1
|
Selig M, Poehlman L, Lang NC, Völker M, Rolauffs B, Hart ML. Prediction of six macrophage phenotypes and their IL-10 content based on single-cell morphology using artificial intelligence. Front Immunol 2024; 14:1336393. [PMID: 38239351 PMCID: PMC10794337 DOI: 10.3389/fimmu.2023.1336393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The last decade has led to rapid developments and increased usage of computational tools at the single-cell level. However, our knowledge remains limited in how extracellular cues alter quantitative macrophage morphology and how such morphological changes can be used to predict macrophage phenotype as well as cytokine content at the single-cell level. Methods Using an artificial intelligence (AI) based approach, this study determined whether (i) accurate macrophage classification and (ii) prediction of intracellular IL-10 at the single-cell level was possible, using only morphological features as predictors for AI. Using a quantitative panel of shape descriptors, our study assessed image-based original and synthetic single-cell data in two different datasets in which CD14+ monocyte-derived macrophages generated from human peripheral blood monocytes were initially primed with GM-CSF or M-CSF followed by polarization with specific stimuli in the presence/absence of continuous GM-CSF or M-CSF. Specifically, M0, M1 (GM-CSF-M1, TNFα/IFNγ-M1, GM-CSF/TNFα/IFNγ-M1) and M2 (M-CSF-M2, IL-4-M2a, M-CSF/IL-4-M2a, IL-10-M2c, M-CSF/IL-10-M2c) macrophages were examined. Results Phenotypes were confirmed by ELISA and immunostaining of CD markers. Variations of polarization techniques significantly changed multiple macrophage morphological features, demonstrating that macrophage morphology is a highly sensitive, dynamic marker of phenotype. Using original and synthetic single-cell data, cell morphology alone yielded an accuracy of 93% for the classification of 6 different human macrophage phenotypes (with continuous GM-CSF or M-CSF). A similarly high phenotype classification accuracy of 95% was reached with data generated with different stimuli (discontinuous GM-CSF or M-CSF) and measured at a different time point. These comparably high accuracies clearly validated the here chosen AI-based approach. Quantitative morphology also allowed prediction of intracellular IL-10 with 95% accuracy using only original data. Discussion Thus, image-based machine learning using morphology-based features not only (i) classified M0, M1 and M2 macrophages but also (ii) classified M2a and M2c subtypes and (iii) predicted intracellular IL-10 at the single-cell level among six phenotypes. This simple approach can be used as a general strategy not only for macrophage phenotyping but also for prediction of IL-10 content of any IL-10 producing cell, which can help improve our understanding of cytokine biology at the single-cell level.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Logan Poehlman
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils C Lang
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marita Völker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
4
|
van Gijsel-Bonnello M, Darling NJ, Tanaka T, Di Carmine S, Marchesi F, Thomson S, Clark K, Kurowska-Stolarska M, McSorley HJ, Cohen P, Arthur JSC. Salt-inducible kinase 2 regulates fibrosis during bleomycin-induced lung injury. J Biol Chem 2022; 298:102644. [PMID: 36309093 PMCID: PMC9706632 DOI: 10.1016/j.jbc.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Manuel van Gijsel-Bonnello
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takashi Tanaka
- Research Centre of Specialty, Ono Pharmaceutical Co Ltd, Osaka, Japan
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, United Kingdom
| | - Kristopher Clark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
5
|
Wright EB, Lannigan DA. ERK1/2‐RSK regulation of oestrogen homeostasis. FEBS J 2022; 290:1943-1953. [PMID: 35176205 PMCID: PMC9381647 DOI: 10.1111/febs.16407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms regulating oestrogen homeostasis have been primarily studied in the mammary gland, which is the focus of this review. In the non-pregnant adult, the mammary gland undergoes repeated cycles of proliferation and apoptosis in response to the fluctuating levels of oestrogen that occur during the reproductive stage. Oestrogen actions are mediated through the steroid hormone receptors, oestrogen receptor α and β and through a G-protein coupled receptor. In the mammary gland, ERα is of particular importance and thus will be highlighted. Mechanisms regulating oestrogen-induced responses through ERα are necessary to maintain homeostasis given that the signalling pathways that are activated in response to ERα-mediated transcription can also induce transformation. ERK1/2 and its downstream effector, p90 ribosomal S6 kinase (RSK), control homeostasis in the mammary gland by limiting oestrogen-mediated ERα responsiveness. ERK1/2 drives degradation coupled ERα-mediated transcription, whereas RSK2 acts as a negative regulator of ERK1/2 activity to limit oestrogen responsiveness. Moreover, RSK2 acts as a positive regulator of translation. Thus, RSK2 provides both positive and negative signals to maintain oestrogen responsiveness. In addition to transmitting signals through tyrosine kinase receptors, ERK1/2-RSK engages with hedgehog signalling to maintain oestrogen levels and with the HIPPO pathway to regulate ERα-mediated transcription. Additionally, ERK1/2-RSK controls the progenitor populations within the mammary gland to maintain the ERα-positive population. RSK2 is involved in increased breast cancer risk in individuals taking oral contraceptives and in parity-induced protection against breast cancer. RSK2 and ERα may also co-operate in diseases in tissues outside of the mammary gland.
