1
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 PMCID: PMC11585973 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Bo S, Sun Q, Ning P, Yuan N, Weng Y, Liang Y, Wang H, Lu Z, Li Z, Zhao X. A novel approach to analyze the association characteristics between post-spliced introns and their corresponding mRNA. Front Genet 2023; 14:1151172. [PMID: 36923795 PMCID: PMC10008863 DOI: 10.3389/fgene.2023.1151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Studies have shown that post-spliced introns promote cell survival when nutrients are scarce, and intron loss/gain can influence many stages of mRNA metabolism. However, few approaches are currently available to study the correlation between intron sequences and their corresponding mature mRNA sequences. Here, based on the results of the improved Smith-Waterman local alignment-based algorithm method (SW method) and binding free energy weighted local alignment algorithm method (BFE method), the optimal matched segments between introns and their corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their relative matching frequency (RF) distributions were obtained. The results showed that although the distributions of relative matching frequencies on mRNAs obtained by the BFE method were similar to the SW method, the interaction intensity in 5'and 3'untranslated regions (UTRs) regions was weaker than the SW method. The RF distributions in the exon-exon junction regions were comparable, the effects of long and short introns on mRNA and on the five functional sites with BFE method were similar to the SW method. However, the interaction intensity in 5'and 3'UTR regions with BFE method was weaker than with SW method. Although the matching rate and length distribution shape of the optimal matched fragment were consistent with the SW method, an increase in length was observed. The matching rates and the length of the optimal matched fragments were mainly in the range of 60%-80% and 20-30bp, respectively. Although we found that there were still matching preferences in the 5'and 3'UTR regions of the mRNAs with BFE, the matching intensities were significantly lower than the matching intensities between introns and their corresponding mRNAs with SW method. Overall, our findings suggest that the interaction between introns and mRNAs results from synergism among different types of sequences during the evolutionary process.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengfei Ning
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ningping Yuan
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yujie Weng
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ying Liang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Huitao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
3
|
Pierrel F, Burgardt A, Lee JH, Pelosi L, Wendisch VF. Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J Microbiol Biotechnol 2022; 38:58. [PMID: 35178585 PMCID: PMC8854274 DOI: 10.1007/s11274-022-03242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
Collapse
Affiliation(s)
- Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Ayer A, Fazakerley DJ, Suarna C, Maghzal GJ, Sheipouri D, Lee KJ, Bradley MC, Fernández-Del-Rio L, Tumanov S, Kong SM, van der Veen JN, Yang A, Ho JWK, Clarke SG, James DE, Dawes IW, Vance DE, Clarke CF, Jacobs RL, Stocker R. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol 2021; 46:102127. [PMID: 34521065 PMCID: PMC8435697 DOI: 10.1016/j.redox.2021.102127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases. Mitochondrial CoQ deficiency results in oxidative stress and a range of pathologies The drivers of mitochondrial CoQ deficiency remain largely unknown PEMT deficiency is the first identified positive regulator of mitochondrial CoQ PEMT deficiency increases CoQ by increasing the mitochondrial SAM-to-SAH ratio PEMT deficiency prevents insulin resistance by increasing mitochondrial CoQ
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia; Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Cacang Suarna
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Diba Sheipouri
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Kevin J Lee
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Lucía Fernández-Del-Rio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Stephanie My Kong
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Jelske N van der Veen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrian Yang
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Laboratory for Data Discovery for Health, Hong Kong Science Park, Hong Kong SAR, China
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dennis E Vance
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
5
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
6
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
7
|
Hurtig JE, Kim M, Orlando-Coronel LJ, Ewan J, Foreman M, Notice LA, Steiger MA, van Hoof A. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts. RNA (NEW YORK, N.Y.) 2020; 26:1464-1480. [PMID: 32631843 PMCID: PMC7491326 DOI: 10.1261/rna.075655.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Luisa J Orlando-Coronel
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Jellisa Ewan
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle Foreman
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Lee-Ann Notice
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle A Steiger
