1
|
Wei G, Duan B, Zhou TP, Tian W, Sun C, Lin Z, Deng Z, Wang B, Zhang Z, Qu X. A nucleobase-driven P450 peroxidase system enables regio- and stereo-specific formation of C─C and C─N bonds. Proc Natl Acad Sci U S A 2024; 121:e2412890121. [PMID: 39508763 PMCID: PMC11573659 DOI: 10.1073/pnas.2412890121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
P450 peroxidase activities are valued for their ability to catalyze complex chemical transformations using economical H2O2; however, they have been largely underexplored compared to their monooxygenase and peroxygenase activities. In this study, we identified an unconventional P450 enzyme, PtmB, which catalyzes the dimerization of purine nucleobases and tryptophan-containing diketopiperazines (TDKPs), yielding C3-nucleobase pyrroloindolines and nucleobase-TDKP dimers. Unlike typical TDKP P450 enzymes reliant on NAD(P)H cofactors and electron transfer systems, PtmB, and its analogs exhibit remarkable peroxidase activity in synthesizing adenine and other modified 6-aminopurine nucleobase-TDKP dimers. Structural analysis of the PtmB-substrate complex, mutation assays, and computational investigations reveal adenine's dual role as both substrate and acid-base catalyst in activating H2O2 to generate Compound I (Cpd I). This initiates a specific radical cascade reaction, facilitating the formation of precise C─C and C─N bonds. Biochemical assays and molecular dynamics simulations demonstrate that adenine's 6-NH2 hydrogen-bonding networks induce necessary conformational changes for H2O2 activation, thereby driving peroxidase activity. This study unveils an unusual catalytic mechanism for the P450 peroxidase system and underscores the pivotal role of nucleobases in enzyme-mediated reactions, which offers different prospects for developing P450 peroxidases and nucleobase-based biocatalysts.
Collapse
Affiliation(s)
- Guangzheng Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Borui Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Tai-Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Chenghai Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Zhengyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
2
|
Li SH, Zhang X, Mei ZL, Liu Y, Ma JA, Zhang FG. Chemoenzymatic Synthesis of Fluorinated Mycocyclosin Enabled by the Engineered Cytochrome P450-Catalyzed Biaryl Coupling Reaction. J Am Chem Soc 2024; 146:19962-19973. [PMID: 38985576 DOI: 10.1021/jacs.4c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Installing fluorine atoms onto natural products holds great promise for the generation of fluorinated molecules with improved or novel pharmacological properties. The enzymatic oxidative carbon-carbon coupling reaction represents a straightforward strategy for synthesizing biaryl architectures, but the exploration of this method for producing fluorine-substituted derivatives of natural products remains elusive. Here, in this study, we report the protein engineering of cytochrome P450 from Mycobacterium tuberculosis (MtCYP121) for the construction of a series of new-to-nature fluorine-substituted Mycocyclosin derivatives. This protocol takes advantage of a "hybrid" chemoenzymatic procedure consisting of tyrosine phenol lyase-catalyzed fluorotyrosine preparation from commercially available fluorophenols, intermolecular chemical condensation to give cyclodityrosines, and an engineered MtCYP121-catalyzed intramolecular biphenol coupling reaction to complete the strained macrocyclic structure. Computational mechanistic studies reveal that MtCYP121 employs Cpd I to abstract a hydrogen atom from the proximal phenolic hydroxyl group of the substrate to trigger the reaction. Then, conformational change makes the two phenolic hydroxyl groups close enough to undergo intramolecular hydrogen atom transfer with the assistance of a pocket water molecule. The final diradical coupling process completes the intramolecular C-C bond formation. The efficiency of the biaryl coupling reaction was found to be influenced by various fluorine substitutions, primarily due to the presence of distinct binding conformations.
Collapse
Affiliation(s)
- Shuo-Han Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ze-Long Mei
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Nguy AKL, Martinie RJ, Cai A, Seyedsayamdost MR. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. J Am Chem Soc 2024; 146:19629-19634. [PMID: 38989876 DOI: 10.1021/jacs.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.