Collapse
Affiliation(s)
- Eric B. Wright
- Biomedical Engineering Vanderbilt University Nashville TN USA
| | - Deborah A. Lannigan
- Biomedical Engineering Vanderbilt University Nashville TN USA
- Pathology, Microbiology & Immunology Vanderbilt University Medical Center Nashville TN USA
- Cell and Developmental Biology Vanderbilt University Nashville TN USA
| |
Collapse
|
6
|
Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci Rep 2021; 11:21550. [PMID: 34732767 PMCID: PMC8566462 DOI: 10.1038/s41598-021-00986-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Salt Inducible Kinases (SIKs), of which there are 3 isoforms, are established to play roles in innate immunity, metabolic control and neuronal function, but their role in adaptive immunity is unknown. To address this gap, we used a combination of SIK knockout and kinase-inactive knock-in mice. The combined loss of SIK1 and SIK2 activity did not block T cell development. Conditional knockout of SIK3 in haemopoietic cells, driven by a Vav-iCre transgene, resulted in a moderate reduction in the numbers of peripheral T cells, but normal B cell numbers. Constitutive knockout of SIK2 combined with conditional knockout of SIK3 in the haemopoietic cells resulted in a severe reduction in peripheral T cells without reducing B cell number. A similar effect was seen when SIK3 deletion was driven via CD4-Cre transgene to delete at the DP stage of T cell development. Analysis of the SIK2/3 Vav-iCre mice showed that thymocyte number was greatly reduced, but development was not blocked completely as indicated by the presence of low numbers CD4 and CD8 single positive cells. SIK2 and SIK3 were not required for rearrangement of the TCRβ locus, or for low level cell surface expression of the TCR complex on the surface of CD4/CD8 double positive thymocytes. In the absence of both SIK2 and SIK3, progression to mature single positive cells was greatly reduced, suggesting a defect in negative and/or positive selection in the thymus. In agreement with an effect on negative selection, increased apoptosis was seen in thymic TCRbeta high/CD5 positive cells from SIK2/3 knockout mice. Together, these results show an important role for SIK2 and SIK3 in thymic T cell development.
Collapse
|
7
|
Fu B, Lin X, Tan S, Zhang R, Xue W, Zhang H, Zhang S, Zhao Q, Wang Y, Feldman K, Shi L, Zhang S, Nian W, Chaitanya Pavani K, Li Z, Wang X, Wu H. MiR-342 controls Mycobacterium tuberculosis susceptibility by modulating inflammation and cell death. EMBO Rep 2021; 22:e52252. [PMID: 34288348 PMCID: PMC8419689 DOI: 10.15252/embr.202052252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that places a heavy strain on public health. Host susceptibility to Mtb is modulated by macrophages, which regulate the balance between cell apoptosis and necrosis. However, the role of molecular switches that modulate apoptosis and necrosis during Mtb infection remains unclear. Here, we show that Mtb-susceptible mice and TB patients have relatively low miR-342-3p expression, while mice with miR-342-3p overexpression are more resistant to Mtb. We demonstrate that the miR-342-3p/SOCS6 axis regulates anti-Mtb immunity by increasing the production of inflammatory cytokines and chemokines. Most importantly, the miR-342-3p/SOCS6 axis participates in the switching between Mtb-induced apoptosis and necrosis through A20-mediated K48-linked ubiquitination and RIPK3 degradation. Our findings reveal several strategies by which the host innate immune system controls intracellular Mtb growth via the miRNA-mRNA network and pave the way for host-directed therapies targeting these pathways.
