1
|
EPHA2 antisense RNA modulates EPHA2 mRNA levels in basal-like/triple-negative breast cancer cells. Biochimie 2020; 179:169-180. [PMID: 33022313 DOI: 10.1016/j.biochi.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Ephrin type-A receptor 2 (EPHA2) is a receptor tyrosine kinase (RTK), whose over-expression has been observed in a variety of cancers, including breast cancer. EPHA2 expression may be causally related to tumorigenesis; therefore, it is important to understand how EPHA2 gene (EPHA2) expression is regulated. Here, we report that EPHA2 antisense RNA (EPHA2-AS), a natural antisense transcript, is an important modulator of EPHA2 mRNA levels. EPHA2-AS is a ∼1.8 kb long non-coding RNA (lncRNA) with a poly(A) tail that encodes two splice variants, EPHA2-AS1/2. They are constitutively expressed in a concordant manner with EPHA2 mRNA in human breast adenocarcinoma cell lines and in patient samples, with the highest levels detected in the triple-negative breast cancer (TNBC) subtype. The silencing of EPHA2-AS1/2 by a sense oligonucleotide or over-expression of an antisense oligoribonucleotide, which were both designed from the EPHA2 mRNA region (nt 2955-2974) targeted by AS1/2, showed that EPHA2-AS1/2 modulated EPHA2 mRNA levels by interacting with the specific AS1/2-complementary region in the mRNA. The EPHA2-AS1/2 did not prevent microRNAs from acting on the relevant microRNA response elements shared by EPHA2-AS1/2 and EPHA2 mRNA. Our studies demonstrate a crucial role played by EPHA2-AS1/2 in modulating EPHA2 mRNA levels, and hence production of EPHA2 protein, a key oncogenic RTK that contributes to the tumorigenesis of TNBC cells.
Collapse
|
2
|
Deng Z, Zhang S, Gu S, Ni X, Zeng W, Li X. Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation. Int J Mol Sci 2018; 19:E279. [PMID: 29342112 PMCID: PMC5796225 DOI: 10.3390/ijms19010279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Zhongyuan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xinzhi Ni
- United States Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
3
|
Masamha CP, Wagner EJ. The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis 2017; 39:2-10. [DOI: 10.1093/carcin/bgx096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
|
4
|
Darmon SK, Lutz CS. Novel upstream and downstream sequence elements contribute to polyadenylation efficiency. RNA Biol 2012; 9:1255-65. [PMID: 23085579 DOI: 10.4161/rna.21957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is a 3' mRNA processing event that contributes to gene expression by affecting stability, export and translation of mRNA. Human polyadenylation signals (PAS) have core and auxiliary elements that bind polyadenylation factors upstream and downstream of the cleavage site. The majority of mRNAs do not have optimal upstream and downstream core elements and therefore auxiliary elements can aid in polyadenylation efficiency. Auxiliary elements have previously been identified and studied in a small number of mRNAs. We previously used a global approach to examine auxiliary elements to identify overrepresented motifs by a bioinformatic survey. This predicted information was used to direct our in vivo validation studies, all of which were accomplished using both a tandem in vivo polyadenylation assay and using reporter protein assays measured as luciferase activity. Novel auxiliary elements were placed in a test polyadenylation signal. An in vivo polyadenylation assay was used to determine the strength of the polyadenylation signal. All but one of the novel auxiliary elements enhanced the test polyadenylation signal. Effects of these novel auxiliary elements were also measured by a luciferase assay when placed in the 3' UTR of a firefly luciferase reporter. Two novel downstream auxiliary elements and all of the novel upstream auxiliary elements showed an increase in reporter protein levels. Many well known auxiliary polyadenylation elements have been found to occur in multiple sets. However, in our study, multiple copies of novel auxiliary elements brought reporter protein levels as well as polyadenylation choice back to wild type levels. Structural features of these novel auxiliary elements may also affect the role of auxiliary elements. A MS2 structure placed upstream of the polyadenylation signal can affect polyadenylation in both the positive and negative direction. A large change in RNA structure by using novel complementary auxiliary element also decreased polyadenylation choice and reporter protein levels. Therefore, we conclude that RNA structure has an important role in polyadenylation efficiency.
