1
|
Xiao H, Ni J, Yu Q. Identification of ECE2 signaling in promoting non-small lung cancer progression through ET1/YAP1/MAGEA3 axis. Sci Rep 2025; 15:5626. [PMID: 39955423 PMCID: PMC11830017 DOI: 10.1038/s41598-025-90159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of cancer-related mortality worldwide with high heterogeneity. However, the molecular basis for NSCLC development remains poorly understood. In this study, we analyzed endothelin converting enzyme 2 (ECE2) expression in NSCLC using transcriptome data from 59 normal and 515 NSCLC tissues obtained from The cancer genome atlas (TCGA) database. Additionally, we investigated the role of ECE2 in metastasis using 30 clinical NSCLC specimens. In vitro cell proliferation and migration assays were conducted using CCK8 and Transwell assays in NSCLC cells overexpressing ECE2. We employed Western blotting and immunostaining to assess activation of the endothelin-1 (ET1)/YAP1/MAGEA3 pathway. Furthermore, in vivo studies using subcutaneous xenograft mouse models with vector and ECE2-overexpressing A549 cells evaluated the anticancer effects. Our findings revealed elevated ECE2 expression in NSCLC tissues associated with poor prognosis. Moreover, overexpression of ECE2 enhanced both the proliferative and metastatic potential of NSCLC cells. Mechanistically, ECE2 promoted the production of ET1 in NSCLC cells. Subsequently, increased ET1 levels activated the YAP1/MAGEA3 pathway, thereby facilitating tumor progression. Our study uncovered the oncogenic role of ECE2 in promoting NSCLC growth through the ET1/YAP1/MAGEA3 pathway. Inhibiting ET1 signaling markedly enhanced the anticancer effectiveness of paclitaxel (PTX), providing a promising approach for managing NSCLC.
Collapse
Affiliation(s)
- Huaiqing Xiao
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China
| | - Jiawei Ni
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China
| | - Qun Yu
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China.
| |
Collapse
|
2
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
3
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
4
|
Haggagy MG, Ahmed LA, Sharaky M, Elhefnawi MM, Omran MM. SIRT1 as a potential key regulator for mediating apoptosis in oropharyngeal cancer using cyclophosphamide and all-trans retinoic acid. Sci Rep 2024; 14:41. [PMID: 38167952 PMCID: PMC10761886 DOI: 10.1038/s41598-023-50478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Although cyclophosphamide (CTX) has been used for recurrent or metastatic head and neck cancers, resistance is usually expected. Thus, we conducted this study to examine the effect of adding all-trans retinoic acid (ATRA) to CTX, to increase efficacy of CTX and reduce the risk of resistance developed. In this study, we investigated the combined effect of ATRA and CTX on the expression of apoptotic and angiogenesis markers in oropharyngeal carcinoma cell line (NO3), and the possible involved mechanisms. ATRA and CTX in combination significantly inhibited the proliferation of NO3 cells. Lower dose of CTX in combination with ATRA exhibited significant cytotoxicity than that of CTX when used alone, implying lower expected toxicity. Results showed that ATRA and CTX modulated oxidative stress; increased NOx and MDA, reduced GSH, and mRNA expression of Cox-2, SIRT1 and AMPK. Apoptosis was induced through elevating mRNA expressions of Bax and PAR-4 and suppressing that of Bcl-xl and Bcl-2, parallel with increased caspases 3 and 9 and decreased VEGF, endothelin-1 and CTGF levels. The primal action of the combined regimen on inflammatory signaling highlights its impact on cell death in NO3 cell line which was mediated by oxidative stress associated with apoptosis and suppression of angiogenesis.
Collapse
Affiliation(s)
- Mahitab G Haggagy
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mahmoud M Elhefnawi
- Biomedical Informatics and Chemoinformatic Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
5
|
Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J EVOL BIOCHEM PHYS+ 2022; 58:781-806. [PMID: 35789679 PMCID: PMC9243926 DOI: 10.1134/s0022093022030139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Here, we discuss pathophysiological approaches to the defining
of endothelial dysfunction criteria (i.e., endothelial activation,
impaired endothelial mechanotransduction, endothelial-to-mesenchymal
transition, reduced nitric oxide release, compromised endothelial
integrity, and loss of anti-thrombogenic properties) in different
in vitro and in vivo models. The canonical definition of endothelial
dysfunction includes insufficient production of vasodilators, pro-thrombotic
and pro-inflammatory activation of endothelial cells, and pathologically
increased endothelial permeability. Among the clinical consequences
of endothelial dysfunction are arterial hypertension, macro- and
microangiopathy, and microalbuminuria. We propose to extend the definition
of endothelial dysfunction by adding altered endothelial mechanotransduction
and endothelial-to-mesenchymal transition to its criteria. Albeit
interleukin-6, interleukin-8, and MCP-1/CCL2 dictate the pathogenic
paracrine effects of dysfunctional endothelial cells and are therefore
reliable endothelial dysfunction biomarkers in vitro, they are non-specific
for endothelial cells and cannot be used for the diagnostics of
endothelial dysfunction in vivo. Conceptual improvements in the
existing methods to model endothelial dysfunction, specifically,
in relation to the blood–brain barrier, include endothelial cell
culturing under pulsatile flow, collagen IV coating of flow chambers,
and endothelial lysate collection from the blood vessels of laboratory
animals in situ for the subsequent gene and protein expression profiling.
Combined with the simulation of paracrine effects by using conditioned
medium from dysfunctional endothelial cells, these flow-sensitive
models have a high physiological relevance, bringing the experimental
conditions to the physiological scenario.
Collapse
Affiliation(s)
- A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D. K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M. Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A. V. Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V. E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
6
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
7
|
Kida T, Flammer J, Konieczka K, Ikeda T. Retinal venous pressure is decreased after anti-VEGF therapy in patients with retinal vein occlusion-related macular edema. Graefes Arch Clin Exp Ophthalmol 2021; 259:1853-1858. [PMID: 33447857 PMCID: PMC8277612 DOI: 10.1007/s00417-020-05068-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The pathomechanism leading to retinal vein occlusion (RVO) is unclear. Mechanical compression, thrombosis, and functional contractions of veins are discussed as the reasons for the increased resistance of venous outflow. We evaluated changes in the retinal venous pressure (RVP) following intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent to determine the effect on RVO-related macular edema. Methods Twenty-six patients with RVO-related macular edema (16 branch RVOs [BRVOs] and 10 central RVOs [CRVOs], age 72.5 ± 8.8 years) who visited our hospital were included in this prospective study. Visual acuity (VA), intraocular pressure (IOP), central retinal thickness (CRT) determined by macular optical coherence tomography, and RVP measured using an ophthalmodynamometer were obtained before intravitreal injection of ranibizumab (IVR) and 1 month later. Results Comparison of the BRVOs and CRVOs showed that VA was significantly improved by a single injection in BRVOs (P < 0.0001; P = 0.1087 for CRVOs), but CRT and RVP were significantly decreased without significant difference in IOP after the treatment in both groups (P < 0.0001). Conclusion The anti-VEGF treatment resulted in a significant decrease in the RVP, but the RVP remained significantly higher than the IOP. An increased RVP plays a decisive role in the formation of macula edema, and reducing it is desirable.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
8
|
Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, Lorenzi L, Borsi E, Bazzoni R, Gottardi M, Terragna C, Vermi W, Giacomini A, Presta M, Cassatella MA, Krampera M, Tecchio C. Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Front Oncol 2021; 10:600025. [PMID: 33489901 PMCID: PMC7820698 DOI: 10.3389/fonc.2020.600025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1α pathways, respectively. HIF-1α silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1α and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM.