- Department of Chemistry and Biochemistry, University of St. Thomas, Houston, Texas 77006, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Leung CS, Douglass SM, Morselli M, Obusan MB, Pavlyukov MS, Pellegrini M, Johnson TL. H3K36 Methylation and the Chromodomain Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly. Cell Rep 2020; 27:3760-3769.e4. [PMID: 31242410 PMCID: PMC6904931 DOI: 10.1016/j.celrep.2019.05.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the eukaryotic cell, spliceosomes assemble onto pre-mRNA cotranscriptionally. Spliceosome assembly takes place in the context of the chromatin environment, suggesting that the state of the chromatin may affect splicing. The molecular details and mechanisms through which chromatin affects splicing, however, are still unclear. Here, we show a role for the histone methyltransferase Set2 and its histone modification, H3K36 methylation, in pre-mRNA splicing through high-throughput sequencing. Moreover, the effect of H3K36 methylation on pre-mRNA splicing is mediated through the chromodomain protein Eaf3. We find that Eaf3 is recruited to intron-containing genes and that Eaf3 interacts with the splicing factor Prp45. Eaf3 acts with Prp45 and Prp19 after formation of the precatalytic B complex around the time of splicing activation, thus revealing the step in splicing that is regulated by H3K36 methylation. These studies support a model whereby H3K36 facilitates recruitment of an "adapter protein" to support efficient, constitutive splicing.
Collapse
Affiliation(s)
- Calvin S Leung
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen M Douglass
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Obusan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracy L Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Awad AM, Nag A, Pham NVB, Bradley MC, Jabassini N, Nathaniel J, Clarke CF. Intragenic suppressor mutations of the COQ8 protein kinase homolog restore coenzyme Q biosynthesis and function in Saccharomyces cerevisiae. PLoS One 2020; 15:e0234192. [PMID: 32479562 PMCID: PMC7263595 DOI: 10.1371/journal.pone.0234192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.
Collapse
Affiliation(s)
- Agape M. Awad
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Anish Nag
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Nguyen V. B. Pham
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Michelle C. Bradley
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Nour Jabassini
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Juan Nathaniel
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
11
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 PMCID: PMC6726248 DOI: 10.1371/journal.pgen.1008249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. The protein coding information in eukaryotic genes is broken by intervening sequences called introns that are removed from RNA during transcription by a large protein-RNA complex called the spliceosome. Where introns come from and how the spliceosome contributes to genome evolution are open questions. In this study, we find more than 150 new places in the yeast genome that are recognized by the spliceosome and spliced out as introns. Since they appear to have arisen very recently in evolution by sequence drift and do not appear to contribute to gene expression or its regulation, we call these protointrons. Protointrons are found in both protein-coding and non-coding RNAs and are not efficiently removed by the splicing machinery. Although most protointrons are not conserved and will likely disappear as evolution proceeds, a few are spliced more efficiently, and are located where they might begin to play functional roles in gene expression, as predicted by the proposed process of intronization. The challenge now is to understand how spontaneously appearing splicing events like protointrons might contribute to the creation of new genes, new genetic controls, and new protein isoforms as genomes evolve.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J. Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M. Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 DOI: 10.1101/515197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 05/28/2023] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
13
|
Niemi NM, Wilson GM, Overmyer KA, Vögtle FN, Myketin L, Lohman DC, Schueler KL, Attie AD, Meisinger C, Coon JJ, Pagliarini DJ. Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis. Nat Commun 2019; 10:3197. [PMID: 31324765 PMCID: PMC6642090 DOI: 10.1038/s41467-019-11047-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial proteins are replete with phosphorylation, yet its functional relevance remains largely unclear. The presence of multiple resident mitochondrial phosphatases, however, suggests that protein dephosphorylation may be broadly important for calibrating mitochondrial activities. To explore this, we deleted the poorly characterized matrix phosphatase Pptc7 from mice using CRISPR-Cas9 technology. Strikingly, Pptc7-/- mice exhibit hypoketotic hypoglycemia, elevated acylcarnitines and serum lactate, and die soon after birth. Pptc7-/- tissues have markedly diminished mitochondrial size and protein content despite normal transcript levels, and aberrantly elevated phosphorylation on select mitochondrial proteins. Among these, we identify the protein translocase complex subunit Timm50 as a putative Pptc7 substrate whose phosphorylation reduces import activity. We further find that phosphorylation within or near the mitochondrial targeting sequences of multiple proteins could disrupt their import rates and matrix processing. Overall, our data define Pptc7 as a protein phosphatase essential for proper mitochondrial function and biogenesis during the extrauterine transition.
