1
|
Sangsuwan W, Taweesablamlert A, Boonkerd A, Isarangkool Na Ayutthaya C, Yoo S, Javid B, Faikhruea K, Vilaivan T, Aonbangkhen C, Chuawong P. A quest for novel antimicrobial targets: Inhibition of Asp-tRNA Asn/Glu-tRNA Gln amidotransferase (GatCAB) by synthetic analogs of aminoacyl-adenosine in vitro and live bacteria. Bioorg Chem 2024; 150:107530. [PMID: 38852310 DOI: 10.1016/j.bioorg.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.
Collapse
Affiliation(s)
- Withsakorn Sangsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Anon Boonkerd
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Chawarat Isarangkool Na Ayutthaya
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Sion Yoo
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
3
|
Abstract
Diverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3rd anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code. The model describes evolution of 6-, 4-, 3-, 2- and 1-codon sectors. Innovation in column 3 of the code is explained. Wobbling and code degeneracy are explained. Separate distribution of serine sectors between columns 2 and 4 of the code is described. We conclude that very little chaos contributed to evolution of the genetic code and that the pattern of evolution of aaRS enzymes describes a history of the evolution of the code. A model is proposed to describe the biological selection for the earliest evolution of the code and for protocell evolution.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biology, University of New England, Biddeford, ME, USA
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, USA
| |
Collapse
|
4
|
Chuawong P, Likittrakulwong W, Suebka S, Wiriyatanakorn N, Saparpakorn P, Taweesablamlert A, Sudprasert W, Hendrickson T, Svasti J. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity. Proteins 2020; 88:1133-1142. [PMID: 32067260 DOI: 10.1002/prot.25881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 11/10/2022]
Abstract
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.
Collapse
Affiliation(s)
- Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wirot Likittrakulwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathum Thani, Thailand
| | | | | | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwisa Sudprasert
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
5
|
The evolution of aminoacyl-tRNA synthetases: From dawn to LUCA. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:11-37. [DOI: 10.1016/bs.enz.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Songsiriritthigul C, Suebka S, Chen CJ, Fuengfuloy P, Chuawong P. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2017; 73:62-69. [PMID: 28177315 PMCID: PMC5297925 DOI: 10.1107/s2053230x16020586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
The N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) plays a crucial role in the recognition of both tRNAAsp and tRNAAsn. Here, the first X-ray crystal structure of the N-terminal domain of this enzyme (ND-AspRS1-104) from the human-pathogenic bacterium Helicobacter pylori is reported at 2.0 Å resolution. The apo form of H. pylori ND-AspRS1-104 shares high structural similarity with the N-terminal anticodon-binding domains of the discriminating aspartyl-tRNA synthetase (D-AspRS) from Escherichia coli and ND-AspRS from Pseudomonas aeruginosa, allowing recognition elements to be proposed for tRNAAsp and tRNAAsn. It is proposed that a long loop (Arg77-Lys90) in this H. pylori domain influences its relaxed tRNA specificity, such that it is classified as nondiscriminating. A structural comparison between D-AspRS from E. coli and ND-AspRS from P. aeruginosa suggests that turns E and F (78GAGL81 and 83NPKL86) in H. pylori ND-AspRS play a crucial role in anticodon recognition. Accordingly, the conserved Pro84 in turn F facilitates the recognition of the anticodons of tRNAAsp (34GUC36) and tRNAAsn (34GUU36). The absence of the amide H atom allows both C and U bases to be accommodated in the tRNA-recognition site.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon/chemistry
- Anticodon/metabolism
- Apoproteins/chemistry
- Apoproteins/genetics
- Apoproteins/metabolism
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression
- Helicobacter pylori/chemistry
- Helicobacter pylori/enzymology
- Models, Molecular
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pseudomonas aeruginosa/enzymology
- Pseudomonas aeruginosa/genetics
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pitchayada Fuengfuloy
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
8
|
Saad NY, Stamatopoulou V, Brayé M, Drainas D, Stathopoulos C, Becker HD. Two-codon T-box riboswitch binding two tRNAs. Proc Natl Acad Sci U S A 2013; 110:12756-61. [PMID: 23858450 PMCID: PMC3732954 DOI: 10.1073/pnas.1304307110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Asparagine/biosynthesis
- Asparagine/genetics
- Clostridium acetobutylicum/chemistry
- Clostridium acetobutylicum/genetics
- Clostridium acetobutylicum/metabolism
- Glutamic Acid/biosynthesis
- Glutamic Acid/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Riboswitch/physiology
Collapse
Affiliation(s)
- Nizar Y. Saad
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | | | - Mélanie Brayé
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
9
|
Fuengfuloy P, Chuawong P, Suebka S, Wattana-amorn P, Williams C, Crump MP, Songsiriritthigul C. Overproduction of the N-terminal anticodon-binding domain of the non-discriminating aspartyl-tRNA synthetase from Helicobacter pylori for crystallization and NMR measurements. Protein Expr Purif 2013; 89:25-32. [DOI: 10.1016/j.pep.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
10
|
Szenes A, Pál G. Mapping hidden potential identity elements by computing the average discriminating power of individual tRNA positions. DNA Res 2012; 19:245-58. [PMID: 22378766 PMCID: PMC3372374 DOI: 10.1093/dnares/dss008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements.