Collapse
Affiliation(s)
- Anna Russignan
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - Riccardo Bazzoni
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Krampera
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
10
|
Mirea MA, Eckensperger S, Hengstschläger M, Mikula M. Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:E2508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Mario Mikula
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Währingerstrasse 10, 1090 Vienna, Austria; (M.A.M.); (S.E.); (M.H.)
| |
Collapse
|
11
|
Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020; 8:766. [PMID: 32974337 PMCID: PMC7466447 DOI: 10.3389/fcell.2020.00766] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in cancer development and progression. It represents a complex network of cancer cell (sub-)clones and a variety of stromal cell types. Recently, new technology platforms shed light on the cellular composition of the TME at very high resolution and identified a complex landscape of multi-lineage immune cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer associated fibroblasts (CAF) and tumor endothelial cells (TECs). A growing body of evidence suggests that metabolically, genetically and on their transcriptomic profile TECs exhibit unique phenotypic and functional characteristics when compared to normal endothelial cells (NECs). Furthermore, the functional role of TECs is multifaceted as they are not only relevant for promoting tumor angiogenesis but have also evolved as key mediators of immune regulation in the TME. Regulatory mechanisms are complex and profoundly impact peripheral immune cell trafficking into the tumor compartment by acting as major gatekeepers of cellular transmigration. Moreover, TECs are associated with T cell priming, activation and proliferation by acting as antigen-presenting cells themselves. TECs are also essential for the formation of tertiary lymphoid structures (TLS) within the tumor, which have recently been associated with treatment response to checkpoint antibody therapy. Further essential characteristics of TECs compared to NECs are their high proliferative potential as well as greatly altered gene expression profile (e.g., upregulation of pro-angiogenic, extracellular matrix remodeling, and stemness genes), which results in enhanced secretion of immunomodulatory cytokines and altered cell-surface receptors [e.g., major histocompatibility complex (MHC) and immune checkpoints]. The TEC phenotype may be rooted in an aggressive tumor micro-milieu based on cellular stress via hypoxia and reactive oxygen species (ROS). Vice versa TECs might modulate TME immunogenicity thereby fostering cancer-associated immune suppression. This review aims to elucidate the currently emergent pathophysiological aspects of TECs with a particular focus on their potential role as regulators of immune cell function in the TME. It is a main future challenge to deeply characterize the phenotypic and functional profile of TECs to illuminate their complex role within the TME. The ultimate goal is the identification of TEC-specific drug targets to improve cancer (immuno-)therapy.
Collapse
Affiliation(s)
- Laurenz Nagl
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria.,Department of Oncology, Hematology, Rheumatology and Immunoncology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
12
|
Siao AC, Lin YY, Shih LJ, Tsuei YW, Chuu CP, Kuo YC, Kao YH. Endothelin-1 stimulates preadipocyte growth via the PKC, STAT3, AMPK, c-JUN, ERK, sphingosine kinase, and sphingomyelinase pathways. Am J Physiol Cell Physiol 2020; 319:C839-C857. [PMID: 32755450 DOI: 10.1152/ajpcell.00491.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endothelin (ET)-1 regulates adipogenesis and the endocrine activity of fat cells. However, relatively little is known about the ET-1 signaling pathway in preadipocyte growth. We used 3T3-L1 preadipocytes to investigate the signaling pathways involved in ET-1 modulation of preadipocyte proliferation. As indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU), the stimulation of preadipocyte growth by ET-1 depends on concentration and timing. The concentration of ET-1 that increased preadipocyte number by 51-67% was ~100 nM for ~24-48 h of treatment. ET-1 signaling time dependently stimulated phosphorylation of ERK, c-JUN, STAT3, AMPK, and PKCα/βII proteins but not AKT, JNK, or p38 MAPK. Treatment with an ETAR antagonist, such as BQ610, but not ETBR antagonist BQ788, blocked the ET-1-induced increase in cell proliferation and phosphorylated levels of ERK, c-JUN, STAT3, AMPK, and PKCα/βII proteins. In addition, pretreatment with specific inhibitors of ERK1/2 (U0126), JNK (SP600125), JAK2/STAT3 (AG490), AMPK (compound C), or PKC (Ro318220) prevented the ET-1-induced increase in cell proliferation and reduced the ET-1-stimulated phosphorylation of ERK1/2, c-JUN, STAT3, AMPK, and PKCα/β. Moreover, the SphK antagonist suppressed ET-1-induced cell proliferation and ERK, c-JUN, STAT3, AMPK, and PKC phosphorylation, and the SMase2 antagonist suppressed ET-1-induced cell proliferation. However, neither the p38 MAPK antagonist nor the CerS inhibitor altered the effect of ET-1. The results indicate that ETAR, JAK2/STAT3, ERK1/2, JNK/c-JUN, AMPK, PKC, SphK, and SMase2, but not ETBR, p38 MAPK, or CerS, are necessary for the ET-1 stimulation of preadipocyte proliferation.
Collapse
Affiliation(s)
- An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.,Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,National Defense Medical Center, Taipei, Taiwan
| | - Li-Jane Shih
- National Defense Medical Center, Taipei, Taiwan.,Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yi-Wei Tsuei
- Department of Emergency, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yow-Chii Kuo
- Division of Gastroenterology, Landseed Hospital, Taoyuan, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Furuya K, Kumasawa K, Nakamura H, Kimura T. Endothelin-1 profiles in advanced maternal age complicated with hypertensive disorders of pregnancy. Biochem Biophys Res Commun 2019; 516:941-944. [PMID: 31272714 DOI: 10.1016/j.bbrc.2019.06.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
Abstract
Recently, advanced maternal age (AMA) has been increasing due to late marriage and assisted reproductive technology. AMA is high-risk pregnancy associated with the life-threatening diseases such as hypertensive disorders of pregnancy (HDP). Recently we have reported novel AMA model mice using aged spontaneous pregnant mice, and found that the phenotypes of AMA model mice reflect the same characteristics as human AMA. We have also demonstrated that atypical angiogenic factors profiles including soluble VEGF-R1 (sFlt-1) and placental growth factor in both AMA pregnant women and AMA model mice. VEGF-endothelin-1 system have been also known as one of HDP-associated factors, however, there has been few reports on the relation between VEGF-endothelin-1 system and AMA. In this study, we investigated the profiles of VEGF-endothelin-1 system using our model mice's samples. As a result, VEGF and endothelin-1 levels were not significantly different between AMA and young individuals. Our results indicated that the mechanisms of hypertension in AMA may differ from those in young individuals from the point of VEGF-endothelin-1 system.
Collapse
Affiliation(s)
- Kiichiro Furuya
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiichi Kumasawa
- Obstetrics and Gynecology, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 1138655, Japan.
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
14
|
Schäfer A, Gjerga E, Welford RWD, Renz I, Lehembre F, Groenen PMA, Saez‐Rodriguez J, Aebersold R, Gstaiger M. Elucidating essential kinases of endothelin signalling by logic modelling of phosphoproteomics data. Mol Syst Biol 2019; 15:e8828. [PMID: 31464372 PMCID: PMC6683863 DOI: 10.15252/msb.20198828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/31/2023] Open
Abstract
Endothelins (EDN) are peptide hormones that activate a GPCR signalling system and contribute to several diseases, including hypertension and cancer. Current knowledge about EDN signalling is fragmentary, and no systems level understanding is available. We investigated phosphoproteomic changes caused by endothelin B receptor (ENDRB) activation in the melanoma cell lines UACC257 and A2058 and built an integrated model of EDNRB signalling from the phosphoproteomics data. More than 5,000 unique phosphopeptides were quantified. EDN induced quantitative changes in more than 800 phosphopeptides, which were all strictly dependent on EDNRB. Activated kinases were identified based on high confidence EDN target sites and validated by Western blot. The data were combined with prior knowledge to construct the first comprehensive logic model of EDN signalling. Among the kinases predicted by the signalling model, AKT, JNK, PKC and AMP could be functionally linked to EDN-induced cell migration. The model contributes to the system-level understanding of the mechanisms underlying the pleiotropic effects of EDN signalling and supports the rational selection of kinase inhibitors for combination treatments with EDN receptor antagonists.
