1
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Parikh RY, Kim HD. The effect of an intervening promoter nucleosome on gene expression. PLoS One 2013; 8:e63072. [PMID: 23700413 PMCID: PMC3659125 DOI: 10.1371/journal.pone.0063072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
Nucleosomes, which are the basic packaging units of chromatin, are stably positioned in promoters upstream of most stress-inducible genes. These promoter nucleosomes are generally thought to repress gene expression due to exclusion; they prevent transcription factors from accessing their target sites on the DNA. However, the role of promoter nucleosomes that do not directly occlude transcription factor binding sites is not obvious. Here, we varied the stability of a non-occluding nucleosome positioned between a transcription factor binding site and the TATA box region in an inducible yeast promoter and measured downstream gene expression level. We found that gene expression level depends on the occupancy of the non-occluding nucleosome in a non-monotonic manner. We postulated that a non-occluding nucleosome can serve both as a vehicle of and a barrier to chromatin remodeling activity and built a quantitative, nonequilibrium model to explain the observed nontrivial effect of the intervening nucleosome. Our work sheds light on the dual role of nucleosome as a repressor and an activator and expands the standard model of gene expression to include irreversible promoter chromatin transitions.
Collapse
Affiliation(s)
- Rasesh Y. Parikh
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Mao C, Brown CR, Griesenbeck J, Boeger H. Occlusion of regulatory sequences by promoter nucleosomes in vivo. PLoS One 2011; 6:e17521. [PMID: 21408617 PMCID: PMC3048331 DOI: 10.1371/journal.pone.0017521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/03/2011] [Indexed: 01/30/2023] Open
Abstract
Nucleosomes are believed to inhibit DNA binding by transcription factors. Theoretical attempts to understand the significance of nucleosomes in gene expression and regulation are based upon this assumption. However, nucleosomal inhibition of transcription factor binding to DNA is not complete. Rather, access to nucleosomal DNA depends on a number of factors, including the stereochemistry of transcription factor-DNA interaction, the in vivo kinetics of thermal fluctuations in nucleosome structure, and the intracellular concentration of the transcription factor. In vitro binding studies must therefore be complemented with in vivo measurements. The inducible PHO5 promoter of yeast has played a prominent role in this discussion. It bears two binding sites for the transcriptional activator Pho4, which at the repressed promoter are positioned within a nucleosome and in the linker region between two nucleosomes, respectively. Earlier studies suggested that the nucleosomal binding site is inaccessible to Pho4 binding in the absence of chromatin remodeling. However, this notion has been challenged by several recent reports. We therefore have reanalyzed transcription factor binding to the PHO5 promoter in vivo, using ‘chromatin endogenous cleavage’ (ChEC). Our results unambiguously demonstrate that nucleosomes effectively interfere with the binding of Pho4 and other critical transcription factors to regulatory sequences of the PHO5 promoter. Our data furthermore suggest that Pho4 recruits the TATA box binding protein to the PHO5 promoter.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher R. Brown
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joachim Griesenbeck
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Mao C, Brown CR, Falkovskaia E, Dong S, Hrabeta-Robinson E, Wenger L, Boeger H. Quantitative analysis of the transcription control mechanism. Mol Syst Biol 2010; 6:431. [PMID: 21081924 PMCID: PMC3010110 DOI: 10.1038/msb.2010.83] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/27/2010] [Indexed: 01/01/2023] Open
Abstract
Gene transcription requires a sequence of promoter state transitions, including chromatin remodeling, assembly of the transcription machinery, and clearance of the promoter by RNA polymerase. The rate-limiting steps in this sequence are regulated by transcriptional activators that bind at specific promoter elements. As the transition kinetics of individual promoters cannot be observed, the identity of the activator-controlled steps has remained a matter of speculation. In this study, we investigated promoter chromatin structure, and the intrinsic noise of expression over a wide range of expression values for the PHO5 gene of yeast. Interpretation of our results with regard to a stochastic model of promoter chromatin remodeling and gene expression suggests that the regulatory architecture of the gene expression process is measurably reflected in its intrinsic noise profile. Our chromatin structure and noise analyses indicate that the activator of PHO5 transcription stimulates the rates of promoter nucleosome disassembly, and assembly of the transcription machinery after nucleosome removal, but no other rates of the expression process.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher R Brown
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Elena Falkovskaia
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Shawfeng Dong
- Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Eva Hrabeta-Robinson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lauren Wenger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
