1
|
Paoletti F. ATP binding to Nerve Growth Factor (NGF) and pro-Nerve Growth Factor (proNGF): an endogenous molecular switch modulating neurotrophins activity. Biochem Soc Trans 2024; 52:1293-1304. [PMID: 38716884 DOI: 10.1042/bst20231089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Collapse
Affiliation(s)
- Francesca Paoletti
- Institute of Crystallography - C.N.R. - Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| |
Collapse
|
2
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
3
|
Makoudjou MA, Fico E, Rosso P, Triaca V, De Simone L, Rossetti D, Cattani F, Allegretti M, Tirassa P. ProNGF processing in adult rat tissues and bioactivity of NGF prodomain peptides. FEBS Open Bio 2024; 14:643-654. [PMID: 38429912 PMCID: PMC10988682 DOI: 10.1002/2211-5463.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.
Collapse
Affiliation(s)
- Marie Anne Makoudjou
- Cellular and Molecular Biology, Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Elena Fico
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Campus A. Buzzati‐Traverso, MonterotondoRomeItaly
| | | | | | | | | | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| |
Collapse
|
4
|
Paoletti F, Covaceuszach S, Cassetta A, Calabrese AN, Novak U, Konarev P, Grdadolnik J, Lamba D, Golič Grdadolnik S. Distinct conformational changes occur within the intrinsically unstructured pro-domain of pro-Nerve Growth Factor in the presence of ATP and Mg 2. Protein Sci 2023; 32:e4563. [PMID: 36605018 PMCID: PMC9878617 DOI: 10.1002/pro.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | | | - Alberto Cassetta
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Urban Novak
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Petr Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste OutstationTriesteItaly
- Interuniversity Consortium “Biostructures and Biosystems National Institute”RomeItaly
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory DepartmentNational Institute of ChemistryLjubljanaSlovenia
| |
Collapse
|
5
|
ProNGF Expression and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24021616. [PMID: 36675126 PMCID: PMC9863529 DOI: 10.3390/ijms24021616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal adult brain cancer. Temozolomide (TMZ), the standard chemotherapeutic drug used in GBM, has limited benefit and alternate therapies are needed to improve GBM treatment. Nerve growth factor (NGF) and its precursor proNGF are increasingly recognized as stimulators of human tumor progression. The expression and stimulatory effect of NGF on GBM cell growth has previously been reported, but the status of proNGF in GBM is unreported. In this study, we have investigated proNGF expression and biological activity in GBM. A clinical cohort of GBM (n = 72) and low-grade glioma (n = 20) was analyzed by immunohistochemistry for proNGF and digital quantification. ProNGF expression was significantly increased in GBM compared to low grade gliomas and proNGF was also detected in patient plasma samples. ProNGF was also detected in most GBM cell lines by Western blotting. Although anti-proNGF blocking antibodies inhibited cell growth in GBM cells with methylated MGMT gene promoter, targeting proNGF could not potentiate the efficacy of TMZ. In subcutaneous xenograft of human GBM cells, anti-proNGF antibodies slightly reduced tumor volume but had no impact on TMZ efficacy. In conclusion, this data reveals that proNGF is overexpressed in GBM and can stimulate cancer cell growth. The potential of proNGF as a clinical biomarker and therapeutic target warrants further investigations.