Collapse
Affiliation(s)
- Alexander Schäfer
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Enio Gjerga
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | | | - Imke Renz
- Idorsia PharmaceuticalsAllschwilSwitzerland
| | | | | | - Julio Saez‐Rodriguez
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University HospitalBioquantHeidelberg UniversityHeidelbergGermany
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZürichZürichSwitzerland
| | - Matthias Gstaiger
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Competence Center Personalized Medicine UZH/ETHZürichSwitzerland
| |
Collapse
|
15
|
Shen W, Xi H, Li C, Bian S, Cheng H, Cui J, Wang N, Wei B, Huang X, Chen L. Endothelin-A receptor in gastric cancer and enhanced antitumor activity of trastuzumab in combination with the endothelin-A receptor antagonist ZD4054. Ann N Y Acad Sci 2019; 1448:30-41. [PMID: 30937921 DOI: 10.1111/nyas.14053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022]
Abstract
Endothelin-A receptor (ETAR) is overexpressed in cancers and can function through transactivation of the epidermal growth factor receptor. We explored ETAR in gastric cancer and investigated the antitumor effect of trastuzumab in combination with the ETAR antagonist ZD4054. The expression of ETAR was significantly correlated with the expression of vascular endothelial growth factor. Univariate and multivariate analyses further showed that ETAR expression correlated with reduced survival in gastric cancer patients. In vitro, ZD4054 increased the antiproliferative effect of trastuzumab in gastric cancer cell lines. Moreover, the addition of ZD4054 to trastuzumab significantly increased apoptosis in gastric cancer cell lines. In vivo, tumor growth was considerably inhibited by treatment with ZD4054 and trastuzumab, and the tumor volume in the trastuzumab and ZD4054 combination group was smaller than in the other groups. The detection of ETAR could help predict the prognosis of gastric cancer patients. Additionally, this study provides support for the therapeutic use of the combination of ZD4054 and trastuzumab as an anticancer treatment, especially for gastric cancer.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chenyang Li
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shibo Bian
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Haidong Cheng
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ning Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaohui Huang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
16
|
Hong XY, Hong X, Gu WW, Lin J, Yin WT. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1. Eur J Pharmacol 2018; 842:79-88. [PMID: 30401629 DOI: 10.1016/j.ejphar.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The present study was designed to investigate the effect of late phase of whole body hypoxic preconditioning on endothelial-dependent vasorelaxation and cardioprotection from ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Hypoxic preconditioning was performed by subjecting rats to four episodes of alternate exposure to low O2 (8%) and normal air O2 of 10 min each. After 24 h, the mesenteric arteries and hearts were isolated to determine the vascular function and cardioprotection from ischemia-reperfusion (I/R) injury on the Langendorff apparatus. There was a significant impairment in acetylcholine-induced relaxation in norepinephrine precontracted arteries (endothelium-dependent function) and increase in I/R-induced myocardial injury in SHR in comparison to Wistar Kyoto rats (WKY). However, hypoxic preconditioning significantly restored endothelium-dependent relaxation in SHR and attenuated I/R injury in both SHR and WKY. Hypoxic preconditioning also led to an increase in the levels of endothelin-1 (not endothelin-2 or -3), vascular endothelial growth factor-A (VEGF-A) and HIF-1α levels. Pretreatment with bevacizumab (anti-VEGF-A) and bosentan (endothelin receptor blocker) significantly attenuated hypoxic preconditioning-induced restoration of endothelium-dependent relaxation and cardioprotection from I/R injury. These interventions also attenuated the levels of VEGF-A and HIF-1α without modulating the endothelin-1 levels. It may be concluded that an increase in the endothelin-1 levels with a subsequent increase in HIF-1α and VEGF expression may possibly contribute in improving endothelium-dependent vasorelaxation and protecting hearts from I/R injury in SHR during late phase of whole body hypoxic preconditioning.
Collapse
Affiliation(s)
- Xing-Yu Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Wei Gu
- Department of Hepatopancreatobility Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Jie Lin
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Tian Yin
- Department of Hand Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| |
Collapse
|
17
|
Chebib N, Archer F, Bobet-Erny A, Leroux C, Cottin V. Dysregulation of the endothelin pathway in lymphangioleiomyomatosis with no direct effect on cell proliferation and migration. Sci Rep 2018; 8:14698. [PMID: 30279475 PMCID: PMC6168484 DOI: 10.1038/s41598-018-32795-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
LAM is a rare low-grade metastasizing lung neoplasm. Inhibitors of mTOR improve clinical outcome of LAM patients by preventing loss of lung function. Nevertheless, other cell targets may be of interest for drug development. Therefore, we explored the potential role of EDN1 (endothelin) in LAM. We report an increased endothelin blood level in LAM patients as well as EDN1 overexpression and EDN1 receptor downregulation in LAM-derived primary cells and in TSC2NEG cells mutated in TSC2. We evidenced EDN pathway dysregulation based on EDN1, EDNRA, EDNRB and ARRB1 mRNA expression in LAM-derived primary cells. We showed overexpression of EDN1 and ARRB1 mRNAs in TSC2NEG cells; these cells lost their ability to respond to stimulation by endothelin. We analyzed the effects of endothelin receptor antagonists alone or in combination with rapamycin, an mTOR inhibitor, on proliferation and migration of LAM cells. Rapamycin treatment of TSC2NEG cells significantly reduced cell proliferation or migration, while none of the tested inhibitors of EDN receptors impaired these functions. We showed that TSC2NEG cells have acquired a transformed phenotype as showed by their ability to grow as spheroids in semi-solid medium and that unlike endothelin receptors antagonists, rapamycin reduced anchorage-independent cell growth and prevented expansion of TSC2NEG spheroids.
Collapse
Affiliation(s)
- Nader Chebib
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Respiratory Diseases, National Reference Center for Rare Pulmonary Diseases, Lyon, France
| | - Fabienne Archer
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Alexandra Bobet-Erny
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France
| | - Caroline Leroux
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.
| | - Vincent Cottin
- Université de Lyon, Université Claude Bernard Lyon 1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, F69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Respiratory Diseases, National Reference Center for Rare Pulmonary Diseases, Lyon, France
| |
Collapse
|
18
|
da Silva RF, Dhar D, Raina K, Kumar D, Kant R, Cagnon VHA, Agarwal C, Agarwal R. Nintedanib inhibits growth of human prostate carcinoma cells by modulating both cell cycle and angiogenesis regulators. Sci Rep 2018; 8:9540. [PMID: 29934570 PMCID: PMC6014981 DOI: 10.1038/s41598-018-27831-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy and second leading cause of cancer-related deaths in American men. Proliferating cells have higher need for nutrients and oxygen, triggering angiogenesis that plays a critical role in tumor growth, progression and metastasis. Consequently, immense focus has converged onto inhibitors of angiogenesis in cancer treatment, such as Nintedanib, which has shown exceptional antitumor activity via inhibiting cell proliferation and the resulting tumor growth, primarily due to its combined action on tumor cells, endothelial cells and pericytes. Accordingly, here we assessed both in vitro and in vivo efficacy of Nintedanib in PCa. The results showed that Nintedanib decreased cell viability in both androgen dependent- and -independent PCa cells, together with a decrease in cell motility and invasiveness. Nintedanib also reduced the expression of significant genes responsible for cell cycle progression. PCa PC3 xenograft-carrying nude mice treated with Nintedanib showed significantly decreased tumor volume and cell proliferation alongside diminished levels of pro-angiogenic molecules and blood vessel densities. In conclusion, we report that Nintedanib has strong efficacy against PCa in pre-clinical models via modulation of various pathways, and that it could be employed as a promising new strategy to manage PCa clinically.