Collapse
Affiliation(s)
- Natalie M Niemi
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Genome Center of Wisconsin, Madison, WI, 53706, USA
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | | | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Genome Center of Wisconsin, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, 53715, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
15
|
|
16
|
Insights into an Ancient Atypical Kinase Essential for Biosynthesis of Coenzyme Q. Cell Chem Biol 2018; 25:123-125. [PMID: 29452608 DOI: 10.1016/j.chembiol.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
COQ8 proteins are homologs of atypical protein kinases required for the biosynthesis of coenzyme Q (CoQ). In this issue of Cell Chemical Biology, Reidenbach et al. (2018) show that COQ8 has an ATPase activity, required for CoQ biosynthesis, that is strongly activated by cardiolipin and small molecule mimics of early CoQ intermediates.
Collapse
|
17
|
González-Mariscal I, Martin-Montalvo A, Vazquez-Fonseca L, Pomares-Viciana T, Sánchez-Cuesta A, Fernández-Ayala DJ, Navas P, Santos-Ocana C. The mitochondrial phosphatase PPTC7 orchestrates mitochondrial metabolism regulating coenzyme Q10 biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1235-1248. [DOI: 10.1016/j.bbabio.2018.09.369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
|
18
|
Coenzyme Q 10 deficiencies: pathways in yeast and humans. Essays Biochem 2018; 62:361-376. [PMID: 29980630 PMCID: PMC6056717 DOI: 10.1042/ebc20170106] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Coenzyme Q (ubiquinone or CoQ) is an essential lipid that plays a role in mitochondrial respiratory electron transport and serves as an important antioxidant. In human and yeast cells, CoQ synthesis derives from aromatic ring precursors and the isoprene biosynthetic pathway. Saccharomyces cerevisiae coq mutants provide a powerful model for our understanding of CoQ biosynthesis. This review focusses on the biosynthesis of CoQ in yeast and the relevance of this model to CoQ biosynthesis in human cells. The COQ1–COQ11 yeast genes are required for efficient biosynthesis of yeast CoQ. Expression of human homologs of yeast COQ1–COQ10 genes restore CoQ biosynthesis in the corresponding yeast coq mutants, indicating profound functional conservation. Thus, yeast provides a simple yet effective model to investigate and define the function and possible pathology of human COQ (yeast or human gene involved in CoQ biosynthesis) gene polymorphisms and mutations. Biosynthesis of CoQ in yeast and human cells depends on high molecular mass multisubunit complexes consisting of several of the COQ gene products, as well as CoQ itself and CoQ intermediates. The CoQ synthome in yeast or Complex Q in human cells, is essential for de novo biosynthesis of CoQ. Although some human CoQ deficiencies respond to dietary supplementation with CoQ, in general the uptake and assimilation of this very hydrophobic lipid is inefficient. Simple natural products may serve as alternate ring precursors in CoQ biosynthesis in both yeast and human cells, and these compounds may act to enhance biosynthesis of CoQ or may bypass certain deficient steps in the CoQ biosynthetic pathway.
Collapse
|