Collapse
|
6
|
Beykin G, Stell L, Halim MS, Nuñez M, Popova L, Nguyen BT, Groth SL, Dennis A, Li Z, Atkins M, Khavari T, Wang SY, Chang R, Fisher AC, Sepah YJ, Goldberg JL. Phase 1b Randomized Controlled Study of Short Course Topical Recombinant Human Nerve Growth Factor (rhNGF) for Neuroenhancement in Glaucoma: Safety, Tolerability, and Efficacy Measure Outcomes. Am J Ophthalmol 2022; 234:223-234. [PMID: 34780798 PMCID: PMC8821405 DOI: 10.1016/j.ajo.2021.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE No approved therapies directly target retinal ganglion cells (RGCs) for neuroprotection or neuroenhancement in glaucoma. Recombinant human nerve growth factor (rhNGF) has been shown to promote RGC survival and function in animal models of optic neuropathy. Here we evaluate the safety, tolerability, and efficacy of short-term, high-dose rhNGF eye drops versus placebo in a cohort of glaucoma patients. DESIGN This was a prospective, phase 1b, single-center, randomized, double-masked, vehicle-controlled, parallel-group study. METHODS This study was designed to assess safety and tolerability as well as short-term neuroenhancement of structure and function (clinicaltrials.gov NCT02855450). A total of 60 open-angle glaucoma patients were randomized 40:20 to receive either 180 μg/mL rhNGF or vehicle control eye drops in both eyes, 3 times daily for 8 weeks, with a 24-week post-treatment follow-up. One eye was officially selected as the study eye, although both eyes were studied and dosed. Primary endpoints were safety, as assessed by adverse events, and tolerability, as assessed by patient-reported outcomes. Secondary outcome measures included best corrected visual acuity (BCVA), Humphrey visual field, electroretinograpy (ERG), and optical coherence tomography (OCT) of retinal nerve fiber layer (RNFL) thickness at baseline, after 8 weeks of treatment, and at 4 and 24 weeks after treatment (12 and 32 weeks total). RESULTS Of the 60 randomized patients, 23 were female (38%) and the average age was 66.1 years. Through week 32, there were no treatment-related serious adverse events, including no unexpectedly severe progression of optic neuropathy, no adverse events affecting ocular function or pressure, and no drug-related systemic toxicity. Topical high-dose rhNGF was tolerated well, with a low level of symptom burden mainly eliciting periocular ache (in 52% of treated group and 5% of placebo group) and only 3 patients (7.5%) discontinuing treatment because of discomfort, of whom 1 patient (2.5%) prematurely withdrew from the study. There were no statistically significant differences in global indices of Humphrey visual field and no meaningful differences in total, quadrant, or clock-hour mean RNFL thickness between the groups, although both of these function and structure measures showed nonsignificant trends toward significance in favor of rhNGF. Real-world participant data was used to generate an estimate of cohort size needed to power subsequent studies. CONCLUSIONS Use of rhNGF is safe and tolerable in a topical 180-μg/mL formulation. Although no statistically significant short-term neuroenhancement was detected in this trial, given the strong effects of NGF in preclinical models and the trends detected in this study, analysis for efficacy in a neuroprotection trial is warranted. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
7
|
Paoletti F, Lamba D. Small Endogenous Ligands Modulation of Nerve Growth Factor Bioactivity: A Structural Biology Overview. Cells 2021; 10:cells10123462. [PMID: 34943971 PMCID: PMC8700322 DOI: 10.3390/cells10123462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Experiments with cell cultures and animal models have provided solid support for the assumption that Nerve Growth Factor (NGF) plays a key role in the regulation of neuronal cell survival and death. Recently, endogenous ligands have been proposed as physiological modulators of NGF biological activity as part of this regulatory cascade. However, the structural and mechanistic determinants for NGF bioactivity remain to be elucidated. We recently unveiled, by an integrated structural biology approach, the ATP binding sites of NGF and investigated the effects on TrkA and p75NTR receptors binding. These results pinpoint ATP as a genuine endogenous modulator of NGF signaling, paving the way to the characterization of not-yet-identified chemical diverse endogenous biological active small molecules as novel modulators of NGF. The present review aims at providing an overview of the currently available 3D structures of NGF in complex with different small endogenous ligands, featuring the molecular footprints of the small molecules binding. This knowledge is essential for further understanding the functional role of small endogenous ligands in the modulation of neurotrophins signaling in physiological and pathological conditions and for better exploiting the therapeutic potentialities of NGF.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