Collapse
Affiliation(s)
- Raquel Frenedoso da Silva
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA. .,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
19
|
AlAbdi L, He M, Yang Q, Norvil AB, Gowher H. The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem 2018; 293:11109-11118. [PMID: 29794136 PMCID: PMC6052231 DOI: 10.1074/jbc.ra118.002911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Indexed: 01/05/2023] Open
Abstract
Formation of the vasculature by angiogenesis is critical for proper development, but angiogenesis also contributes to the pathogenesis of various disorders, including cancer and cardiovascular diseases. Vascular endothelial zinc finger 1 (Vezf1), is a Krüppel-like zinc finger protein that plays a vital role in vascular development. However, the mechanism by which Vezf1 regulates this process is not fully understood. Here, we show that Vezf1−/− mouse embryonic stem cells (ESC) have significantly increased expression of a stem cell factor, Cbp/p300-interacting transactivator 2 (Cited2). Compared with WT ESCs, Vezf1−/− ESCs inefficiently differentiated into endothelial cells (ECs), which exhibited defects in the tube-formation assay. These defects were due to reduced activation of EC-specific genes concomitant with lower enrichment of histone 3 acetylation at Lys27 (H3K27) at their promoters. We hypothesized that overexpression of Cited2 in Vezf1−/− cells sequesters P300/CBP away from the promoters of proangiogenic genes and thereby contributes to defective angiogenesis in these cells. This idea was supported by the observation that shRNA-mediated depletion of Cited2 significantly reduces the angiogenic defects in the Vezf1−/− ECs. In contrast to previous studies that have focused on the role of Vezf1 as a transcriptional activator of proangiogenic genes, our findings have revealed a role for Vezf1 in modulating the expression of the antiangiogenic factor Cited2. Vezf1 previously has been characterized as an insulator protein, and our results now provide insights into the mechanism, indicating that Vezf1 can block inappropriate, nonspecific interactions of promoters with cis-located enhancers, preventing aberrant promoter activation.
Collapse
Affiliation(s)
| | - Ming He
- From the Department of Biochemistry and
| | | | | | - Humaira Gowher
- From the Department of Biochemistry and .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
20
|
De Sanctis F, Ugel S, Facciponte J, Facciabene A. The dark side of tumor-associated endothelial cells. Semin Immunol 2018; 35:35-47. [PMID: 29490888 DOI: 10.1016/j.smim.2018.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a hallmark of cancer and a requisite that tumors must achieve to fulfill their metabolic needs of nutrients and oxygen. As a critical step in cancer progression, the 'angiogenic switch' allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic progression and dissemination. Tumor-dependent triggering of the angiogenic switch has critical consequences on tumor progression which extends from an increased nutrient supply and relies instead on the ability of the tumor to hijack the host immune response for the generation of a local immunoprivileged microenvironment. Tumor angiogenic-mediated establishment of endothelial anergy is responsible for this process. However, tumor endothelium can also promote immune tolerance by unbalanced expression of co-stimulatory and co-inhibitory molecules and by releasing soluble factors that restrain T cell function and induce apoptosis. In this review, we discuss the molecular properties of the tumor endothelial barrier and endothelial anergy and discuss the main immunosuppressive mechanisms triggered by the tumor endothelium. Lastly, we describe the current anti-angiogenic therapeutic landscape and how targeting tumor angiogenesis can contribute to improve clinical benefits for patients.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - John Facciponte
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Pheochromocytoma and paraganglioma: genotype versus anatomic location as determinants of tumor phenotype. Cell Tissue Res 2018; 372:347-365. [DOI: 10.1007/s00441-017-2760-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
|
22
|
Maffei R, Fiorcari S, Vaisitti T, Martinelli S, Benatti S, Debbia G, Rossi D, Zucchini P, Potenza L, Luppi M, Gaidano G, Deaglio S, Marasca R. Macitentan, a double antagonist of endothelin receptors, efficiently impairs migration and microenvironmental survival signals in chronic lymphocytic leukemia. Oncotarget 2017; 8:90013-90027. [PMID: 29163807 PMCID: PMC5685728 DOI: 10.18632/oncotarget.21341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
The crosstalk between chronic lymphocytic leukemia (CLL) cells and tumor microenvironment is essential for leukemic clone maintenance, supporting CLL cells survival, proliferation and protection from drug-induced apoptosis. Over the past years, the role of several soluble factors involved in these processes has been studied. CLL cells express higher levels of endothelin 1 (ET-1) and ETA receptor as compared to normal B cells. Upon ET-1 stimulation, CLL cells improve their survival and proliferation and reduce their sensitivity to the phosphoinositide-3-kinase δ inhibitor idelalisib and to fludarabine. Here, we demonstrate that CLL cells express not only ETA receptor but also ETB receptor. ET-1 acts as a homing factor supporting CLL cells migration and adhesion to microenvironmental cells. In addition, ET-1 stimulates a pro-angiogenic profile of CLL cells increasing VEGF expression through hypoxia-inducible factor-1 (HIF-1α) accumulation in CLL cells. Macitentan, a specific dual inhibitor of ETA and ETB receptors, targets CLL cells affecting leukemic cells migration and adhesion and overcoming the pro-survival and proliferation signals mediated by microenvironment. Furthermore, macitentan cooperates with ibrutinib inhibiting the BCR pathway and with ABT-199 disrupting BCL2 pathway. Our data describe the biological effects of a new drug, macitentan, able to counteract essential processes in CLL pathobiology as survival, migration, trafficking and drug resistance. These findings envision the possibility to interfere with ET receptors activity using macitentan as a possible novel therapeutic strategy for CLL patients.
Collapse
Affiliation(s)
- Rossana Maffei
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Oncology, Hematology and Respiratory Track Diseases, Azienda Ospedaliero - Universitaria Policlinico di Modena, Modena, Italy
| | - Stefania Fiorcari
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin and Human Genetics Foundation, Turin, Italy
| | - Silvia Martinelli
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Benatti
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Debbia
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland.,Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Patrizia Zucchini
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin and Human Genetics Foundation, Turin, Italy
| | - Roberto Marasca
- Division of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
24
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res 2017; 62. [PMID: 27706852 DOI: 10.1111/jpi.12370] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin's actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Papanikolaou S, Bravou V, Papadaki H, Gyftopoulos K. The role of the endothelin axis in promoting epithelial to mesenchymal transition and lymph node metastasis in prostate adenocarcinoma. Urol Ann 2017; 9:372-379. [PMID: 29118542 PMCID: PMC5656965 DOI: 10.4103/ua.ua_43_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Aberrant activation of endothelin (ET) axis has been identified as a key player in tumor growth and metastasis in several tumor types. However, little is known about the possible interaction of the ET with epithelial to mesenchymal transition (EMT), a process that transforms tumor cells in a motile, resistant to apoptosis phenotype prone to invasion and metastasis. The aim of this study was to investigate the activation of the ET axis in prostate adenocarcinoma and examine possible associations with EMT markers, lymph node (LN) metastasis, and other clinicopathological parameters. Materials and Methods: We immunohistochemically evaluated the expression of ET-1 and its receptors A and B (ET-A, ET-B) in 64 N0 and 23 N1 prostate adenocarcinoma cases. EMT markers E-cadherin, N-cadherin, and β-catenin and the transcriptional factor SNAIL were evaluated. We examined possible correlations of ET pathway members with EMT markers, LN status, Gleason grade, and T stage. Results: Our results revealed increased expression of ET-1 and ET-A (but not ET-B) in prostate carcinoma; both ET-1 and ET-A were associated with lymph metastasis and T stage but not with Gleason grade. We observed E-cadherin and β-catenin decrease/relocalization and increased N-cadherin expression. SNAIL also showed increased expression in tumor tissue and was associated with LN metastasis (Mann–Whitney test, P = 0.0032). Expression of ET-1 and ET-A correlated well with SNAIL expression (Spearman r, P = 0.0002 and P = 0.0176, respectively). Conclusions: These findings indicate that activation of the ET pathway may induce EMT through SNAIL activation and correlates with increased metastatic potential.