Collapse
Affiliation(s)
- Aron Szenes
- Department of Biochemistry, Eötvös University, Budapest, Hungary
| | | |
Collapse
|
11
|
Fournier GP, Neumann JE, Gogarten JP. Inferring the ancient history of the translation machinery and genetic code via recapitulation of ribosomal subunit assembly orders. PLoS One 2010; 5:e9437. [PMID: 20208990 PMCID: PMC2830423 DOI: 10.1371/journal.pone.0009437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/23/2009] [Indexed: 11/29/2022] Open
Abstract
Universally conserved positions in ribosomal proteins have significant biases in amino acid usage, likely indicating the expansion of the genetic code at the time leading up to the most recent common ancestor(s) (MRCA). Here, we apply this principle to the evolutionary history of the ribosome before the MRCA. It has been proposed that the experimentally determined order of assembly for ribosomal subunits recapitulates their evolutionary chronology. Given this model, we produce a probabilistic evolutionary ordering of the universally conserved small subunit (SSU) and large subunit (LSU) ribosomal proteins. Optimizing the relative ordering of SSU and LSU evolutionary chronologies with respect to minimizing differences in amino acid usage bias, we find strong compositional evidence for a more ancient origin for early LSU proteins. Furthermore, we find that this ordering produces several trends in specific amino acid usages compatible with models of genetic code evolution.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America.
| | | | | |
Collapse
|
12
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
13
|
Gomes AC, Miranda I, Silva RM, Moura GR, Thomas B, Akoulitchev A, Santos MAS. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol 2008; 8:R206. [PMID: 17916231 PMCID: PMC2246281 DOI: 10.1186/gb-2007-8-10-r206] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/31/2007] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. RESULTS Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the global impact of genetic code alterations on the proteome. We show that C. albicans decodes CUG codons ambiguously and tolerates partial reversion of their identity from serine back to leucine on a genome-wide scale. CONCLUSION Such codon ambiguity expands the proteome of this human pathogen exponentially and is used to generate important phenotypic diversity. This study highlights novel features of C. albicans biology and unanticipated roles for codon ambiguity in the evolution of the genetic code.
Collapse
Affiliation(s)
- Ana C Gomes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sheppard K, Sherrer RL, Söll D. Methanothermobacter thermautotrophicus tRNA Gln confines the amidotransferase GatCAB to asparaginyl-tRNA Asn formation. J Mol Biol 2008; 377:845-53. [PMID: 18291416 DOI: 10.1016/j.jmb.2008.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Many prokaryotes form the amide aminoacyl-tRNAs glutaminyl-tRNA and asparaginyl-tRNA by tRNA-dependent amidation of the mischarged tRNA species, glutamyl-tRNA(Gln) or aspartyl-tRNA(Asn). Archaea employ two such amidotransferases, GatCAB and GatDE, while bacteria possess only one, GatCAB. The Methanothermobacter thermautotrophicus GatDE is slightly more efficient using Asn as an amide donor than Gln (k(cat)/K(M) of 5.4 s(-1)/mM and 1.2 s(-1)/mM, respectively). Unlike the bacterial GatCAB enzymes studied to date, the M. thermautotrophicus GatCAB uses Asn almost as well as Gln as an amide donor (k(cat)/K(M) of 5.7 s(-1)/mM and 16.7 s(-1)/mM, respectively). In contrast to the initial characterization of the M. thermautotrophicus GatCAB as being able to form Asn-tRNA(Asn) and Gln-tRNA(Gln), our data demonstrate that while the enzyme is able to transamidate Asp-tRNA(Asn) (k(cat)/K(M) of 125 s(-1)/mM) it is unable to transamidate M. thermautotrophicus Glu-tRNA(Gln). However, M. thermautotrophicus GatCAB is capable of transamidating Glu-tRNA(Gln) from H. pylori or B. subtilis, and M. thermautotrophicus Glu-tRNA(Asn). Thus, M. thermautotrophicus encodes two amidotransferases, each with its own activity, GatDE for Gln-tRNA and GatCAB for Asn-tRNA synthesis.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
15
|