- Correspondence:
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste Outstation, Area Science Park—Basovizza, I-34149 Trieste, Italy;
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, I-00136 Roma, Italy
| |
Collapse
|
8
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Covaceuszach S, Peche L, Konarev P, Lamba D. A combined evolutionary and structural approach to disclose the primary structural determinants essential for proneurotrophins biological functions. Comput Struct Biotechnol J 2021; 19:2891-2904. [PMID: 34094000 PMCID: PMC8144349 DOI: 10.1016/j.csbj.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
The neurotrophins, i.e., Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin 3 (NT3) and Neurotrophin 4 (NT4), are known to play a range of crucial functions in the developing and adult peripheral and central nervous systems. Initially synthesized as precursors, i.e., proneurotrophins (proNTs), that are cleaved to release C-terminal mature forms, they act through two types of receptors, the specific Trk receptors (Tropomyosin-related kinases) and the pan-neurotrophin receptor p75NTR, to initiate survival and differentiative responses. Recently, all the proNTs but proNT4 have been demonstrated to be not just inactive precursors, but signaling ligands that mediate opposing actions in fundamental aspects of the nervous system with respect to the mature counterparts through dual-receptor complexes formation with a member of the VPS10 family and p75NTR. Despite the functional relevance, the molecular determinants underpinning the interactions between the pro-domains and their receptors are still elusive probably due to their intrinsically disordered nature. Here we present an evolutionary approach coupled to an experimental study aiming to uncover the structural and dynamical basis of the biological function displayed by proNGF, proBDNF and proNT3 but missing in proNT4. A bioinformatic analysis allowed to elucidate the functional adaptability of the proNTs family in vertebrates, identifying conserved key structural features. The combined biochemical and SAXS experiments shed lights on the structure and dynamic behavior of the human proNTs in solution, giving insights on the evolutionary conserved structural motifs, essential for the multifaceted roles of proNTs in physiological as well as in pathological contexts.
Collapse
Affiliation(s)
- S. Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - L.Y. Peche
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - P.V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
| | - D. Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, Roma, Italy
| |
Collapse
|
10
|
Pentz R, Iulita MF, Ducatenzeiler A, Videla L, Benejam B, Carmona‐Iragui M, Blesa R, Lleó A, Fortea J, Cuello AC. Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer's disease: A paired CSF and plasma study. Alzheimers Dement 2021; 17:605-617. [PMID: 33226181 PMCID: PMC8043977 DOI: 10.1002/alz.12229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The discovery that nerve growth factor (NGF) metabolism is altered in Down syndrome (DS) and Alzheimer's disease (AD) brains offered a framework for the identification of novel biomarkers signalling NGF deregulation in AD pathology. METHODS We examined levels of NGF pathway proteins (proNGF, neuroserpin, tissue plasminogen activator [tPA], and metalloproteases [MMP]) in matched cerebrospinal fluid (CSF)/plasma samples from AD-symptomatic (DSAD) and AD-asymptomatic (aDS) individuals with DS, as well as controls (HC). RESULTS ProNGF and MMP-3 were elevated while tPA was decreased in plasma from individuals with DS. CSF from individuals with DS showed elevated proNGF, neuroserpin, MMP-3, and MMP-9. ProNGF and MMP-9 in CSF differentiated DSAD from aDS (area under the curve = 0.86, 0.87). NGF pathway markers associated with CSF amyloid beta and tau and differed by sex. DISCUSSION Brain NGF metabolism changes can be monitored in plasma and CSF, supporting relevance in AD pathology. These markers could assist staging, subtyping, or precision medicine for AD in DS.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | - M. Florencia Iulita
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
| | | | - Laura Videla
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
- Barcelona Down Medical CenterFundación Catalana Síndrome de DownBarcelonaSpain
| | - Bessy Benejam
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
- Barcelona Down Medical CenterFundación Catalana Síndrome de DownBarcelonaSpain
| | - María Carmona‐Iragui
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
- Barcelona Down Medical CenterFundación Catalana Síndrome de DownBarcelonaSpain
| | - Rafael Blesa
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Alberto Lleó
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Juan Fortea
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)MadridSpain