Collapse
Affiliation(s)
- Andy K L Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan J Martinie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Amanda Cai
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Zhang X, Zhao Q, Liu Y. Computational Insights into the Intramolecular Aromatic C-C Coupling Catalyzed by the Cytochrome P450 Enzyme CYP121 from Mycobacterium tuberculosis. Inorg Chem 2024; 63:13068-13078. [PMID: 38937145 DOI: 10.1021/acs.inorgchem.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
CYP121 is a P450 enzyme that catalyzes the intramolecular C-C coupling of its native substrate, dicyclotyrosine (cYY). According to previous suggestions, when the cosubstrate peracetic acid was used to generate Cpd I, the substrate cYY was suggested to participate in the cleavage of the O-O bond; however, whether cYY is involved in the formation of Cpd I and how two distant aromatic carbon atoms are activated are still unclear. Here, we constructed computational models and performed QM/MM calculations to clarify the reaction mechanism. On the basis of our calculation results, cYY is not involved in the formation of Cpd I, and the C-C coupling reaction starts from hydrogen abstraction. In the second stage, the substrate should first undergo a complex conformational change, leading to two phenolic hydroxyls of cYY close to each other. In the subsequent reaction, the resultant Cpd II again abstracts a hydrogen atom from the proximal tyrosine to generate the diradical intermediate. In addition, the C-C coupling occurs in the active site, but the final aromatization may be a nonenzymatic reaction. In general, the intramolecular C-C coupling requires two basic conditions, including the active site having good flexibility and the substrate itself having a suitable and rotatable skeleton.
Collapse
Affiliation(s)
- Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Li J, Duan R, Liu A. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex. J Am Chem Soc 2024; 146:18292-18297. [PMID: 38941563 PMCID: PMC11608028 DOI: 10.1021/jacs.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center's high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV-vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
6
|
Meng F, Zhang S, Su J, Zhu B, Pan X, Qiu X, Cui X, Wang C, Niu L, Li C, Lu S. Characterization of two CYP80 enzymes provides insights into aporphine alkaloid skeleton formation in Aristolochia contorta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1439-1454. [PMID: 38379355 DOI: 10.1111/tpj.16686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.
Collapse
Affiliation(s)
- Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jiaxian Su
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunling Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Lili Niu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
7
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Essential Mycobacterium tuberculosis P450 Drug Target, CYP121A1. Int J Mol Sci 2024; 25:4886. [PMID: 38732102 PMCID: PMC11084333 DOI: 10.3390/ijms25094886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| |
Collapse
|
8
|
Lee JHZ, Bruning JB, Bell SG. An In Crystallo Reaction with an Engineered Cytochrome P450 Peroxygenase. Chemistry 2024; 30:e202303335. [PMID: 37971151 DOI: 10.1002/chem.202303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.
Collapse
Affiliation(s)
- Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Nguyen RC, Davis I, Dasgupta M, Wang Y, Simon PS, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim IS, Zhou T, Mendez D, Paley D, Fuller F, Alonso-Mori R, Batyuk A, Sauter NK, Brewster AS, Orville AM, Yachandra VK, Yano J, Kern JF, Liu A. In Situ Structural Observation of a Substrate- and Peroxide-Bound High-Spin Ferric-Hydroperoxo Intermediate in the P450 Enzyme CYP121. J Am Chem Soc 2023; 145:25120-25133. [PMID: 37939223 PMCID: PMC10799213 DOI: 10.1021/jacs.3c04991] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Daniel Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jan F. Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX 78249, United States
| |
Collapse
|
10
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
11
|
Widodo WS, Billerbeck S. Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. ENGINEERING MICROBIOLOGY 2023; 3:100067. [PMID: 39628525 PMCID: PMC11610984 DOI: 10.1016/j.engmic.2022.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/06/2024]
Abstract
Cyclodipeptides are diverse chemical scaffolds that show a broad range of bioactivities relevant for medicine, agriculture, chemical catalysis, and material sciences. Cyclodipeptides can be synthesized enzymatically through two unrelated enzyme families, non-ribosomal peptide synthetases (NRPS) and cyclodipeptide synthases (CDPSs). The chemical diversity of cyclodipeptides is derived from the two amino acid side chains and the modification of those side-chains by cyclodipeptide tailoring enzymes. While a large spectrum of chemical diversity is already known today, additional chemical space - and as such potential new bioactivities - could be accessed by exploring yet undiscovered NRPS and CDPS gene clusters as well as via engineering. Further, to exploit cyclodipeptides for applications, the low yield of natural biosynthesis needs to be overcome. In this review we summarize current knowledge on NRPS and CDPS-based cyclodipeptide biosynthesis, engineering approaches to further diversity the natural chemical diversity as well as strategies for high-yield production of cyclodipeptides, including a discussion of how advancements in synthetic biology and metabolic engineering can accelerate the translational potential of cyclodipeptides.