Collapse
Affiliation(s)
- Sarah K Darmon
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, and the Graduate School of Biomedical Sciences, Newark, NJ, USA
| | | |
Collapse
|
5
|
Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function. J Biosci Bioeng 2009; 107:569-78. [DOI: 10.1016/j.jbiosc.2009.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/23/2022]
|
6
|
He J, Feng D, de Vlas SJ, Wang H, Fontanet A, Zhang P, Plancoulaine S, Tang F, Zhan L, Yang H, Wang T, Richardus JH, Habbema JDF, Cao W. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. BMC Infect Dis 2006; 6:106. [PMID: 16824203 PMCID: PMC1550407 DOI: 10.1186/1471-2334-6-106] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 07/06/2006] [Indexed: 12/17/2022] Open
Abstract
Background Host genetic factors may play a role in susceptibility and resistance to SARS associated coronavirus (SARS-CoV) infection. The study was carried out to investigate the association between the genetic polymorphisms of 2',5'-oligoadenylate synthetase 1 (OAS1) gene as well as myxovirus resistance 1 (MxA) gene and susceptibility to SARS in Chinese Han population. Methods A hospital-based case-control study was conducted. A collective of 66 SARS cases and 64 close contact uninfected controls were enrolled in this study. End point real time polymerase chain reaction (PCR) and PCR-based Restriction Fragment Length Polymorphism (RFLP) analysis were used to detect the single nucleic polymorphisms (SNPs) in OAS1 and MxA genes. Information on other factors associated with SARS infection was collected using a pre-tested questionnaire. Univariate and multivariate logistic analyses were conducted. Results One polymorphism in the 3'-untranslated region (3'-UTR) of the OAS1 gene was associated with SARS infection. Compared to AA genotype, AG and GG genotypes were found associated with a protective effect on SARS infection with ORs (95% CI) of 0.42 (0.20~0.89) and 0.30 (0.09~0.97), respectively. Also, a GT genotype at position 88 in the MxA gene promoter was associated with increased susceptibility to SARS infection compared to a GG genotype (OR = 3.06, 95% CI: 1.25~7.50). The associations of AG genotype in OAS1 and GT genotype in MxA remained significant in multivariate analyses after adjusting for SARS protective measures (OR = 0.38, 95% CI: 0.14~0.98 and OR = 3.22, 95% CI: 1.13~9.18, respectively). Conclusion SNPs in the OAS1 3'-UTR and MxA promoter region appear associated with host susceptibility to SARS in Chinese Han population.
Collapse
Affiliation(s)
- Jing He
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Dan Feng
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hongwei Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Panhe Zhang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Sabine Plancoulaine
- Université René Descartes, INSERM U.550, Faculté de Médecine Necker, Paris, France
| | - Fang Tang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Zhan
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Hong Yang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Tianbao Wang
- Beijing General Hospital of Armed Police, Beijing, China
| | - Jan H Richardus
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Dik F Habbema
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Wuchun Cao
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
7
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. Hum Genet 2006; 120:301-33. [PMID: 16807757 DOI: 10.1007/s00439-006-0218-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/29/2006] [Indexed: 12/13/2022]
Abstract
In an attempt both to catalogue 3' regulatory region (3' RR)-mediated disease and to improve our understanding of the structure and function of the 3' RR, we have performed a systematic analysis of disease-associated variants in the 3' RRs of human protein-coding genes. We have previously analysed the variants that have occurred in two specific domains/motifs of the 3' untranslated region (3' UTR) as well as in the 3' flanking region. Here we have focused upon 83 known variants within the upstream sequence (USS; between the translational termination codon and the upstream core polyadenylation signal sequence) of the 3' UTR. To place these variants in their proper context, we first performed a comprehensive survey of known cis-regulatory elements within the USS and the mechanisms by which they effect post-transcriptional gene regulation. Although this survey supports the view that RNA regulatory elements function within the context of specific secondary structures, there are no general rules governing how secondary structure might exert its influence. We have therefore addressed this question by systematically evaluating both functional and non-functional (based upon in vitro reporter gene and/or electrophoretic mobility shift assay data) USS variant-containing sequences against known cis-regulatory motifs within the context of predicted RNA secondary structures. This has allowed us not only to establish a reliable and objective means to perform secondary structure prediction but also to identify consistent patterns of secondary structural change that could potentiate the discrimination of functional USS variants from their non-functional counterparts. The resulting rules were then used to infer potential functionality in the case of some of the remaining functionally uncharacterized USS variants, from their predicted secondary structures. This not only led us to identify further patterns of secondary structural change but also several potential novel cis-regulatory motifs within the 3' UTRs studied.
