epithelial cells of the proximal prostate adjacent to the urethra. We use lineage tracing of Sox2-positive cells during prostatic development, homeostasis, and regeneration to show that the Sox2 lineage is capable of self-renewal and contributes to prostatic regeneration. Persisting luminal cells express Sox2 after castration, highlighting a potential role for Sox2 in cell survival and castration-resistance. In addition to revealing a novel progenitor population in the prostate, these data implicate Sox2 as a regulatory factor of adult prostate epithelial stem cells. Stem Cells 2019;37:690-700.
Collapse
Affiliation(s)
- Erin McAuley
- The Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Daniel Moline
- The Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Calvin VanOpstall
- The Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Sophia Lamperis
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ryan Brown
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald J Vander Griend
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|