Collapse
Affiliation(s)
- Wahyu Setia Widodo
- Department of Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Zhang C, Gilardi G, Di Nardo G. Depicting the proton relay network in human aromatase: New insights into the role of the alcohol-acid pair. Protein Sci 2022; 31:e4389. [PMID: 36040260 PMCID: PMC9366932 DOI: 10.1002/pro.4389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Human aromatase is the cytochrome P450 catalyzing the conversion of androgens into estrogens in a three steps reaction essential to maintain steroid hormones balance. Here we report the capture and spectroscopic characterization of its compound I (Cpd I), the main reactive species in cytochromes P450. The typical spectroscopic transitions indicating the formation of Cpd I are detected within 0.8 s when mixing aromatase with meta-chloroperoxybenzoic acid. The estrogen product is obtained from the same reaction mixture, demonstrating the involvement of Cpd I in aromatization reaction. Site-directed mutagenesis is applied to the acid-alcohol pair D309 and T310 and to R192, predicted to be part of the proton relay network. Mutants D309N and R192Q do not lead to Cpd I with an associated loss of activity, confirming that these residues are involved in proton delivery for Cpd I generation. Cpd I is captured for T310A mutant and shows 2.9- and 4.4-fold faster rates of formation and decay, respectively, compared to wild-type (WT). However, its activity is lower than the WT and a larger amount of H2 O2 is produced during catalysis, indicating that T310 has an essential role in proton gating for generation of Cpd 0 and Cpd I and for their stabilization. The data provide new evidences on the role of threonine belonging to the conserved "acid-alcohol" pair and known to be crucial for oxygen activation in cytochromes P450.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| |
Collapse
|
13
|
Mechanistic analysis of carbon-carbon bond formation by deoxypodophyllotoxin synthase. Proc Natl Acad Sci U S A 2022; 119:2113770119. [PMID: 34969844 PMCID: PMC8740726 DOI: 10.1073/pnas.2113770119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The completion of the tetracyclic core of etoposide, classified by the World Health Organization as an essential medicine, by the Fe/2OG oxygenase deoxypodophyllotoxin synthase follows a hybrid radical-polar pathway not previously seen in other members of this enzyme class. The implication of a substrate-based benzylic carbocation in this mechanism will inform ongoing efforts to create analogs of this important drug with improved or emergent properties and represents a new route for resolution of the initial substrate radical that is common to members of the class. This study adds to our understanding on a growing number of biochemical transformations in which carbocation intermediates are likely to be crucial. Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate–dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS’s catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel–Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs.