Collapse
Affiliation(s)
- Beibei Fu
- School of Life SciencesChongqing UniversityChongqingChina
| | - Xiaoyuan Lin
- School of Life SciencesChongqing UniversityChongqingChina
| | - Shun Tan
- Chongqing Public Health Medical CenterChongqingChina
| | - Rui Zhang
- Department of Respiratory MedicineFirst Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Weiwei Xue
- School of Pharmaceutical SciencesChongqing UniversityChongqingChina
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | - Shanfu Zhang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Qingting Zhao
- School of Life SciencesChongqing UniversityChongqingChina
| | - Yu Wang
- Technical Center of Chongqing CustomsChongqingChina
| | - Kelly Feldman
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Lei Shi
- School of Life SciencesChongqing UniversityChongqingChina
| | - Shaolin Zhang
- School of Pharmaceutical SciencesChongqing UniversityChongqingChina
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqingChina
| | | | - Zhifeng Li
- School of Life SciencesChongqing UniversityChongqingChina
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Xingsheng Wang
- Department of Respiratory MedicineChongqing Emergency Medical CenterAffiliated Central Hospital of Chongqing UniversityChongqingChina
| | - Haibo Wu
- School of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
8
|
Remenyi J, Naik RJ, Wang J, Razsolkov M, Verano A, Cai Q, Tan L, Toth R, Raggett S, Baillie C, Traynor R, Hastie CJ, Gray NS, Arthur JSC. Generation of a chemical genetic model for JAK3. Sci Rep 2021; 11:10093. [PMID: 33980892 PMCID: PMC8115619 DOI: 10.1038/s41598-021-89356-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
Janus Kinases (JAKs) have emerged as an important drug target for the treatment of a number of immune disorders due to the central role that they play in cytokine signalling. 4 isoforms of JAKs exist in mammalian cells and the ideal isoform profile of a JAK inhibitor has been the subject of much debate. JAK3 has been proposed as an ideal target due to its expression being largely restricted to the immune system and its requirement for signalling by cytokine receptors using the common γ-chain. Unlike other JAKs, JAK3 possesses a cysteine in its ATP binding pocket and this has allowed the design of isoform selective covalent JAK3 inhibitors targeting this residue. We report here that mutating this cysteine to serine does not prevent JAK3 catalytic activity but does greatly increase the IC50 for covalent JAK3 inhibitors. Mice with a Cys905Ser knockin mutation in the endogenous JAK3 gene are viable and show no apparent welfare issues. Cells from these mice show normal STAT phosphorylation in response to JAK3 dependent cytokines but are resistant to the effects of covalent JAK3 inhibitors. These mice therefore provide a chemical-genetic model to study JAK3 function.
Collapse
Affiliation(s)
- Judit Remenyi
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Rangeetha Jayaprakash Naik
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Momchil Razsolkov
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Alyssa Verano
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Quan Cai
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Rachel Toth
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Samantha Raggett
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Carla Baillie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ryan Traynor
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - C James Hastie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
9
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Karimollah A, Hemmatpur A, Hosseini N, Manshadi MD. Tropisetron balances immune responses via TLR2, TLR4 and JAK2/STAT3 signalling pathway in LPS-stimulated PBMCs. Basic Clin Pharmacol Toxicol 2021; 128:669-676. [PMID: 33523585 DOI: 10.1111/bcpt.13565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 11/28/2022]
Abstract
Numerous documents have been stated that tropisetron, an antagonist of the 5-HT3 receptor and α7nAChR agonist, modulates immune responses. However, the mechanistic basis for this aspect of tropisetron action is largely unknown. Here, the immuno-modulatory effects of tropisetron are investigated, focusing on the possible molecular targets and the mechanisms. Aside from the well-characterized role in immune signalling, JAK2/STAT3, TLR2 and TLR4 are signal transducers linked to both immuno-modulatory actions of acetylcholine and serotonin. Therefore, we evaluated their involvement in the immunoregulatory effects of tropisetron. To test the hypothesis, we assessed the expression of pro-/anti-inflammatory cytokines including TNF-α, IL-1β, IL-17 and IL-10 following tropisetron treatment in lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) derived from healthy subjects. Tropisetron up-regulates the transcription of TLR2, TLR4, JAK2 and STAT3 genes. Tropisetron also increases the expression of target pro-inflammatory cytokines, although considerably suppresses the pro-inflammatory cytokines (IL-1β, IL-17 and TNF-α) levels in media. Tropisetron notably promotes both IL-10 gene expression and secretion. These findings confirm the antiphlogistic properties of tropisetron. The present data also shed light on a new aspect of tropisetron immune-modulatory action that engaged TLR2, TLR4 and JAK2/STAT3 signalling cascades.