- Barcelona Down Medical CenterFundación Catalana Síndrome de DownBarcelonaSpain
| | - A. Claudio Cuello
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealCanada
- Department of PharmacologyOxford UniversityOxfordUK
| |
Collapse
|
11
|
Pentz R, Iulita MF, Mikutra-Cencora M, Ducatenzeiler A, Bennett DA, Cuello AC. A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: Proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer's pathology. Neurobiol Dis 2021; 148:105150. [PMID: 33130223 PMCID: PMC7856186 DOI: 10.1016/j.nbd.2020.105150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maya Mikutra-Cencora
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
12
|
Nerve Growth Factor: The First Molecule of the Neurotrophin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:3-10. [PMID: 34453288 DOI: 10.1007/978-3-030-74046-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurotrophins (NTs) are molecules regulating differentiation, maintenance, and functional plasticity of vertebrate nervous systems. Nerve growth factor (NGF) was the first to be identified in the neurotrophin family. The long scientific history of NTs provided not only advancement in the neuroscience field but opened new scenarios involving different body districts in physiological and pathological conditions, which include the immune, endocrine, and skeletal system, vascular districts, inflammation, etc. To date, many biological aspects of NTs have been clarified, but the new discoveries are still opening new insights on molecular and cellular mechanisms and systemic effects, also affecting the possible therapeutic application of NTs. This short review summarizes the main aspects of NGF biology and biochemistry, including the role of the NGF precursor molecule, high- and low-affinity receptors and related intracellular pathways, and target cells.
Collapse
|
13
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
14
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
An intact C-terminal end of albumin is required for its long half-life in humans. Commun Biol 2020; 3:181. [PMID: 32313072 PMCID: PMC7171077 DOI: 10.1038/s42003-020-0903-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Albumin has an average plasma half-life of three weeks and is thus an attractive carrier to improve the pharmacokinetics of fused therapeutics. The half-life is regulated by FcRn, a cellular receptor that protects against intracellular degradation. To tailor-design the therapeutic use of albumin, it is crucial to understand how structural alterations in albumin affect FcRn binding and transport properties. In the blood, the last C-terminal residue (L585) of albumin may be enzymatically cleaved. Here we demonstrate that removal of the L585 residue causes structural stabilization in regions of the principal FcRn binding domain and reduces receptor binding. In line with this, a short half-life of only 3.5 days was measured for cleaved albumin lacking L585 in a patient with acute pancreatitis. Thus, we reveal the structural requirement of an intact C-terminal end of albumin for a long plasma half-life, which has implications for design of albumin-based therapeutics. Nilsen et al. show that structural alterations in the last C-terminal α-helix of albumin strongly reduce its binding to the neonatal Fc receptor, decreasing the half-life of albumin in humans. This study suggests the structural requirement of the C-terminal of albumin for its long plasma half-life, providing insights into the design of albumin used to carry drugs.
Collapse
|
16
|
Investigating the Conformational Response of the Sortilin Receptor upon Binding Endogenous Peptide- and Protein Ligands by HDX-MS. Structure 2019; 27:1103-1113.e3. [PMID: 31104815 DOI: 10.1016/j.str.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 11/20/2022]
Abstract
Sortilin is a multifunctional neuronal receptor involved in sorting of neurotrophic factors and apoptosis signaling. So far, structural characterization of sortilin and its endogenous ligands has been limited to crystallographic studies of sortilin in complex with the neuropeptide neurotensin. Here, we use hydrogen/deuterium exchange mass spectrometry to investigate the conformational response of sortilin to binding biological ligands including the peptides neurotensin and the sortilin propeptide and the proteins progranulin and pro-nerve growth factor-β. The results show that the ligands use two binding sites inside the cavity of the β-propeller of sortilin. However, ligands have distinct differences in their conformational impact on the receptor. Interestingly, the protein ligands induce conformational stabilization in a remote membrane-proximal domain, hinting at an unknown conformational link between the ligand binding region and this membrane-proximal region of sortilin. Our findings improve our structural understanding of sortilin and how it mediates diverse ligand-dependent functions important in neurobiology.