Collapse
|
14
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
15
|
Campomizzi CS, Ghanatios GE, Estrada DF. 19F-NMR reveals substrate specificity of CYP121A1 in Mycobacterium tuberculosis. J Biol Chem 2021; 297:101287. [PMID: 34634307 PMCID: PMC8571521 DOI: 10.1016/j.jbc.2021.101287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochromes P450 are versatile enzymes that function in endobiotic and xenobiotic metabolism and undergo meaningful structural changes that relate to their function. However, the way in which conformational changes inform the specific recognition of the substrate is often unknown. Here, we demonstrate the utility of fluorine (19F)-NMR spectroscopy to monitor structural changes in CYP121A1, an essential enzyme from Mycobacterium tuberculosis. CYP121A1 forms functional dimers that catalyze the phenol-coupling reaction of the dipeptide dicyclotyrosine. The thiol-reactive compound 3-bromo-1,1,1-trifluoroacetone was used to label an S171C mutation of the enzyme FG loop, which is located adjacent to the homodimer interface. Substrate titrations and inhibitor-bound 19F-NMR spectra indicate that ligand binding reduces conformational heterogeneity at the FG loop in both the dimer and in an engineered monomer of CYP121A1. However, only the dimer was found to promote a substrate-bound conformation that was preexisting in the substrate-free spectra, thus confirming a role for the dimer interface in dicyclotyrosine recognition. Moreover, 19F-NMR spectra in the presence of substrate analogs indicate the hydrogen-bonding feature of the dipeptide aromatic side chain as a dicyclotyrosine specificity criterion. This study demonstrates the utility of 19F-NMR as applied to a multimeric cytochrome P450, while also revealing mechanistic insights for an essential M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - George E Ghanatios
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
16
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
17
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Subedi P, Kim KH, Hong YS, Lee JH, Oh TJ. Enzymatic Characterization and Comparison of Two Steroid Hydroxylases CYP154C3-1 and CYP154C3-2 from Streptomyces Species. J Microbiol Biotechnol 2021; 31:464-474. [PMID: 33397832 PMCID: PMC9705902 DOI: 10.4014/jmb.2010.10020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Bacterial cytochrome P450 (CYP) enzymes are responsible for the hydroxylation of diverse endogenous substances with a heme molecule used as a cofactor. This study characterized two CYP154C3 proteins from Streptomyces sp. W2061 (CYP154C3-1) and Streptomyces sp. KCCM40643 (CYP154C3-2). The enzymatic activity assays of both CYPs conducted using heterologous redox partners' putidaredoxin and putidaredoxin reductase showed substrate flexibility with different steroids and exhibited interesting product formation patterns. The enzymatic characterization revealed good activity over a pH range of 7.0 to 7.8 and the optimal temperature range for activity was 30 to 37°C. The major product was the C16-hydroxylated product and the kinetic profiles and patterns of the generated hydroxylated products differed between the two enzymes. Both enzymes showed a higher affinity toward progesterone, with CYP154C3-1 demonstrating slightly higher activity than CYP154C3-2 for most of the substrates. Oxidizing agents (diacetoxyiodo) benzene (PIDA) and hydrogen peroxide (H2O2) were also utilized to actively support the redox reactions, with optimum conversion achieved at concentrations of 3 mM and 65 mM, respectively. The oxidizing agents affected the product distribution, influencing the type and selectivity of the CYP-catalyzed reaction. Additionally, CYP154C3s also catalyzed the C-C bond cleavage of steroids. Therefore, CYP154C3s may be a good candidate for the production of modified steroids for various biological uses.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungbuk 28116, Republic of Korea
| | - Joo-Ho Lee
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea,Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asan 31460, Republic of Korea,Corresponding author Phone: +82-41-530-2677 Fax: +82-41-530-2279 E-mail:
| |
Collapse
|
19
|
Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, Liu A. A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by a de novo crystal structural and spectroscopic study. Chem Sci 2021; 12:3984-3998. [PMID: 34163669 PMCID: PMC8179489 DOI: 10.1039/d0sc06369j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