Collapse
Affiliation(s)
- Alireza Karimollah
- Department of Pharmacology, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Anahid Hemmatpur
- Department of Biochemistry, School of medicine, Shahid Sadoughi University of medical sciences and Health Services, Yazd, Iran
| | - Nafise Hosseini
- Department of Pharmacology, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahdi Dehghan Manshadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
11
|
Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin Epigenetics 2020; 12:147. [PMID: 33054831 PMCID: PMC7556946 DOI: 10.1186/s13148-020-00941-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background With the discovery that more than half of human cancers harbor mutations in chromatin proteins, deregulation of epigenetic mechanisms has been recognized a hallmark of malignant transformation. Post-translational modifications (PTMs) of histone proteins, as main components of epigenetic regulatory machinery, are also broadly accepted as therapeutic target. Current “epigenetic” therapies target predominantly writers, erasers and readers of histone acetylation and (to a lesser extent) methylation, leaving other types of PTMs largely unexplored. One of them is the phosphorylation of serine 10 on histone H3 (H3S10ph). Main body H3S10ph is emerging as an important player in the initiation and propagation of cancer, as it facilitates cellular malignant transformation and participates in fundamental cellular functions. In normal cells this histone mark dictates the hierarchy of additional histone modifications involved in the formation of protein binding scaffolds, transcriptional regulation, blocking repressive epigenetic information and shielding gene regions from heterochromatin spreading. During cell division, this mark is essential for chromosome condensation and segregation. It is also involved in the function of specific DNA–RNA hybrids, called R-loops, which modulate transcription and facilitate chromosomal instability. Increase in H3S10ph is observed in numerous cancer types and its abundance has been associated with inferior prognosis. Many H3S10-kinases, including MSK1/2, PIM1, CDK8 and AURORA kinases, have been long considered targets in cancer therapy. However, since these proteins also participate in other critical processes, including signal transduction, apoptotic signaling, metabolic fitness and transcription, their chromatin functions are often neglected. Conclusions H3S10ph and enzymes responsible for deposition of this histone modification are important for chromatin activity and oncogenesis. Epigenetic-drugs targeting this axis of modifications, potentially in combination with conventional or targeted therapy, provide a promising angle in search for knowledge-driven therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Dorota Komar
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland.
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland
| |
Collapse
|
12
|
Fu B, Xue W, Zhang H, Zhang R, Feldman K, Zhao Q, Zhang S, Shi L, Pavani KC, Nian W, Lin X, Wu H. MicroRNA-325-3p Facilitates Immune Escape of Mycobacterium tuberculosis through Targeting LNX1 via NEK6 Accumulation to Promote Anti-Apoptotic STAT3 Signaling. mBio 2020; 11:e00557-20. [PMID: 32487755 PMCID: PMC7267881 DOI: 10.1128/mbio.00557-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that poses threats to the public. M. tuberculosis survives in macrophages by escaping from immune surveillance and clearance, which exacerbates the bacterial proliferation. However, the molecular mechanisms of this immune escape have not yet been fully understood. Using multiple cell and mouse models, we found that microRNA-325-3p (miR-325-3p) is upregulated after M. tuberculosis infection and Mir325-deficient mice show resistance to M. tuberculosis We demonstrated that miR-325-3p directly targets LNX1, an E3 ubiquitin ligase of NEK6, and that this hampers the proteasomal degradation of NEK6 in macrophages. The abnormal accumulation of NEK6 leads to the activation of STAT3 signaling, thus inhibiting the process of apoptosis and promoting the intracellular survival of M. tuberculosis Our findings not only reveal a new immune escape pathway of M. tuberculosis but also may provide new insights into the development of therapeutic approaches for drug-resistant TB.IMPORTANCE Intracellular survival of Mycobacterium tuberculosis results in bacterial proliferation and the spread of infection in lungs, consequently deteriorating the conditions of tuberculosis (TB) patients. This research discovers a new immune escape pathway of M. tuberculosis by modulating host miR-325-3p expression, thus leading to the intracellular survival of M. tuberculosis These findings make a contribution to the understanding of the immune escape of M. tuberculosis, and they provide a theoretical basis for the development of therapeutic approaches for drug-resistant TB.