Sheppard K, Söll D. On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol 2008; 377:831-44. [PMID: 18279892 DOI: 10.1016/j.jmb.2008.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022]
Abstract
Glutaminyl-tRNA synthetase and asparaginyl-tRNA synthetase evolved from glutamyl-tRNA synthetase and aspartyl-tRNA synthetase, respectively, after the split in the last universal communal ancestor (LUCA). Glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) were likely formed in LUCA by amidation of the mischarged species, glutamyl-tRNA(Gln) and aspartyl-tRNA(Asn), by tRNA-dependent amidotransferases, as is still the case in most bacteria and all known archaea. The amidotransferase GatCAB is found in both domains of life, while the heterodimeric amidotransferase GatDE is found only in Archaea. The GatB and GatE subunits belong to a unique protein family that includes Pet112 that is encoded in the nuclear genomes of numerous eukaryotes. GatE was thought to have evolved from GatB after the emergence of the modern lines of decent. Our phylogenetic analysis though places the split between GatE and GatB, prior to the phylogenetic divide between Bacteria and Archaea, and Pet112 to be of mitochondrial origin. In addition, GatD appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, while GatDE is an archaeal signature protein, it likely was present in LUCA together with GatCAB. Archaea retained both amidotransferases, while Bacteria emerged with only GatCAB. The presence of GatDE has favored a unique archaeal tRNA(Gln) that may be preventing the acquisition of glutaminyl-tRNA synthetase in Archaea. Archaeal GatCAB, on the other hand, has not favored a distinct tRNA(Asn), suggesting that tRNA(Asn) recognition is not a major barrier to the retention of asparaginyl-tRNA synthetase in many Archaea.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
16
|
Fournier GP, Gogarten JP. Signature of a primitive genetic code in ancient protein lineages. J Mol Evol 2007; 65:425-36. [PMID: 17922074 DOI: 10.1007/s00239-007-9024-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/21/2007] [Accepted: 07/05/2007] [Indexed: 10/22/2022]
Abstract
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
17
|
Namgoong S, Sheppard K, Sherrer RL, Söll D. Co-evolution of the archaeal tRNA-dependent amidotransferase GatCAB with tRNA(Asn). FEBS Lett 2007; 581:309-14. [PMID: 17214986 PMCID: PMC1808439 DOI: 10.1016/j.febslet.2006.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 12/01/2022]
Abstract
The important identity elements in tRNA(Gln) and tRNA(Asn) for bacterial GatCAB and in tRNA(Gln) for archaeal GatDE are the D-loop and the first base pair of the acceptor stem. Here we show that Methanothermobacter thermautotrophicus GatCAB, the archaeal enzyme, is different as it discriminates Asp-tRNA(Asp) and Asp-tRNA(Asn) by use of U49, the D-loop and to a lesser extent the variable loop. Since archaea possess the tRNA(Gln)-specific amidotransferase GatDE, the archaeal GatCAB enzyme evolved to recognize different elements in tRNA(Asn) than those recognized by GatDE or by the bacterial GatCAB enzyme in their tRNA substrates.
Collapse
Affiliation(s)
- Suk Namgoong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 8114, USA
| | | | | | | |
Collapse
|
18
|
Chuawong P, Hendrickson TL. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 2006; 45:8079-87. [PMID: 16800632 PMCID: PMC2654173 DOI: 10.1021/bi060189c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.
Collapse
|
19
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are responsible for selecting specific amino acids for protein synthesis, and this essential role in translation has garnered them much attention as targets for novel antimicrobials. Understanding how the aaRSs evolved efficient substrate selection offers a potential route to develop useful inhibitors of microbial protein synthesis. Here, we discuss discrimination of small molecules by aaRSs, and how the evolutionary divergence of these mechanisms offers a means to target inhibitors against these essential microbial enzymes.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 2006; 188:269-74. [PMID: 16352843 PMCID: PMC1317590 DOI: 10.1128/jb.188.1.269-274.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.