6
|
Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol 2010; 30:4060-76. [PMID: 20566699 PMCID: PMC2916437 DOI: 10.1128/mcb.01399-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The yeast PHO5 promoter is a classical model for studying the role of chromatin in gene regulation. To enable biochemical dissection of the mechanism leading to PHO5 activation, we reconstituted the process in vitro. Positioned nucleosomes corresponding to the repressed PHO5 promoter state were assembled using a yeast extract-based in vitro system. Addition of the transactivator Pho4 yielded an extensive DNase I-hypersensitive site resembling induced PHO5 promoter chromatin. Importantly, this remodeling was energy dependent. In contrast, little or no chromatin remodeling was detected at the PHO8 or PHO84 promoter in this in vitro system. Only the PHO5 promoter harbors a high-affinity intranucleosomal Pho4 binding site (UASp) where Pho4 binding can compete with nucleosome formation, prompting us to test the importance of such competition for chromatin remodeling by analysis of UASp mutants in vivo. Indeed, the intranucleosomal location of the UASp element was critical, but not essential, for complete remodeling at the PHO5 promoter in vivo. Further, binding of just the Gal4 DNA binding domain to an intranucleosomal site could increase PHO5 promoter opening. These data establish an auxiliary role for DNA binding competition between Pho4 and histones in PHO5 promoter chromatin remodeling in vivo.
Collapse
Affiliation(s)
- Franziska Ertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - A. Barbara Dirac-Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Christina Bech Hertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Dorothea Blaschke
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
7
|
Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, Spagna D, Alvarez D, Kendall J, Krasnitz A, Stepansky A, Hicks J, Bryant GO, Ptashne M. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 2010; 141:407-18. [PMID: 20434983 PMCID: PMC3032599 DOI: 10.1016/j.cell.2010.03.048] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/23/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.
Collapse
Affiliation(s)
- Monique Floer
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Xin Wang
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Vidya Prabhu
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Georgina Berrozpe
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Santosh Narayan
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Dan Spagna
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - David Alvarez
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Jude Kendall
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Asya Stepansky
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - James Hicks
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Gene O. Bryant
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Mark Ptashne
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| |
Collapse
|
8
|
Vinayachandran V, Pusarla RH, Bhargava P. Multiple sequence-directed possibilities provide a pool of nucleosome position choices in different states of activity of a gene. Epigenetics Chromatin 2009; 2:4. [PMID: 19291282 PMCID: PMC2667510 DOI: 10.1186/1756-8935-2-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide mappings of nucleosome occupancy in different species have shown presence of well-positioned nucleosomes. While the DNA sequences may help decide their locations, the observed positions in vivo are end-results of chromatin remodeling, the state of gene activity and binding of the sequence-specific factors to the DNA, all of which influence nucleosome positions. Thus, the observed nucleosome locations in vivo do not reflect the true contribution of DNA sequence to the mapped position. Moreover, the naturally occurring nucleosome-positioning sequences are known to guide multiple translational positionings. RESULTS We show that yeast SNR6, a gene transcribed by RNA polymerase III, constitutes nucleosome-positioning sequence. In the absence of a chromatin remodeler or any factor binding, the gene sequence confers a unique rotational phase to nucleosomes in the gene region, and directs assembly of several translationally positioned nucleosomes on approximately 1.2 kb DNA from the gene locus, including the short approximately 250 bp gene region. Mapping of all these gene sequence-directed nucleosome positions revealed that the array of nucleosomes in the gene upstream region occupy the same positions as those observed in vivo but the nucleosomes on the gene region can be arranged in three distinct registers. Two of these arrangements differ from each other in the position of only one nucleosome, and match with the nucleosome positions on the gene in repressed and active states in vivo, where the gene-specific factor is known to occupy the gene in both the states. The two positions are interchanged by an ATP-dependent chromatin remodeler in vivo. The third register represents the positions which block the access of the factor to the gene promoter elements. CONCLUSION On a gene locus, multiple nucleosome positions are directed by a gene sequence to provide a pool of possibilities, out of which the preferred ones are selected by the chromatin remodeler and transcription factor of the gene under different states of activity of the gene.