SfmD is a heme-dependent enzyme in the biosynthetic pathway of saframycin A. Here, we present a 1.78 Å resolution de novo crystal structure of SfmD, which unveils a novel heme cofactor attached to the protein with an unusual Hx n HxxxC motif (n ∼ 38). This heme cofactor is unique in two respects. It contains a single thioether bond in a cysteine-vinyl link with Cys317, and the ferric heme has two axial protein ligands, i.e., His274 and His313. We demonstrated that SfmD heme is catalytically active and can utilize dioxygen and ascorbate for a single-oxygen insertion into 3-methyl-l-tyrosine. Catalytic assays using ascorbate derivatives revealed the functional groups of ascorbate essential to its function as a cosubstrate. Abolishing the thioether linkage through mutation of Cys317 resulted in catalytically inactive SfmD variants. EPR and optical data revealed that the heme center undergoes a substantial conformational change with one axial histidine ligand dissociating from the iron ion in response to substrate 3-methyl-l-tyrosine binding or chemical reduction by a reducing agent, such as the cosubstrate ascorbate. The labile axial ligand was identified as His274 through redox-linked structural determinations. Together, identifying an unusual heme cofactor with a previously unknown heme-binding motif for a monooxygenase activity and the structural similarity of SfmD to the members of the heme-based tryptophan dioxygenase superfamily will broaden understanding of heme chemistry.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Karinel Nieves-Merced
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Stanton McHardy
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| |
Collapse
|
20
|
Forneris CC, Nguy AKL, Seyedsayamdost MR. Mapping and Exploiting the Promiscuity of OxyB toward the Biocatalytic Production of Vancomycin Aglycone Variants. ACS Catal 2020; 10:9287-9298. [PMID: 34422446 PMCID: PMC8378672 DOI: 10.1021/acscatal.0c01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vancomycin is one of the most important clinical antibiotics in the fight against infectious disease. Its biological activity relies on three aromatic cross-links, which create a cup-shaped topology and allow tight binding to nascent peptidoglycan chains. The cytochrome P450 enzymes OxyB, OxyA, and OxyC have been shown to introduce these synthetically challenging aromatic linkages. The ability to utilize the P450 enzymes in a chemo-enzymatic scheme to generate vancomycin derivatives is appealing but requires a thorough understanding of their reactivities and mechanisms. Herein, we systematically explore the scope of OxyB biocatalysis and report installation of diverse diaryl ether and biaryl cross-links with varying macrocycle sizes and compositions, when the enzyme is presented with modified vancomycin precursor peptides. The structures of the resulting products were determined using one-dimensional/two-dimensional nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry (HR-MS), tandem HR-MS, and isotopic labeling, as well as ultraviolet-visible light absorption and fluorescence emission spectroscopies. An exploration of the biological activities of these alternative OxyB products surprisingly revealed antifungal properties. Taking advantage of the promiscuity of OxyB, we chemo-enzymatically generated a vancomycin aglycone variant containing an expanded macrocycle. Mechanistic implications for OxyB and future directions for creating vancomycin analogue libraries are discussed.
Collapse
Affiliation(s)
- Clarissa C Forneris
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andy K L Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
22
|
Wang Y, Davis I, Chan Y, Naik SG, Griffith WP, Liu A. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. J Biol Chem 2020; 295:11789-11802. [PMID: 32601061 DOI: 10.1074/jbc.ra120.013915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Cysteamine dioxygenase (ADO) has been reported to exhibit two distinct biological functions with a nonheme iron center. It catalyzes oxidation of both cysteamine in sulfur metabolism and N-terminal cysteine-containing proteins or peptides, such as regulator of G protein signaling 5 (RGS5). It thereby preserves oxygen homeostasis in a variety of physiological processes. However, little is known about its catalytic center and how it interacts with these two types of primary substrates in addition to O2 Here, using electron paramagnetic resonance (EPR), Mössbauer, and UV-visible spectroscopies, we explored the binding mode of cysteamine and RGS5 to human and mouse ADO proteins in their physiologically relevant ferrous form. This characterization revealed that in the presence of nitric oxide as a spin probe and oxygen surrogate, both the small molecule and the peptide substrates coordinate the iron center with their free thiols in a monodentate binding mode, in sharp contrast to binding behaviors observed in other thiol dioxygenases. We observed a substrate-bound B-type dinitrosyl iron center complex in ADO, suggesting the possibility of dioxygen binding to the iron ion in a side-on mode. Moreover, we observed substrate-mediated reduction of the iron center from ferric to the ferrous oxidation state. Subsequent MS analysis indicated corresponding disulfide formation of the substrates, suggesting that the presence of the substrate could reactivate ADO to defend against oxidative stress. The findings of this work contribute to the understanding of the substrate interaction in ADO and fill a gap in our knowledge of the substrate specificity of thiol dioxygenases.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, Texas, USA.,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Yan Chan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Sunil G Naik