Collapse
Affiliation(s)
- Sophia Papanikolaou
- Department of Anatomy, Medical School, University of Patras, 26500 Rion, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy, Medical School, University of Patras, 26500 Rion, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, 26500 Rion, Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, Medical School, University of Patras, 26500 Rion, Patras, Greece
| |
Collapse
|
26
|
Zhang Q, Madden NE, Wong AST, Chow BKC, Lee LTO. The Role of Endocrine G Protein-Coupled Receptors in Ovarian Cancer Progression. Front Endocrinol (Lausanne) 2017; 8:66. [PMID: 28439256 PMCID: PMC5383648 DOI: 10.3389/fendo.2017.00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer in women and the most lethal gynecological cancer, causing over 151,000 deaths worldwide each year. Dysregulated production of endocrine hormones, known to have pluripotent effects on cell function through the activation of receptor signaling pathways, is believed to be a high-risk factor for ovarian cancer. An increasing body of evidence suggests that endocrine G protein-coupled receptors (GPCRs) are involved in the progression and metastasis of ovarian neoplasms. GPCRs are attractive drug targets because their activities are regulated by more than 25% of all drugs approved by the Food and Drug Administration. Therefore, understanding the role of endocrine GPCRs during ovarian cancer progression and metastasis will allow for the development of novel strategies to design effective chemotherapeutic drugs against malignant ovarian tumors. In this review, we address the signaling pathways and functional roles of several key endocrine GPCRs that are related to the cause, progression, and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Qingyu Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Nadine Ellen Madden
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Alice Sze Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Leo Tsz On Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
- *Correspondence: Leo Tsz On Lee,
| |
Collapse
|
27
|
Zhang Y, Tang L, Su M, Eisen D, Zloty D, Warshawski L, Zhou Y. Expression of Endothelins and Their Receptors in Nonmelanoma Skin Cancers. J Cutan Med Surg 2016; 10:269-76. [PMID: 17241596 DOI: 10.2310/7750.2006.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Endothelins are paracrine peptides with growth-promoting and vasoactive functions for a variety of cell types. Elevated activation of the endothelin signaling pathway induces cell proliferation and/or survival and is implicated in a variety of malignancies. Increased endothelin 1 was described in solar lentigines in previous reports, raising the possibility that the endothelin pathway may be of significance in keratinocyte proliferation-related disorders. However, detailed investigation on endothelins in skin malignancies is lacking. Objectives: This study aims to survey the expression of endothelins and their receptors in keratinocyte-derived benign and malignant tumors of the skin and to test the effects of endothelin inhibitors on the growth and survival of cultured keratinocytes. Methods: Quantitative polymerase chain reaction was used to measure the level of gene transcription of three endothelins (ET-1, −2, and −3) and two endothelin receptors (ETRA and ETRB). The genes with significant messenger ribonucleic acid (mRNA) expression abnormalities were confirmed with immunohistochemical analysis to examine expression differences at the protein levels. To analyze the effect of endothelin inhibitors on the keratinocyte growth and survival, keratinocytes were cultured in the presence of various concentrations of endothelin inhibitors and subjected to tetrazolium bromide assay to quantify the cell numbers over time. Results: ET-1 mRNA was found to be significantly up-regulated in seborrheic keratosis and basal cell carcinoma. However, no significant expression increase was found in actinic keratosis, Bowen's disease, or squamous cell carcinoma. Immunohistochemical analysis of ET-1 peptide confirmed increased expression. In cultured keratinocytes, peptide inhibitors of the endothelin pathway resulted in a marked reduction in cell survival. Conclusion: The endothelin signaling pathway, especially ET-1, is activated in basoloid keratinocyte neoplasms of the skin, such as basal cell carcinoma and seborrheic keratosis. Blockade of this pathway can reduce cell survival in vitro. Therefore, endothelin inhibitors potentially offer a novel method for the treatment of some keratinocyte-derived skin tumors.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Bowen's Disease/metabolism
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Endothelin-1/genetics
- Endothelin-2/genetics
- Endothelins/genetics
- Endothelins/metabolism
- Humans
- Immunohistochemistry
- Keratosis/metabolism
- Keratosis, Seborrheic/metabolism
- Polymerase Chain Reaction
- RNA, Messenger
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/metabolism
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transcription, Genetic
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Hsu SJ, Lin TY, Wang SS, Chuang CL, Lee FY, Huang HC, Hsin IF, Lee JY, Lin HC, Lee SD. Endothelin receptor blockers reduce shunting and angiogenesis in cirrhotic rats. Eur J Clin Invest 2016; 46:572-80. [PMID: 27091078 DOI: 10.1111/eci.12636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 04/17/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiogenesis plays a pivotal role in splanchnic hyperaemia and portosystemic collateral formation in cirrhosis. Endothelin-1 (ET-1), an endothelium-derived vasoconstrictor, has also been implicated in the pathogenesis of cirrhosis and portal hypertension. DESIGN This study aimed to survey the influences of ET-1 in cirrhosis-related angiogenesis. Common bile duct ligation was performed on Spraque-Dawley rats to induce cirrhosis. Since the 14th day after the operation, rats randomly received distilled water (DW, control), bosentan [a nonselective ET receptor (ETR) blocker] or ambrisentan (a selective ETA R blocker) for 4 weeks. On the 43rd day, portal and systemic haemodynamics, liver biochemistry, portosystemic shunting degree, mesenteric vascular density, mRNA and/or protein expressions of relevant angiogenic factors were evaluated. RESULTS In cirrhotic rats, bosentan significantly reduced portal pressure. Ambrisentan did not influence haemodynamics and liver biochemistry. Both of them significantly improved the severity of portosystemic collaterals and decreased the mesenteric vascular density. Compared with the DW-treated cirrhotic rats, splenorenal shunt and mesenteric inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), vascular endothelial growth factor mRNA expressions and mesenteric iNOS, COX2, VEGF, phospho-VEGF receptor 2, Akt and phospho-Akt protein expressions were down-regulated in both groups. CONCLUSIONS In rats with liver cirrhosis, both nonselective and selective ETA R blockade ameliorate the severity of portosystemic shunting and mesenteric angiogenesis via the down-regulation of VEGF pathway and relevant angiogenic factors. ET receptors may be targeted to control the severity of portosystemic collaterals and associated complications in cirrhosis.
Collapse
Affiliation(s)
- Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterologyand Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Te-Yueh Lin
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterologyand Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterologyand Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterologyand Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Cianfrocca R, Tocci P, Rosanò L, Caprara V, Sestito R, Di Castro V, Bagnato A. Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression. Oncotarget 2016; 7:17790-804. [PMID: 26909598 PMCID: PMC4951250 DOI: 10.18632/oncotarget.7461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/07/2016] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ET(A)R axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ET(A)R by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ET(A)R/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ET(A)R signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression.
Collapse
Affiliation(s)
- Roberta Cianfrocca
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
30
|
Lappano R, Rigiracciolo D, De Marco P, Avino S, Cappello AR, Rosano C, Maggiolini M, De Francesco EM. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling. AAPS JOURNAL 2016; 18:305-10. [PMID: 26865461 DOI: 10.1208/s12248-016-9881-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GPCR-mediated signaling, leading to an intricate network of transduction pathways. In this regard, it should be mentioned that diverse GPCR family members contribute to the adaptive cell responses to low oxygen tension, which is a distinguishing feature of several illnesses like neoplastic and cardiovascular diseases. For instance, the G protein estrogen receptor, namely G protein estrogen receptor (GPER)/GPR30, has been shown to contribute to relevant biological effects induced by hypoxia via the hypoxia-inducible factor (HIF)-1α in diverse cell contexts, including cancer. Likewise, GPER has been found to modulate the biological outcome of hypoxic/ischemic stress in both cardiovascular and central nervous systems. Here, we describe the role exerted by GPCR-mediated signaling in low oxygen conditions, discussing, in particular, the involvement of GPER by a hypoxic microenvironment.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Damiano Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Silvia Avino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy.