Collapse
Affiliation(s)
- Vinesh Vinayachandran
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Hyderabad-500007, India.
| | | | | |
Collapse
|
9
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
10
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
11
|
Wongwisansri S, Laybourn PJ. Disruption of histone deacetylase gene RPD3 accelerates PHO5 activation kinetics through inappropriate Pho84p recycling. EUKARYOTIC CELL 2005; 4:1387-95. [PMID: 16087743 PMCID: PMC1214523 DOI: 10.1128/ec.4.8.1387-1395.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histone deacetylase Rpd3p functions as a transcriptional repressor of a diverse set of genes, including PHO5. Here we describe a novel role for RPD3 in the regulation of phosphate transporter Pho84p retention in the cytoplasmic membrane. We show that under repressing conditions (with P(i)), PHO5 expression is increased in a pho4Delta rpd3Delta strain, demonstrating PHO regulatory pathway independence. However, the effect of RPD3 disruption on PHO5 activation kinetics is dependent on the PHO regulatory pathway. Upon switching to activating conditions (without P(i)), PHO5 transcripts accumulated more rapidly in rpd3Delta cells. This more rapid response correlates with a defect in phosphate uptake due to premature recycling of Pho84p, the high-affinity H+/PO4(3-) symporter. Thus, RPD3 also participates in PHO5 regulation through a previously unidentified effect on maintenance of high-affinity phosphate uptake during phosphate starvation. We propose that Rpd3p has a negative role in the regulation of Pho84p endocytosis.
Collapse
Affiliation(s)
- Sriwan Wongwisansri
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | |
Collapse
|
12
|
Abstract
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.
Collapse
Affiliation(s)
- Ji-Ping Z Wang
- Department of Statistics, 2006 Sheridan Road, Evanston, IL 60208, USA.
| | | |
Collapse
|
13
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Robinson KM, Schultz MC. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system. Biochemistry 2005; 44:4551-61. [PMID: 15766286 DOI: 10.1021/bi047523u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Major insights into the regulation of chromatin organization have stemmed from biochemical studies using Gal4-VP16, a chimeric transcriptional activator in which the DNA binding domain of Gal4p is fused to the activation domain of viral protein VP16. Unexpectedly, given previous intensive efforts to understand how Gal4-VP16 functions in the context of chromatin, we have uncovered a new mode of chromatin reorganization that is dependent on Gal4-VP16. This reorganization is performed by an activity in a crude DEAE (CD) fraction from budding yeast which also supports ATP-dependent assembly of physiologically spaced nucleosome arrays. Biochemical analysis reveals that the activity tightly associates with chromatin and reorganizes nucleosome arrays by a mechanism which is insensitive to ATP depletion after nucleosome assembly. It generates a chromatin organization in which a nucleosome is stably positioned immediately adjacent to Gal4p binding sites in the template DNA. Individual deletion of genes previously implicated in chromatin assembly and remodeling, namely, the histone chaperones NAP1, ASF1, and CAC1 and the SNF2-like DEAD/H ATPases SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20, does not significantly perturb reorganization. Therefore, Gal4-VP16-directed chromatin reorganization in yeast can occur by an ATP-independent mechanism that does not require SAGA, SWI/SNF, Isw1, or Isw2 chromatin remodeling complexes.