Collapse
|
17
|
Liu H, Wang D, Zhang Q, Zhao Y, Mamonova T, Wang L, Zhang C, Li S, Friedman PA, Xiao K. Parallel Post-Translational Modification Scanning Enhancing Hydrogen-Deuterium Exchange-Mass Spectrometry Coverage of Key Structural Regions. Anal Chem 2019; 91:6976-6980. [PMID: 31082219 DOI: 10.1021/acs.analchem.9b01410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen-deuterium exchange-mass spectrometry (HDXMS) is a powerful technology to characterize conformations and conformational dynamics of proteins and protein complexes. HDXMS has been widely used in the field of therapeutics for the development of protein drugs. Although sufficient sequence coverage is critical to the success of HDXMS, it is sometimes difficult to achieve. In this study, we developed a HDXMS data analysis strategy that includes parallel post-translational modification (PTM) scanning in HDXMS analysis. Using a membrane-delimited G protein-coupled receptor (vasopressin type 2 receptor; V2R) and a cytosolic protein (Na+/H+ exchanger regulatory factor-1; NHERF1) as examples, we demonstrate that this strategy substantially improves protein sequence coverage, especially in key structural regions likely including PTMs themselves that play important roles in protein conformational dynamics and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sheng Li
- Department of Medicine , University of California San Diego , La Jolla , California 92093 , United States
| | | | | |
Collapse
|
18
|
Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, Apetri A. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep 2019; 9:4735. [PMID: 30894620 PMCID: PMC6427009 DOI: 10.1038/s41598-019-41179-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
Epitope characterization is critical for elucidating the mechanism of action of drug candidates. However, traditional high-resolution epitope mapping techniques are not well suited for screening numerous drug candidates recognizing a similar target. Here, we use Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the conformational impact of diverse drug molecules binding on Hemagglutinin (HA), the major surface antigen of influenza viruses. We optimized a semi-automated HDX-MS workflow to systematically probe distantly related HA subtypes in complex with 4 different drug candidates, ranging from a monoclonal antibody to a small synthetic peptide. This fast, cost-effective HDX-MS epitope mapping approach accurately determined the main antigenic site in all cases. Moreover, our studies reveal distinct changes in the local conformational dynamics of HA associated to the molecular mechanism of neutralization, establishing a marker for broad anti-HA activity. Taken together, these findings highlight the potential for HDX-MS epitope mapping-based screening to identify promising candidates against HA at early stages of drug discovery.
Collapse
Affiliation(s)
- Cristina Puchades
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Başak Kűkrer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Otto Diefenbach
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Eveline Sneekes-Vriese
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Wouter Koudstaal
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands
| | - Adrian Apetri
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, 2333 CN, Leiden, The Netherlands.
| |
Collapse
|
19
|
The Structure of the Pro-domain of Mouse proNGF in Contact with the NGF Domain. Structure 2018; 27:78-89.e3. [PMID: 30393051 DOI: 10.1016/j.str.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Nerve growth factor (NGF) is an important neurotrophic factor involved in the regulation of cell differentiation and survival of target neurons. Expressed as a proNGF precursor, NGF is matured by furin-mediated protease cleavage. Increasing evidence suggests that NGF and proNGF have distinct functional roles. While the structure of mature NGF is available, little is known about that of the pro-domain because of its dynamical structural features. We exploited an ad hoc hybrid strategy based on nuclear magnetic resonance and modeling validated by small-angle X-ray scattering to gain novel insights on the pro-domain, both in isolation and in the context of proNGF. We show that the isolated pro-domain is intrinsically unstructured but forms transient intramolecular contacts with mature NGF and has per se the ability to induce growth cone collapse, indicating functional independence. Our data represent an important step toward the structural and functional characterization of the properties of proNGF.
Collapse
|
20
|
Trabjerg E, Nazari ZE, Rand KD. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|