Collapse
Affiliation(s)
- Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Rui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kelly Feldman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Jeffries MA, Obr AE, Urbanek K, Fyffe-Maricich SL, Wood TL. Cnp Promoter-Driven Sustained ERK1/2 Activation Increases B-Cell Activation and Suppresses Experimental Autoimmune Encephalomyelitis. ASN Neuro 2020; 12:1759091420971916. [PMID: 33228381 PMCID: PMC7691909 DOI: 10.1177/1759091420971916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023] Open
Abstract
The ERK1/2 signaling pathway promotes myelin wrapping during development and remyelination, and sustained ERK1/2 activation in the oligodendrocyte (OL) lineage results in hypermyelination of the CNS. We therefore hypothesized that increased ERK1/2 signaling in the OL lineage would 1) protect against immune-mediated demyelination due to increased baseline myelin thickness and/or 2) promote enhanced remyelination and thus functional recovery after experimental autoimmune encephalomyelitis (EAE) induction. Cnp-Cre;Mek1DD-eGFP/+ mice that express a constitutively active form of MEK1 (the upstream activator of ERK1/2) in the OL lineage, exhibited a significant decrease in EAE clinical severity compared to controls. However, experiments using tamoxifen-inducible Plp-CreERT;Mek1DD-eGFP/+ or Pdgfrα-CreERT;Mek1DD-eGFP mice revealed this was not solely due to a protective or reparative effect resulting from MEK1DD expression specifically in the OL lineage. Because EAE is an immune-mediated disease, we examined Cnp-Cre;Mek1DD-eGFP/+ splenic immune cells for recombination. Surprisingly, GFP+ recombined CD19+ B-cells, CD11b+ monocytes, and CD3+ T-cells were noted when Cre expression was driven by the Cnp promoter. While ERK1/2 signaling in monocytes and T-cells is associated with proinflammatory activation, fewer studies have examined ERK1/2 signaling in B-cell populations. After in vitro stimulation, MEK1DD-expressing B-cells exhibited a 3-fold increase in CD138+ plasmablasts and a 5-fold increase in CD5+CD1dhi B-cells compared to controls. Stimulated MEK1DD-expressing B-cells also exhibited an upregulation of IL-10, known to suppress the initiation of EAE when produced by CD5+CD1dhi regulatory B-cells. Taken together, our data support the conclusion that sustained ERK1/2 activation in B-cells suppresses immune-mediated demyelination via increasing activation of regulatory B10 cells.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/biosynthesis
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic/physiology
Collapse
Affiliation(s)
- Marisa A. Jeffries
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Alison E. Obr
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Kelly Urbanek
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Sharyl L. Fyffe-Maricich
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| |
Collapse
|
14
|
IL-10 Dampens the Th1 and Tc Activation through Modulating DC Functions in BCG Vaccination. Mediators Inflamm 2019; 2019:8616154. [PMID: 31281230 PMCID: PMC6594250 DOI: 10.1155/2019/8616154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
BCG, the only registered vaccine against Mycobacterial Tuberculosis (TB) infection, has been questioned for its protective efficacy for decades. Although lots of efforts were made to improve the BCG antigenicity, few studies were devoted to understand the role of host factors in the variability of the BCG protection. Using the IL-10KO mice and pulmonary tuberculosis infection model, we have addressed the role of IL-10 in the BCG vaccination efficacy. The data showed that IL-10-deficient dendritic cells (DCs) could promote the immune responses through upregulation of the surface costimulatory molecule expression and play an orchestra role through activating CD4+T cell. IL-10-deficient mice had higher IFN γ, TNF α, and IL-6 production after BCG vaccination, which was consistent with the higher proportion of IFN γ+CD3+, IFN γ+CD4+, and IFN γ+CD8+ T cells in the spleen. Particularly, the BCG-vaccinated IL-10KO mice showed less inflammation after TB challenge compared to WT mice, which was supported by the promoted Th1 and Tc, as well as the downregulated Treg responses in IL-10 deficiency. In a conclusion, we demonstrated the negative relationship between Th1/Tc responses with IL-10 production. IL-10 deficiency restored the type 1 immune response through DC activation, which provided better protection against TB infection. Hence, our study offers the first experimental evidence that, contrary to the modulation of BCG, host immunity plays a critical role in the BCG protective efficacy against TB.