Collapse
Affiliation(s)
- Karen M Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
15
|
Dhasarathy A, Kladde MP. Promoter occupancy is a major determinant of chromatin remodeling enzyme requirements. Mol Cell Biol 2005; 25:2698-707. [PMID: 15767675 PMCID: PMC1061642 DOI: 10.1128/mcb.25.7.2698-2707.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin creates transcriptional barriers that are overcome by coactivator activities such as histone acetylation by Gcn5 and ATP-dependent chromatin remodeling by SWI/SNF. Factors defining the differential coactivator requirements in the transactivation of various promoters remain elusive. Induction of the Saccharomyces cerevisiae PHO5 promoter does not require Gcn5 or SWI/SNF under fully inducing conditions of no phosphate. We show that PHO5 activation is highly dependent on both coactivators at intermediate phosphate concentrations, conditions that reduce the nuclear concentration of the Pho4 transactivator and severely diminish its association with PHO5 in the absence of Gcn5 or SWI/SNF. Conversely, physiological increases in Pho4 nuclear concentration and binding at PHO5 suppress the need for both Gcn5 and SWI/SNF, suggesting that coactivator redundancy is established at high Pho4 binding site occupancy. Consistent with this, we demonstrate, using chromatin immunoprecipitation, that Gcn5 and SWI/SNF are directly recruited to PHO5 and other strongly transcribed promoters, including GAL1-10, RPL19B, RPS22B, PYK1, and EFT2, which do not require either coactivator for expression. These results show that activator concentration and binding site occupancy play crucial roles in defining the extent to which transcription requires individual chromatin remodeling enzymes. In addition, Gcn5 and SWI/SNF associate with many more genomic targets than previously appreciated.
Collapse
Affiliation(s)
- Archana Dhasarathy
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
16
|
Adkins MW, Howar SR, Tyler JK. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 2004; 14:657-66. [PMID: 15175160 DOI: 10.1016/j.molcel.2004.05.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Nucleosome loss from a promoter region has recently been described as a potential mechanism for transcriptional regulation. We investigated whether H3/H4 histone chaperones mediate the loss of nucleosomes from the promoter of the yeast PHO5 gene during transcriptional activation. We found that antisilencing function 1 (Asf1p) mediates nucleosome disassembly from the PHO5 promoter in vivo. We show that nucleosome disassembly also occurs at a second promoter, that of the PHO8 gene, during activation, and we demonstrate that this is also mediated by Asf1p. Furthermore, we show that nucleosome disassembly is essential for PHO5 and PHO8 activation. Contrary to the current dogma, we demonstrate that nucleosome disassembly is not required to enable binding of the Pho4p activator to its PHO5 UASp2 site in vivo. Finally, we show that nucleosomes are reassembled over the PHO5 promoter during repression. As such, nucleosome disassembly and reassembly are important mechanisms for transcriptional activation and repression, respectively.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, B121, School of Medicine, University of Colorado, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
17
|
Korber P, Hörz W. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J Biol Chem 2004; 279:35113-20. [PMID: 15192097 DOI: 10.1074/jbc.m405446200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An extensive set of analyses of the yeast PHO5 gene, mostly performed in vivo, has made this gene a model for the role of chromatin structure in gene regulation. In the repressed state, the PHO5 promoter shows a characteristic chromatin organization with four positioned nucleosomes and a short hypersensitive site. So far the basis for this nucleosome positioning has remained unresolved. We have therefore decided to complement the in vivo studies by an in vitro approach. As a first step, we have asked whether the characteristic PHO5 promoter chromatin structure depends on the cellular context including replication or higher order nuclear chromatin organization or whether it can be reconstituted in vitro in a cell-free system. To this end we have established an in vitro chromatin assembly system based on yeast extracts. It is capable of generating extensive regular nucleosomal arrays with physiological spacing. Assembly requires supplementation with exogenous histones and is dependent on energy leading to chromatin with dynamic properties due to ATP-dependent activities of the extract. Using the PHO5 promoter sequence as template in this replication independent system, we obtain a nucleosomal pattern over the PHO5 promoter region that is very similar to the in vivo pattern of the repressed state. This shows that the chromatin structure at the PHO5 promoter represents a self-organizing system in cell-free yeast extracts and provides a promising substrate for in vitro studies with a direct in vivo correlate.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | |
Collapse
|
18
|
Nourani A, Utley RT, Allard S, Côté J. Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. EMBO J 2004; 23:2597-607. [PMID: 15175650 PMCID: PMC449761 DOI: 10.1038/sj.emboj.7600230] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 04/15/2004] [Indexed: 01/08/2023] Open
Abstract
The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.