| | | |
Collapse
|
31
|
Sestito R, Cianfrocca R, Rosanò L, Tocci P, Semprucci E, Di Castro V, Caprara V, Ferrandina G, Sacconi A, Blandino G, Bagnato A. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget 2016; 7:4009-23. [PMID: 26675258 PMCID: PMC4826186 DOI: 10.18632/oncotarget.6546] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
Drug resistance remains the major clinical barrier to successful treatment in epithelial ovarian carcinoma (EOC) patients, and the evidence of microRNA involvement in drug resistance has been recently emerging. Endothelin-1 (ET-1)/ETA receptor (ETAR) axis is aberrantly activated in chemoresistant EOC cells and elicits pleiotropic effects promoting epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance. However, the relationship between ETAR and miRNA is still unknown. Hence, in this study we evaluated whether dysregulation of miRNA might enhance ETAR expression in sensitive and resistant EOC cells. Based on bioinformatic tools, we selected putative miRNA able to recognize the 3'UTR of ETAR. An inverse correlation was observed between the expression levels of miR-30a and ETAR in both EOC cell lines and tumor samples. miR-30a was found to specifically bind to the 3'UTR of ETAR mRNA, indicating that ETAR is a direct target of miR-30a. Overexpression of miR-30a decreased Akt and mitogen activated protein kinase signaling pathway activation, cell proliferation, invasion, plasticity, EMT marker levels, and vascular endothelial growth factor release. Interestingly, ectopic expression of miR-30a re-sensitized platinum-resistant EOC cells to cisplatinum-induced apoptosis. Consistently, resistant EOC xenografts overexpressing miR-30a resulted in significantly less tumor growth than controls. Together our study provides a new perspective on the regulatory mechanism of ETAR gene. Interestingly, our findings highlight that blockade of ETAR regulatory axis is the mechanism underlying the tumor suppressor function of miR-30a in chemoresistant EOC cells.
Collapse
Affiliation(s)
- Rosanna Sestito
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Semprucci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Sacconi
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
32
|
Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 2015; 33:55-63. [PMID: 25665467 PMCID: PMC4896929 DOI: 10.1016/j.coi.2015.01.011] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
T cells play a critical role in tumor immune surveillance as evidenced by extensive mouse-tumor model studies as well as encouraging patient responses to adoptive T cell therapies and dendritic cell vaccines. It is well established that the interplay of tumor cells with their local cellular environment can trigger events that are immunoinhibitory to T cells. More recently it is emerging that the tumor vasculature itself constitutes an important barrier to T cells. Endothelial cells lining the vessels can suppress T cell activity, target them for destruction, and block them from gaining entry into the tumor in the first place through the deregulation of adhesion molecules. Here we review approaches to break this tumor endothelial barrier and enhance T cell activity.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Melita Irving
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne (CHUV), CH-1015 Lausanne, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Mitrakas L, Gravas S, Karasavvidou F, Dimakopoulos G, Moutzouris G, Tzortzis V, Koukoulis G, Papandreou C, Melekos M. Endothelin-1 overexpression: a potential biomarker of unfavorable prognosis in non-metastatic muscle-invasive bladder cancer. Tumour Biol 2015; 36:4699-705. [PMID: 25627007 DOI: 10.1007/s13277-015-3118-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/14/2015] [Indexed: 11/26/2022] Open
Abstract
Endothelin-1 (ET-1) is a multifunctional peptide exerting its effects via receptors A and B. ET-1 and its receptors, endothelin axis (ET axis), play a promoting role in cancer biology. Alterations of proteins of ET axis have been detected in non-metastatic muscle-invasive bladder cancer (NMMIBC). The objective of this study is to investigate the potential role of ET-1 tumor expression as a biomarker of prognosis, compared to other prognostic parameters (epidemiologic and pathologic), in NMMIBC. We prospectively included 40 consecutive, primary, high-grade NMMIBC patients. Tumor specimens after initial transurethral resection were stained immunohistochemically for ET-1. The ET-1 evaluation of expression was based on staining intensity (SI) of ET-1. SI was classified according to an arbitrary four-tiered scale (negative = 0, mild = 1, moderate = 2, strong = 3). Epidemiologic and pathologic parameters were analyzed, using univariate and multivariate statistics, for disease progression, progression-free survival (PFS), and overall survival (OS). ET-1 overexpression (SI = 3) was the unique parameter which associated significantly, both in univariate (log-rank test, p = 0.033) and multivariate (Cox regression analysis, p = 0.045, HR = 4.849, 95 % CI: 1.039-22.624) analysis, with an increased hazard ratio of progression. ET-1 overexpression (SI = 3) was also the unique parameter which associated, marginally significantly in univariate analysis (log-rank test, p = 0.056) and highly significantly in multivariate analysis (Cox regression analysis, p = 0.005, HR = 7.001, 95 % CI: 1.782-27.501), with an increased hazard ratio of death. Overexpression of ET-1 may be a potential biomarker of unfavorable prognosis in NMMIBC patients.
Collapse
Affiliation(s)
- Lampros Mitrakas
- Department of Urology, Faculty of Medicine-School of Health Sciences-University of Thessaly, University Hospital of Larissa, Larissa, Greece,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM. High-Mobility Group Box-1 Modulates the Expression of Inflammatory and Angiogenic Signaling Pathways in Diabetic Retina. Curr Eye Res 2014; 40:1141-52. [PMID: 25495026 DOI: 10.3109/02713683.2014.982829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The expression of high-mobility group box-1 (HMGB1) is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in the diabetic retina. HMGB1 mediates inflammation, breakdown of the blood-retinal barrier and apoptosis in the diabetic retina. Here, we investigated inflammatory and angiogenic signaling pathways activated by HMGB1 in diabetic retina. METHODS Human retinal microvascular endothelial cells (HRMEC) and retinas from 1-month diabetic rats and normal rats intravitreally injected with HMGB1 were studied using RT-PCR, Western blot analysis and co-immunoprecipitation. We also studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. RESULTS Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of the mRNA levels of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) receptor CXCR4 and protein levels of hypoxia-inducible factor-1α, early growth response-1, tyrosine kinase 2 and the CXCL12/CXCR4 chemokine axis. Constant glycyrrhizin intake from onset of diabetes did not affect the metabolic status of the diabetic rats, but it restored these increased mediators to control values. Stimulation of HRMEC with HMGB1 and intraviteral injection of HMGB1 significantly increased the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2. Co-immunoprecipitation studies showed that diabetes increased the interaction between CXCL12 and CXCR4 and between HMGB1 and receptor for advanced glycation end products (RAGE), but not between HMGB1 and the CXCL12/CXCR4 chemokine axis. CONCLUSIONS Our findings suggest that HMGB1 activates inflammatory and angiogenic signaling pathways in diabetic retina mediated by RAGE.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Imtiaz Nawaz
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- a Department of Ophthalmology , College of Medicine, King Saud University, King Abdulaziz University Hospital , Riyadh , Saudi Arabia
| |
Collapse
|
35
|
Endothelin-1 regulates hypoxia-inducible factor-1α and -2α stability through prolyl hydroxylase domain 2 inhibition in human lymphatic endothelial cells. Life Sci 2014; 118:185-90. [DOI: 10.1016/j.lfs.2014.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/20/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
|
36
|
Bussche L, Van de Walle GR. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Transl Med 2014; 3:1514-25. [PMID: 25313202 DOI: 10.5966/sctm.2014-0138] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator.