- Department of Chemistry, University of Texas at San Antonio, Texas, USA
| | | | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, Texas, USA .,Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Ortega Ugalde S, Wallraven K, Speer A, Bitter W, Grossmann TN, Commandeur JNM. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochem Pharmacol 2020; 177:113938. [PMID: 32224137 DOI: 10.1016/j.bcp.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
New perspectives on the treatment of mycobacterial infections using antibiotics. Appl Microbiol Biotechnol 2020; 104:4197-4209. [PMID: 32185432 DOI: 10.1007/s00253-020-10513-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
More than 100 years have passed since the discovery of Mycobacterium tuberculosis, in 1882, as the pathogen that causes tuberculosis (TB). However, globally, TB is still one of the leading causes of death by infectious diseases. In 2018, approximately 10.0 million people were diagnosed with TB owing to the development of advanced strategies by M. tuberculosis to resist antibiotics, including the development of a dormant state. The World Health Organization (WHO) and the Sustainable Development Goals (SDGs) are dedicated to ending TB by 2030. However, the development of strategies to discover new TB drugs and new therapies is crucial for the achievement of this goal. Unfortunately, the rapid occurrence of multidrug-resistant strains of M. tuberculosis has worsened the current situation, thereby warranting prioritized discovery of new anti-TB drugs and the development of new treatment regimens in academia and the pharmaceutical industry. In this mini review, we provide a brief overview of the current research and development pipeline for new anti-TB drugs and present our perspective of TB drug innovation. The data presented herein may enable the introduction of more effective medicines and therapeutic regimens into the market.Key Points• The Updated Global New TB Drug Pipelines are briefly summarized.• Novel strategies for the discovery of new TB drugs, including novel sources, bioinformatics, and synthetic biology strategies, are discussed.• New therapeutic options, including living therapeutics and phage therapy, are proposed.
Collapse
|
25
|
Nguyen RC, Yang Y, Wang Y, Davis I, Liu A. Substrate-Assisted Hydroxylation and O-Demethylation in the Peroxidase-like Cytochrome P450 Enzyme CYP121. ACS Catal 2020; 10:1628-1639. [PMID: 32391185 DOI: 10.1021/acscatal.9b04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CYP121 is a P450 enzyme from Mycobacterium tuberculosis that catalyzes a C-C coupling reaction between the two aromatic rings on its native substrate cyclo(l-Tyr-l-Tyr) (cYY) to form mycocyclosin, a necessary product for cell survival. Unlike the typical P450 enzymes for hydroxylation, CYP121 is believed to behave like a peroxidase and conduct radical-mediated C-C bond formation. Here, we probe whether the phenolic hydrogen of the substrate is the site of the postulated hydrogen atom abstraction for radical formation. We synthesized a singly O-methylated substrate analogue, cYF-4-OMe, and characterized its interaction with CYP121 by ultraviolet-visible and electron paramagnetic resonance spectroscopies and X-ray crystallography. We found that cYF-4-OMe can function as a substrate of CYP121 using the established assay via the peroxide shunt. Analysis of the enzymatic reaction revealed an O-demethylation of cYF-4-OMe instead of cyclization, yielding cYY and formaldehyde. A hydroxylated substrate, cYF-4-OMeOH, is expected to be the intermediate product, which was trapped and structurally characterized by X-ray crystallography. We further determined that the deformylation reaction of cYF-4-OMeOH proceeds via an alkyl-oxygen rather than aryl-oxygen bond cleavage by the 18O-labeling studies. Finally, the pH dependence catalytic study on the native substrate and the methoxy analogue further supports the mechanistic understanding that the hydrogen atom abstraction is the critical first oxidation step exerted by a heme-based oxidant during the cyclization reaction of cYY. The switch in catalytic activity reveals the power of CYP121 as a P450 enzyme and provides insight into the peroxidase-like catalytic mechanism.