Collapse
Affiliation(s)
- Amine Nourani
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Rhea T Utley
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Stéphane Allard
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada. Tel: +1 418 525 4444; ext. 15545; Fax: +1 418 691 5439; E-mail:
| |
Collapse
|
19
|
Griesenbeck J, Boeger H, Strattan JS, Kornberg RD. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol Cell Biol 2004; 23:9275-82. [PMID: 14645537 PMCID: PMC309680 DOI: 10.1128/mcb.23.24.9275-9282.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-copy gene and promoter regions have been excised from yeast chromosomes and have been purified as chromatin by conventional and affinity methods. Promoter regions isolated in transcriptionally repressed and activated states maintain their characteristic chromatin structures. Gel filtration analysis establishes the uniformity of the transcriptionally activated state. Activator proteins interact in the manner anticipated from previous studies in vivo. This work opens the way to the direct study of specific gene regions of eukaryotic chromosomes in diverse functional and structural states.
Collapse
Affiliation(s)
- Joachim Griesenbeck
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
20
|
McBryant SJ, Park YJ, Abernathy SM, Laybourn PJ, Nyborg JK, Luger K. Preferential binding of the histone (H3-H4)2 tetramer by NAP1 is mediated by the amino-terminal histone tails. J Biol Chem 2003; 278:44574-83. [PMID: 12928440 DOI: 10.1074/jbc.m305636200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast nucleosome assembly protein 1 (yNAP1) participates in many diverse activities, such as the assembly of newly synthesized DNA into chromatin and the rearrangement of nucleosomes during transcriptional activation. yNAP1 does not require ATP hydrolysis to perform these functions and is a valuable tool for in vitro chromatin assembly. Using recombinant histone complexes, we show that yNAP1 has a preference for binding the (H3-H4)2 tetramer over the (H2A-H2B) dimer. We find that the loss of the histone tails abrogates this preference for H3 and H4, and we demonstrate a direct interaction between yNAP1 and the amino-terminal tails of H3 and H4. yNAP1 binds to one histone fold domain, thus specifying the stoichiometry of the complexes formed with the histone dimer and tetramer. Finally, we provide evidence that the acidic carboxyl-terminal region of yNAP1, although dispensable for nucleosome assembly in vitro, contributes to binding via structure-independent electrostatic interactions. Our results are consistent with recent mechanistic investigations of NAP1 and expand our understanding of the histone chaperone family of assembly factors.
Collapse
Affiliation(s)
- Steven J McBryant
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Covalent modifications of the histone proteins have well-known roles in gene expression. Experiments reported during the past year have extended this paradigm to include roles for histone acetylation and phosphorylation in DNA double-strand break repair. In addition, new results now provide a definitive example of an acetylation histone code, whereas others reveal the workings of a charge patch mechanism. Finally, exciting research has identified new modifications, complex modification cascades, and functional links to DNA methylation and RNA interference pathways.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Microbiology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- Sriwan Wongwisansri
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|