Collapse
Affiliation(s)
- Leen Bussche
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
37
|
Irani S, Salajegheh A, Gopalan V, Smith RA, Lam AKY. Expression profile of endothelin 1 and its receptor endothelin receptor A in papillary thyroid carcinoma and their correlations with clinicopathologic characteristics. Ann Diagn Pathol 2014; 18:43-48. [PMID: 24332749 DOI: 10.1016/j.anndiagpath.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
The endothelin axis is a group of signaling molecules and their receptors that have been implicated in vascularization of cancers, with their expression being observed to change in different cancer types. In this research, we examined the expression of endothelin 1 and endothelin receptor A at the protein and messenger RNA (mRNA) levels in 123 papillary thyroid carcinomas and 40 matched lymph nodes with metastatic papillary thyroid carcinomas. We found altered endothelin axis mRNA expression in several clinicopathologic parameters with increased endothelin 1 expression in thyroid papillary carcinoma showing stromal calcification, cancers in men, and primary cancers with lymph node metastases. Increased endothelin receptor A mRNA expression was noted in the larger cancers. There is a significant correlation between expression of endothelin receptor A and endothelin 1 in papillary thyroid carcinoma. Both endothelin receptor A and endothelin 1 mRNA expressions were significantly higher in metastatic carcinoma in the lymph node than in primary thyroid cancer. The metastatic carcinoma in the lymph node had increased expression compared with matched primary thyroid carcinoma. Expressions of endothelin 1 and endothelin receptor A were also documented as being high at the protein level. Our results indicate that in thyroid cancer, endothelin 1 and endothelin receptor A are associated with growth in advanced stages and lymph node metastases, likely through known angiogenic linkages. Targeting the endothelin axis may be useful in planning angiogenesis therapy for thyroid cancer.
Collapse
Affiliation(s)
- Soussan Irani
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
38
|
Mauge L, Terme M, Tartour E, Helley D. Control of the adaptive immune response by tumor vasculature. Front Oncol 2014; 4:61. [PMID: 24734218 PMCID: PMC3975114 DOI: 10.3389/fonc.2014.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.
Collapse
Affiliation(s)
- Laetitia Mauge
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Magali Terme
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France
| | - Eric Tartour
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Dominique Helley
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| |
Collapse
|
39
|
Impact of pre-angiogenic factors on the treatment effect of bevacizumab in patients with metastatic colorectal cancer. Med Oncol 2014; 31:905. [DOI: 10.1007/s12032-014-0905-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 01/07/2023]
|
40
|
Chen CC, Chen LL, Hsu YT, Liu KJ, Fan CS, Huang TS. The endothelin-integrin axis is involved in macrophage-induced breast cancer cell chemotactic interactions with endothelial cells. J Biol Chem 2014; 289:10029-44. [PMID: 24550382 DOI: 10.1074/jbc.m113.528406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elevated macrophage infiltration in tumor tissues is associated with breast cancer metastasis. Cancer cell migration/invasion toward angiogenic microvasculature is a key step in metastatic spread. We therefore studied how macrophages stimulated breast cancer cell interactions with endothelial cells. Macrophages produced cytokines, such as interleukin-8 and tumor necrosis factor-α, to stimulate endothelin (ET) and ET receptor (ETR) expression in breast cancer cells and human umbilical vascular endothelial cells (HUVECs). ET-1 was induced to a greater extent from HUVECs than from breast cancer cells, resulting in a density difference that facilitated cancer cell chemotaxis toward HUVECs. Macrophages also stimulated breast cancer cell adhesion to HUVECs and transendothelial migration, which were repressed by ET-1 antibody or ETR inhibitors. The ET axis induced integrins, such as αV and β1, and their counterligands, such as intercellular adhesion molecule-2 and P-selectin, in breast cancer cells and HUVECs, and antibodies against these integrins efficiently suppressed macrophage-stimulated breast cancer cell interactions with HUVECs. ET-1 induced Ets-like kinase-1 (Elk-1), signal transducer and activator of transcription-3 (STAT-3), and nuclear factor-κB (NF-κB) phosphorylation in breast cancer cells. The use of inhibitors to prevent their phosphorylation or ectopic overexpression of dominant-negative IκBα perturbed ET-1-induced integrin αV and integrin β1 expression. The physical associations of these three transcriptional factors with the gene promoters of the two integrins were furthermore evidenced by a chromatin immunoprecipitation assay. Finally, our mouse orthotopic tumor model revealed an ET axis-mediated lung metastasis of macrophage-stimulated breast cancer cells, suggesting that the ET axis was involved in macrophage-enhanced breast cancer cell endothelial interactions.
Collapse
Affiliation(s)
- Chia-Chi Chen
- From the National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli 350, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Irani S, Salajegheh A, Smith RA, Lam AKY. A review of the profile of endothelin axis in cancer and its management. Crit Rev Oncol Hematol 2014; 89:314-321. [PMID: 24035584 DOI: 10.1016/j.critrevonc.2013.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/18/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
The endothelins and their associated receptors are important controllers of vascular growth, inflammation and vascular tone. In cancer, they have roles in the control of numerous factors in cancer development and progression, including angiogenesis, stromal reaction, epithelial mesenchymal transitions, apoptosis, invasion, metastases and drug resistance. Also, we consider current information on the role of this signalling system in cancer and examine the state of the current cell, animal and clinical trials utilizing endothelin targeted drugs for cancer management. Although targeting the endothelin axis in cell lines and xenografts show some promise in retarding cellular growth, results from limited clinical trials in prostatic cancer are less encouraging and did not offer significant survival benefit. The ability to target both cancer cells and vasculature via endothelin is an important consideration that necessitates the further refining of therapeutic strategies as we continue to explore the possibilities of the endothelin axis in cancer treatment.
Collapse
Affiliation(s)
- Soussan Irani
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
42
|
Tanaka T, Sho M, Takayama T, Wakatsuki K, Matsumoto S, Migita K, Ito M, Hamada K, Nakajima Y. Endothelin B receptor expression correlates with tumour angiogenesis and prognosis in oesophageal squamous cell carcinoma. Br J Cancer 2013; 110:1027-33. [PMID: 24357795 PMCID: PMC3929870 DOI: 10.1038/bjc.2013.784] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
Background: The endothelin axis has been shown to have a pivotal role in several human malignancies. The aim of this study was to clarify the clinical importance of endothelin receptor type B (ETBR) in human oesophageal squamous cell carcinoma (OSCC). Methods: We evaluated ETBR expression in 107 patients with OSCC by immunohistochemistry. Microvessel density (MVD) and lymphatic vessel density were assessed by CD31 and D2-40 immunostaining, respectively. Furthermore, CD4, CD8, and CD45RO+ tumour-infiltrating lymphocytes (TILs) were immunohistochemically analysed. Results: Sixty-one (57%) cases showed high expression of ETBR. Endothelin receptor type B expression was correlated with several clinicopathological factors including tumour differentiation, tumour depth, and lymph node metastasis. The overall and disease-specific survival rates were significantly lower in patients with high ETBR expression than patients with low expression. Furthermore, multivariate analysis revealed that ETBR status was an independent prognostic factor for patient survival. Mechanistic analysis indicated that MVD was significantly higher in tumour tissues with high ETBR expression compared with those with low expression, suggesting that angiogenesis may be a key mechanism in tumour progression and metastasis of OSCC mediated by ETBR expression. By contrast, there were no significant correlations between TILs and ETBR expression. Conclusion: Endothelin receptor type B has a pivotal role in oesophageal cancer and may be therapeutic target for this intractable malignancy.