Collapse
Affiliation(s)
- Romie C. Nguyen
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yu Yang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
26
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Borgman P, Lopez RD, Lane AL. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org Biomol Chem 2019; 17:2305-2314. [PMID: 30688950 DOI: 10.1039/c8ob03063d] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganisms are remarkable chemists, with enzymes as their tools for executing multi-step syntheses to yield myriad natural products. Microbial synthetic aptitudes are illustrated by the structurally diverse 2,5-diketopiperazine (DKP) family of bioactive nonribosomal peptide natural products. Nonribosomal peptide synthetases (NRPSs) have long been recognized as catalysts for formation of DKP scaffolds from two amino acid substrates. Cyclodipeptide synthases (CDPSs) are more recently recognized catalysts of DKP assembly, employing two aminoacyl-tRNAs (aa-tRNAs) as substrates. CDPS-encoding genes are typically found in genomic neighbourhoods with genes encoding additional biosynthetic enzymes. These include oxidoreductases, cytochrome P450s, prenyltransferases, methyltransferases, and cyclases, which equip the DKP scaffold with groups that diversify chemical structures and confer biological activity. These tailoring enzymes have been characterized from nine CDPS-containing biosynthetic pathways to date, including four during the last year. In this review, we highlight these nine DKP pathways, emphasizing recently characterized tailoring reactions and connecting new developments to earlier findings. Featured pathways encompass a broad spectrum of chemistry, including the formation of challenging C-C and C-O bonds, regioselective methylation, a unique indole alkaloid DKP prenylation strategy, and unprecedented peptide-nucleobase bond formation. These CDPS-containing pathways also provide intriguing models of metabolic pathway evolution across related and divergent microorganisms, and open doors to synthetic biology approaches for generation of DKP combinatorial libraries. Further, bioinformatics analyses support that much unique genetically encoded DKP tailoring potential remains unexplored, suggesting opportunities for further expansion of Nature's biosynthetic spectrum. Together, recent studies of DKP pathways demonstrate the chemical ingenuity of microorganisms, highlight the wealth of unique enzymology provided by bacterial biosynthetic pathways, and suggest an abundance of untapped biosynthetic potential for future exploration.
Collapse
Affiliation(s)
- Paul Borgman
- Department of Chemistry, University of North Florida, 1 UNF Dr, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Xu Zhu
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christopher C. McAtee
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Dangi B, Park H, Oh TJ. Effects of Alternative Redox Partners and Oxidizing Agents on CYP154C8 Catalytic Activity and Product Distribution. Chembiochem 2018; 19:2273-2282. [PMID: 30136363 DOI: 10.1002/cbic.201800284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
CYP154C8 catalyzes the hydroxylation of diverse steroids, as has previously been demonstrated, by using an NADH-dependent system including putidaredoxin and putidaredoxin reductase as redox partner proteins carrying electrons from NADH. In other reactions, CYP154C8 reconstituted with spinach ferredoxin and NADPH-dependent ferredoxin reductase displayed catalytic activity different from that of the NADH-dependent system. The NADPH-dependent system showed multistep oxidation of progesterone and other substrates including androstenedione, testosterone, and nandrolone. (Diacetoxyiodo)benzene was employed to generate compound I (FeO3+ ), actively supporting the redox reactions catalyzed by CYP154C8. In addition to 16α-hydroxylation, progesterone and 11-oxoprogesterone also underwent hydroxylation at the 6β-position in reactions supported by (diacetoxyiodo)benzene. CYP154C8 was active in the presence of high concentrations (>10 mm) of H2 O2 , with optimum conversion surprisingly being achieved at ≈75 mm H2 O2 . More importantly, H2 O2 tolerance by CYP154C8 was evident in the very low heme oxidation rate constant (K) even at high concentrations of H2 O2 . Our results demonstrate that alternative redox partners and oxidizing agents influence the catalytic efficiency and product distribution of a cytochrome P450 enzyme. More importantly, these choices affected the type and selectivity of reaction catalyzed by the P450 enzyme.
