1
|
Bezpalaya EY, Matyuta IO, Vorobyeva NN, Kurilova SA, Oreshkov SD, Minyaev ME, Boyko KM, Rodina EV. The crystal structure of yeast mitochondrial type pyrophosphatase provides a model to study pathological mutations in its human ortholog. Biochem Biophys Res Commun 2024; 738:150563. [PMID: 39178581 DOI: 10.1016/j.bbrc.2024.150563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.
Collapse
Affiliation(s)
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700, Moscow, Russia
| | - Natalia N Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Sergey D Oreshkov
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Elena V Rodina
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Costa EP, Façanha AR, Cruz CS, Silva JN, Machado JA, Carvalho GM, Fernandes MR, Martins R, Campos E, Romeiro NC, Githaka NW, Konnai S, Ohashi K, Vaz IS, Logullo C. A novel mechanism of functional cooperativity regulation by thiol redox status in a dimeric inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2016; 1861:2922-2933. [PMID: 27664315 DOI: 10.1016/j.bbagen.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.
Collapse
Affiliation(s)
- Evenilton P Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Arnoldo R Façanha
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Criscila S Cruz
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil; Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Jhenifer N Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Josias A Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Gabriel M Carvalho
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Mariana R Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Renato Martins
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Naftaly W Githaka
- Tick Unit, International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Itabajara S Vaz
- Faculdade de Veterinária e Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil.
| |
Collapse
|
4
|
Lee MJ, Huang H, Lin W, Yang RR, Liu CL, Huang CY. Activation of Helicobacter pylori inorganic pyrophosphatase and the importance of Cys16 in thermostability, enzyme activation and quaternary structure. Arch Microbiol 2007; 188:473-82. [PMID: 17598086 DOI: 10.1007/s00203-007-0267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The inorganic pyrophosphatase from the human pathogen Helicobacter pylori (HpPPase) is a family I PPase. It is a homohexamer consisting of identical 20-kDa subunits. Hydrolysis of inorganic pyrophosphate (PP(i)) by HpPPase relied on the presence of magnesium and followed Michaelis-Menten kinetics, with k (cat) being 344 s(-1) and K (m) being 83 microM at pH 8.0, which was the optimal pH for catalysis. HpPPase was activated by both thiol and non-thiol reductants, distinct from the previously suggested inactivation/reactivation process involving formation and breakage of disulfide bonds. Substitution of Cys16 of HpPPase, which was neither located at the active site nor evolutionarily conserved, resulted in a loss of 50% activity and a reduction in sensitivity to reductants and oxidized glutathione. In addition, the C16S replacement caused a considerable disruption in thermostability, which exceeded that resulted from active-site mutations such as Y140F HpPPase and those of Escherichia coli. Although Cys16 was not located at the subunit interface of the hexameric HpPPase, sedimentation analysis results suggested that the C16S substitution destabilized HpPPase through impairing trimer-trimer interactions. This study provided the first evidences that the single cysteine residue of HpPPase was involved in enzyme activation, thermostability, and stabilization of quaternary structure.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Institute of Biotechnology, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
Gómez-García M, Losada M, Serrano A. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochem J 2006; 395:211-21. [PMID: 16313235 PMCID: PMC1409696 DOI: 10.1042/bj20051657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations.
Collapse
Affiliation(s)
- María R. Gómez-García
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| | - Manuel Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, 41092-Sevilla, Spain
- To whom correspondence should be addressed (email or )
| |
Collapse
|
6
|
Wongsantichon J, Ketterman A. An intersubunit lock-and-key 'clasp' motif in the dimer interface of Delta class glutathione transferase. Biochem J 2006; 394:135-44. [PMID: 16225458 PMCID: PMC1386011 DOI: 10.1042/bj20050915] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structural investigations of a GST (glutathione transferase), adGSTD4-4, from the malaria vector Anopheles dirus show a novel lock-and-key 'Clasp' motif in the dimer interface of the Delta class enzyme. This motif also appears to be highly conserved across several insect GST classes, but differs from a previously reported mammalian lock-and-key motif. The aromatic 'key' residue not only inserts into a hydrophobic pocket, the 'lock', of the neighbouring subunit, but also acts as part of the 'lock' for the other subunit 'key'. The 'key' residues from both subunits show aromatic ring stacking with each other in a pi-pi interaction, generating a 'Clasp' in the middle of the subunit interface. Enzyme catalytic and structural characterizations revealed that single amino acid replacements in this 'Clasp' motif impacted on catalytic efficiencies, substrate selectivity and stability. Substitutions to the 'key' residue create strong positive co-operativity for glutathione binding, with a Hill coefficient approaching 2. The lock-and-key motif in general and especially the 'Clasp' motif with the pi-pi interaction appear to play a pivotal role in subunit communication between active sites, as well as in stabilizing the quaternary structure. Evidence of allosteric effects suggests an important role for this particular intersubunit architecture in regulating catalytic activity through conformational transitions of subunits. The observation of co-operativity in the mutants also implies that glutathione ligand binding and dimerization are linked. Quaternary structural changes of all mutants suggest that subunit assembly or dimerization basically manipulates subunit communication.
Collapse
Affiliation(s)
- Jantana Wongsantichon
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 25/25 Phutthamonthol Road 4, Salaya, Nakhon Pathom 73170, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, 25/25 Phutthamonthol Road 4, Salaya, Nakhon Pathom 73170, Thailand
- To whom correspondence should be addressed (email )
| |
Collapse
|