Collapse
|
8
|
Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005; 19:1315-27. [PMID: 15937220 PMCID: PMC1142555 DOI: 10.1101/gad.1298605] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
At least half of all human pre-mRNAs are subject to alternative 3' processing that may modulate both the coding capacity of the message and the array of post-transcriptional regulatory elements embedded within the 3' UTR. Vertebrate poly(A) site selection appears to rely primarily on the binding of CPSF to an A(A/U)UAAA hexamer upstream of the cleavage site and CstF to a downstream GU-rich element. At least one-quarter of all human poly(A) sites, however, lack the A(A/U)UAAA motif. We report that sequence-specific RNA binding of the human 3' processing factor CFI(m) can function as a primary determinant of poly(A) site recognition in the absence of the A(A/U)UAAA motif. CFI(m) is sufficient to direct sequence-specific, A(A/U)UAAA-independent poly(A) addition in vitro through the recruitment of the CPSF subunit hFip1 and poly(A) polymerase to the RNA substrate. ChIP analysis indicates that CFI(m) is recruited to the transcription unit, along with CPSF and CstF, during the initial stages of transcription, supporting a direct role for CFI(m) in poly(A) site recognition. The recognition of three distinct sequence elements by CFI(m), CPSF, and CstF suggests that vertebrate poly(A) site definition is mechanistically more similar to that of yeast and plants than anticipated.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, 05405, USA
| | | | | |
Collapse
|
9
|
Sachchithananthan M, Stasinopoulos SJ, Wilusz J, Medcalf RL. The relationship between the prothrombin upstream sequence element and the G20210A polymorphism: the influence of a competitive environment for mRNA 3'-end formation. Nucleic Acids Res 2005; 33:1010-20. [PMID: 15718300 PMCID: PMC549410 DOI: 10.1093/nar/gki245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human prothrombin G20210A polymorphism located at the 3′ cleavage site of the mRNA results in elevated plasma prothrombin levels and increased risk of venous thrombosis. This polymorphism has been shown to directly influence a variety of processes related to prothrombin mRNA metabolism. We have constructed plasmids that express the full-length prothrombin mRNA that is polyadenylated at its natural site. The A allele prothrombin variant was more efficient than the G allele at promoting cleavage at this site in the presence of a competing poly (A) sequence. In the absence of competition, both allelic variants give rise to a similar level of cleavage site heterogeneity. An upstream sequence element (USE) was also identified within the prothrombin 3′-UTR. When placed upstream of two competing poly (A) sites, the USE directed cleavage preferentially to the proximal poly (A) site. In the absence of competition, the USE had no effect on cleavage site selection. This study suggests that the basis for the increase in prothrombin expression in A allele carriers is not due to allelic changes in cleavage site selection per se. In addition, the functionality of USEs needs to be considered within the context of endogenous sequence architecture.
Collapse
Affiliation(s)
| | | | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State UniversityFort Collins, CO 80523 USA
| | - Robert L. Medcalf
- To whom correspondence should be addressed. Tel: +61 3 9903 0133; Fax: +61 3 9903 0228;
| |
Collapse
|
10
|
Stasinopoulos S, Tran H, Chen E, Sachchithananthan M, Nagamine Y, Medcalf RL. Regulation of protease and protease inhibitor gene expression: the role of the 3'-UTR and lessons from the plasminogen activating system. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:169-215. [PMID: 16164975 DOI: 10.1016/s0079-6603(05)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Stan Stasinopoulos
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004; 23:616-26. [PMID: 14749727 PMCID: PMC1271804 DOI: 10.1038/sj.emboj.7600070] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/17/2003] [Indexed: 11/09/2022] Open
Abstract
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.
Collapse
Affiliation(s)
- Isabelle Kaufmann
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Arno Friedlein
- Roche Genetics, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanno Langen
- Roche Genetics, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland. Tel.: +41 61 267 20 60; Fax: +41 61 267 20 79; E-mail:
| |
Collapse
|
12
|
Legendre M, Gautheret D. Sequence determinants in human polyadenylation site selection. BMC Genomics 2003; 4:7. [PMID: 12600277 PMCID: PMC151664 DOI: 10.1186/1471-2164-4-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 02/25/2003] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. RESULTS We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE) and downstream (DSE) sequence elements, both characterized by U-rich (not GU-rich) segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/U)UAAA hexamers. While USEs are indifferently associated with strong and weak poly(A) sites, DSEs are more conspicuous near strong poly(A) sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A) site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. CONCLUSION The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A) signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A) site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm.
Collapse
Affiliation(s)
| | - Daniel Gautheret
- INSERM ERM-206, Luminy Case 906, 13288 Marseille Cedex 09, France
| |
Collapse
|
13
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Auxiliary elements of mammalian pre-mRNAs polyadenylation signals. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.00062e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|