Collapse
Affiliation(s)
- T Tanaka
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - M Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - T Takayama
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - K Wakatsuki
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - S Matsumoto
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - K Migita
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - M Ito
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - K Hamada
- Division of Clinical and Investigative Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Y Nakajima
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
43
|
Aydın AF, Develi-İş S, Doğru-Abbasoğlu S, Vural P, Ozderya A, Karadağ B, Uysal M. Polymorphisms of endothelin 1 (G5665T and T-1370G) and endothelin receptor type A (C+70G and G-231A) in Graves' disease. Int Immunopharmacol 2013; 18:198-202. [PMID: 24291390 DOI: 10.1016/j.intimp.2013.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Endothelin 1 (EDN1) is a strong angiogenic and mitogenic factor, playing a key role in hypervascularization, thyroid follicle cell hyperplasia, and lymphocyte infiltration in the thyroid gland of patients with Graves' disease (GD). EDN1 induces angiogenesis and mitogenesis via endothelin receptor type A (EDNRA). This study examined the possible association of EDN1 (G5665T and T-1370G) and EDNRA (C+70G and G-231A) single nucleotide polymorphisms (SNPs) with the occurrence of GD, and evaluates the relationship between genotypes and clinical/laboratory manifestations of GD. MATERIALS AND METHODS We analyzed genotype and allele distributions of EDN1 and EDNRA polymorphisms in 165 patients with GD and 181 healthy controls by real-time PCR combined with melting curve analysis. RESULTS No significant associations between GD and variant alleles of the studied polymorphisms were observed. However, the anti-thyroid peroxidase (anti-TPO) and anti-thyroglobulin (anti-TG) levels in EDN1 G5665T GG genotype were higher than those in T allele carriers (GT+TT) (p=0.001 and p=0.026, respectively). In addition, anti-TPO levels in EDN1 T-1370G wild-type homozygous patients were found to be higher than in mutant gene carrying patients (GT+GG) (p=0.006). The presence of EDNRA+70G allele was associated with 3.37-fold increased risk for development of ophthalmopathy in GD patients (p=0.009). CONCLUSION Although there were no associations between EDN1 (G5665T and T-1370G) and EDNRA (C+70G and G-231A) SNPs and susceptibility to GD, EDN1 G5665T and T-1370G polymorphisms were related to alterations of autoantibody production and EDNRA C+70G polymorphism is related with increased risk for ophthalmopathy in GD patients.
Collapse
Affiliation(s)
- A Fatih Aydın
- Istanbul University, Istanbul Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Seval Develi-İş
- Istanbul University, Istanbul Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Istanbul University, Istanbul Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Pervin Vural
- Istanbul University, Istanbul Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey.
| | - Ayşenur Ozderya
- Şişli Etfal Education and Research Hospital, II. Internal Medicine Clinic, Department of Endocrinology, Şişli, 34387 Istanbul, Turkey
| | - Berrin Karadağ
- Şişli Etfal Education and Research Hospital, II. Internal Medicine Clinic, Department of Endocrinology, Şişli, 34387 Istanbul, Turkey
| | - Müjdat Uysal
- Istanbul University, Istanbul Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| |
Collapse
|
44
|
Abstract
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.
Collapse
|
45
|
Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2013; 13:637-51. [PMID: 23884378 DOI: 10.1038/nrc3546] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of autocrine and paracrine signalling by endothelin 1 (ET1) binding to its receptors elicits pleiotropic effects on tumour cells and on the host microenvironment. This activation modulates cell proliferation, apoptosis, migration, epithelial-to-mesenchymal transition, chemoresistance and neovascularization, thus providing a strong rationale for targeting ET1 receptors in cancer. In this Review, we discuss the advances in our understanding of the diverse biological roles of ET1 in cancer and describe the latest preclinical and clinical progress that has been made using small-molecule antagonists of ET1 receptors that inhibit ET1-driven signalling.
Collapse
Affiliation(s)
- Laura Rosanò
- Laboratory of Molecular Pathology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | | | | |
Collapse
|
46
|
Abstract
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.
Collapse
Affiliation(s)
- Greg T Motz
- Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Kandalaft LE, Chiang CL, Tanyi J, Motz G, Balint K, Mick R, Coukos G. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J Transl Med 2013; 11:149. [PMID: 23777306 PMCID: PMC3693890 DOI: 10.1186/1479-5876-11-149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Ovarian cancer, like most solid tumors, is in dire need of effective therapies. The significance of this trial lies in its promise to spearhead the development of combination immunotherapy and to introduce novel approaches to therapeutic immunomodulation, which could enable otherwise ineffective vaccines to achieve clinical efficacy. RATIONALE Tumor-infiltrating T cells have been associated with improved outcome in ovarian cancer, suggesting that activation of antitumor immunity will improve survival. However, molecularly defined vaccines have been generally disappointing. Cancer vaccines elicit a modest frequency of low-to-moderate avidity tumor-specific T-cells, but powerful tumor barriers dampen the engraftment, expansion and function of these effector T-cells in the tumor, thus preventing them from reaching their full therapeutic potential. Our work has identified two important barriers in the tumor microenvironment: the blood-tumor barrier, which prevents homing of effector T cells, and T regulatory cells, which inactivate effector T cells. We hypothesize that cancer vaccine therapy will benefit from combinations that attenuate these two barrier mechanisms. DESIGN We propose a three-cohort sequential study to investigate a combinatorial approach of a new dendritic cell (DC) vaccine pulsed with autologous whole tumor oxidized lysate, in combination with antiangiogenesis therapy (bevacizumab) and metronomic cyclophosphamide, which impacts Treg cells. INNOVATION This study uses a novel autologous tumor vaccine developed with 4-day DCs pulsed with oxidized lysate to elicit antitumor response. Furthermore, the combination of bevacizumab with a whole tumor antigen vaccine has not been tested in the clinic. Finally the combination of bevacizumab and metronomic cyclophosphamide in immunotherapy is novel.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl L Chiang
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Janos Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Motz
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Klara Balint
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosemarie Mick
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Coukos
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 2013; 24:297-310. [DOI: 10.1016/j.cytogfr.2013.03.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/26/2013] [Indexed: 01/11/2023]
|
49
|
Pisarcik S, Maylor J, Lu W, Yun X, Undem C, Sylvester JT, Semenza GL, Shimoda LA. Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1. Am J Physiol Lung Cell Mol Physiol 2013; 304:L549-61. [PMID: 23418090 PMCID: PMC3625988 DOI: 10.1152/ajplung.00081.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/06/2013] [Indexed: 01/13/2023] Open
Abstract
Numerous cellular responses to hypoxia are mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension. Under certain conditions, HIF-1 may utilize feedforward mechanisms to amplify its activity. Since hypoxia increases endothelin-1 (ET-1) levels in the lung, we hypothesized that during moderate, prolonged hypoxia ET-1 might contribute to HIF-1 signaling in pulmonary arterial smooth muscle cells (PASMCs). Primary cultures of rat PASMCs were treated with ET-1 or exposed to moderate, prolonged hypoxia (4% O(2) for 60 h). Levels of the oxygen-sensitive HIF-1α subunit and expression of HIF target genes were increased in both hypoxic cells and cells treated with ET-1. Both hypoxia and ET-1 also increased HIF-1α mRNA expression and decreased mRNA and protein expression of prolyl hydroxylase 2 (PHD2), which is the protein responsible for targeting HIF-1α for O(2)-dependent degradation. The induction of HIF-1α by moderate, prolonged hypoxia was blocked by BQ-123, an antagonist of ET-1 receptor subtype A. The effects of ET-1 were mediated by increased intracellular calcium, generation of reactive oxygen species, and ERK1/2 activation. Neither ET-1 nor moderate hypoxia induced the expression of HIF-1α or HIF target genes in aortic smooth muscle cells. These results suggest that ET-1 induces a PASMC-specific increase in HIF-1α levels by upregulation of HIF-1α synthesis and downregulation of PHD2-mediated degradation, thereby amplifying the induction of HIF-1α in PASMCs during moderate, prolonged hypoxia.
Collapse
Affiliation(s)
- Sarah Pisarcik
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shimoda LA. 55th Bowditch Lecture: Effects of chronic hypoxia on the pulmonary circulation: role of HIF-1. J Appl Physiol (1985) 2012; 113:1343-52. [PMID: 22923506 DOI: 10.1152/japplphysiol.00843.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When exposed to chronic hypoxia (CH), the pulmonary circulation responds with enhanced contraction and vascular remodeling, resulting in elevated pulmonary arterial pressures. Our work has identified CH-induced alterations in the expression and activity of several ion channels and transporters in pulmonary vascular smooth muscle that contribute to the development of hypoxic pulmonary hypertension and uncovered a critical role for the transcription factor hypoxia-inducible factor-1 (HIF-1) in mediating these responses. Current work is focused on the regulation of HIF in the chronically hypoxic lung and evaluation of the potential for pharmacological inhibitors of HIF to prevent, reverse, or slow the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| |
Collapse
|