Collapse
|
15
|
Regulatory Role of rno-miR-30b-5p in IL-10 and Toll-like Receptor 4 Expressions of T Lymphocytes in Experimental Autoimmune Uveitis In Vitro. Mediators Inflamm 2018; 2018:2574067. [PMID: 30510488 PMCID: PMC6231386 DOI: 10.1155/2018/2574067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
Uveitis is a serious eye disease that usually damages young adult's health. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate messenger RNA (mRNA) expression. It is predicted that rno-miR-30b-5p can regulate the expressions of interleukin-10 (IL-10) and Toll-like receptor 4 (TLR4). In this study, the regulatory role of rno-miR-30b-5p in IL-10 and TLR4 gene expressions was validated using luciferase activity assay. Further, the inflammatory manifestation of the anterior segment and pathological examination of the eye were explored in experimental autoimmune uveitis (EAU) rats. Meanwhile, the levels of rno-miR-30b-5p in eye tissues, spleen, and lymph nodes were measured using quantitative PCR (Q-PCR). IL-10 and TLR4 in spleen and lymph nodes were further separately determined by using Q-PCR and Enzyme-Linked Immunosorbent Assay (ELISA). Moreover, rno-miR-30b-5p mimic and its inhibitor were separately transfected into purified T cells, and the levels of IL-10 and TLR4 were detected using PCR, flow cytometry, and ELISA techniques. Results indicate that rno-miR-30b-5p was downregulated in spleen, lymph nodes, and eye tissues whereas the expressions of IL-10 and TLR4 at mRNA and protein levels were upregulated. The levels of IL-10 and TLR4 were negatively correlated to rno-miR-30b-5p levels. The result of in vitro cell transfection experiment indicates that IL-10 and TLR4 expressions were inhibited at mRNA and protein levels after T cells incubated with rno-miR-30b-5p mimic. However, the IL-10 and TLR4 mRNA levels were upregulated in purified T cells from spleen and lymph nodes after treatment with miR-30b-5p antagonist. In addition, there was no evident change of IL-10 and TLR4 proteins in spleen and lymph node T cells between EAU control and negative treatment groups. Flow cytometry analysis revealed that rno-miR-30b-5p mimic could reduce the number of both IL-10 and TLR4 positive cells, whereas rno-miR-30b-5p inhibitor could increase the number of IL-10 and TLR4 positive cells. Our study demonstrates that rno-miR-30b-5p influences the development of uveitis by regulating the level of IL-10 and TLR4 positive cells, thereby playing a role in the pathogenesis of uveitis.
Collapse
|
16
|
McCarthy PC, Phair IR, Greger C, Pardali K, McGuire VA, Clark AR, Gaestel M, Arthur JSC. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol Cell Biol 2018; 97:54-71. [PMID: 30171775 PMCID: PMC6378613 DOI: 10.1111/imcb.12200] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation. Inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines in response to IL-33. The mechanism downstream of MK2/3 was cytokine specific; however, MK2 and MK3 were able to regulate TNF and GM-CSF mRNA stability. Previous studies in macrophages have shown that MK2 regulates mRNA stability via phosphorylation of the RNA-binding protein TTP (Zfp36). The regulation of cytokine production in mast cells was, however, independent of TTP. MK2/3 were able to phosphorylate the TTP-related protein Brf1 (Zfp36 l1) in IL-33-stimulated mast cells, suggesting a mechanism by which MK2/3 might control mRNA stability in these cells. In line with its ability to regulate in vitro IL-33-stimulated cytokine production, double knockout of MK2 and 3 in mice prevented neutrophil recruitment following intraperitoneal injection of IL-33.
Collapse
Affiliation(s)
- Pierre C McCarthy
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Iain R Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Corinna Greger
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Katerina Pardali
- Respiratory, Inflammation & Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal, 43183, Sweden
| | - Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Photobiology Unit, Scottish Cutaneous Porphyria Service, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthias Gaestel
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Institute for Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30623, Germany
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
17
|
Dehghan P, Tolouie S, Baradaran B, Nami S, Morovati H. TLR-2, IL-10 and IL-17-mediated immunity in experimental chemotherapy murine model of systemic candidiasis; cyclophosphamides' impact and roles. Microb Pathog 2018; 119:183-192. [DOI: 10.1016/j.micpath.2018.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/15/2022]
|