Collapse
Affiliation(s)
- Bikash Dangi
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| |
Collapse
|
30
|
Linking cytochrome P450 enzymes from Mycobacterium tuberculosis to their cognate ferredoxin partners. Appl Microbiol Biotechnol 2018; 102:9231-9242. [PMID: 30136203 PMCID: PMC6208970 DOI: 10.1007/s00253-018-9299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome. However, as of yet, the cognate redox partnerships have not been fully established. This is confounded by the fact that heterologous redox partners are routinely used to reconstitute Mtb CYP metabolism. To this end, this study aimed to biochemically characterize and identify cognate redox partnerships for Mtb CYPs. Interestingly, all combinations of FNRs and ferredoxins were active in the reduction of oxidized cytochrome c, but steady-state kinetic assays revealed FdxD as the most efficient redox partner for FdrA, whereas Fdx coupled preferably with FprA. CYP121A1, CYP124A1, CYP125A1, and CYP142A1 metabolism with the cognate redox partners was reconstituted in vitro showing an unanticipated selectivity in the requirement for electron transfer partnership, which did not necessarily correlate with proximity in the genome. This is the first description of microbial P450 metabolism in which multiple ferredoxins are functionally linked to multiple CYPs.
Collapse
|
31
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
32
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
33
|
Potential drug targets in the Mycobacterium tuberculosis cytochrome P450 system. J Inorg Biochem 2018; 180:235-245. [PMID: 29352597 DOI: 10.1016/j.jinorgbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023]
Abstract
The Mycobacterium tuberculosis genome encodes twenty cytochrome P450 enzymes, most or all of which appear to have specific physiological functions rather than being devoted to the removal of xenobiotics. However, in many cases their specific functions remain obscure. Considerable spectroscopic, biophysical, crystallographic, and catalytic information is available on nine of these cytochrome P450 enzymes, although gaps exist in our knowledge of even these enzymes. The available evidence indicates that at least three of the better-characterized enzymes are promising targets for antituberculosis drug discovery. This review summarizes the information on the nine relatively well-characterized cytochrome P450 enzymes, with a particular emphasis on CYP121, CYP125, and CYP142 from Mycobacterium tuberculosis and Mycobacterium smegmatis.
Collapse
|
34
|
Fielding AJ, Dornevil K, Ma L, Davis I, Liu A. Probing Ligand Exchange in the P450 Enzyme CYP121 from Mycobacterium tuberculosis: Dynamic Equilibrium of the Distal Heme Ligand as a Function of pH and Temperature. J Am Chem Soc 2017; 139:17484-17499. [PMID: 29090577 PMCID: PMC5765751 DOI: 10.1021/jacs.7b08911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CYP121 is a cytochrome P450 enzyme from Mycobacterium tuberculosis that catalyzes the formation of a C-C bond between the aromatic groups of its cyclodityrosine substrate (cYY). The crystal structure of CYP121 in complex with cYY reveals that the solvent-derived ligand remains bound to the ferric ion in the enzyme-substrate complex. Whereas in the generally accepted P450 mechanism, binding of the primary substrate in the active-site triggers the release of the solvent-derived ligand, priming the metal center for reduction and subsequent O2 binding. Here we employed sodium cyanide to probe the metal-ligand exchange of the enzyme and the enzyme-substrate complex. The cyano adducts were characterized by UV-vis, EPR, and ENDOR spectroscopies and X-ray crystallography. A 100-fold increase in the affinity of cyanide binding to the enzyme-substrate complex over the ligand-free enzyme was observed. The crystal structure of the [CYP121(cYY)CN] ternary complex showed a rearrangement of the substrate in the active-site, when compared to the structure of the binary [CYP121(cYY)] complex. Transient kinetic studies showed that cYY binding resulted in a lower second-order rate constant (kon (CN)) but a much more stable cyanide adduct with 3 orders of magnitude slower koff (CN) rate. A dynamic equilibrium between multiple high- and low-spin species for both the enzyme and enzyme-substrate complex was also observed, which is sensitive to changes in both pH and temperature. Our data reveal the chemical and physical properties of the solvent-derived ligand of the enzyme, which will help to understand the initial steps of the catalytic mechanism.
Collapse
Affiliation(s)
- Andrew J. Fielding
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Li Ma
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|