Collapse
Affiliation(s)
- Dominic Bernard
- Centre de Recherche en Infectiologie, CHU Laval, 2705 Boulevard Laurier, RC-709, Sainte-Foy, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
21
|
Golyshina OV, Golyshin PN, Timmis KN, Ferrer M. The 'pH optimum anomaly' of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 2006; 8:416-25. [PMID: 16478448 DOI: 10.1111/j.1462-2920.2005.00907.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of microorganisms, the so-called acidophiles, inhabit acidic environments and grow optimally at pH values between 0 and 3. The intracellular pH of these organisms is, however, close to neutrality or slightly acidic. It is to be expected that enzymatic activities dedicated to extracellular functions would be adapted to the prevailing low pH of the environment (0-3), whereas intracellular enzymes would be optimally active at the near-neutral pH of the cytoplasm (4.6-7.0). The genes of several intracellular or cell-bound enzymes, a carboxylesterase and three alpha-glucosidases, from Ferroplasma acidiphilum, a cell wall-lacking acidophilic archaeon with a growth optimum at pH 1.7, were cloned and expressed in Escherichia coli, and their products purified and characterized. The Ferroplasmaalpha-glucosidases exhibited no sequence similarity to known glycosyl hydrolases. All enzymes functioned and were stable in vitro in the pH range 1.7-4.0, and had pH optima much lower than the mean intracellular pH of 5.6. This 'pH optimum anomaly' suggests the existence of yet-undetected cellular compartmentalization providing cytoplasmic pH patchiness and low pH environments for the enzymes we have analysed.
Collapse
Affiliation(s)
- Olga V Golyshina
- Division of Microbiology, GBF--German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | |
Collapse
|
22
|
Karmakar S, Ukil A, Mukherjee S, Das PK. Regulation of guanylyl cyclase by intracellular Ca2+ in relation to the infectivity of the protozoan parasite, Leishmania donovani. Int J Biochem Cell Biol 2006; 38:1277-89. [PMID: 16507348 DOI: 10.1016/j.biocel.2006.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/22/2022]
Abstract
A neuronal type Ca2+ stimulated nitric oxide synthase was earlier reported by us to be present in the protozoan parasite Leishmania donovani. As part of nitric oxide-cyclic GMP transduction signaling operative in higher eukaryotes and involved in the long-term potentiation, a soluble guanylyl cyclase has also been detected in this lower eukaryote. However, detailed biochemical characterization revealed the enzyme to be Ca2+ modulated and unstimulated by nitric oxide donors as opposed to higher eukaryotes. The possible role of intracellular Ca2+ level in the regulation of guanylyl cyclase activity as well as L. donovani infectivity was explored by measuring the intracellular survival of the parasites in mammalian macrophages after treatments, which decrease or elevate the intracellular Ca2+. Parasites loaded with intracellular Ca2+ chelators displayed significantly decreased infectivity and cyclic GMP level. In contrast, pretreatment with Ca2+ ionophores, which elevated Ca2+ levels in L. donovani, significantly enhanced the cyclic GMP level as well as the infectivity of the parasites. Moreover, treatment with selective inhibitors of soluble guanylyl cyclase also reduced infectivity, even in cases of calcium ionophore-treated parasites. The gene encoding the soluble guanylyl cyclase was cloned, sequenced and over expressed in bacterial system. The recombinant protein showed enzyme characteristics similar to that obtained in L. donovani promastigote cytosol. Together these results suggest a possible link between guanylyl cyclase, intracellular Ca2+ content and parasite infectivity.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Molecular Cell Biology Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
23
|
Feng L, Yuan J, Toogood H, Tumbula-Hansen D, Söll D. Aspartyl-tRNA Synthetase Requires a Conserved Proline in the Anticodon-binding Loop for tRNAAsn Recognition in Vivo. J Biol Chem 2005; 280:20638-41. [PMID: 15781458 DOI: 10.1074/jbc.m500874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most prokaryotes require Asp-tRNA(Asn) for the synthesis of Asn-tRNA(Asn). This misacylated tRNA species is synthesized by a non-discriminating aspartyl-tRNA synthetase (AspRS) that acylates both tRNA(Asp) and tRNA(Asn) with aspartate. In contrast, a discriminating AspRS forms only Asp-tRNA(Asp). Here we show that a conserved proline (position 77) in the L1 loop of the non-discriminating Deinococcus radiodurans AspRS2 is required for tRNA(Asn) recognition in vivo. Escherichia coli trpA34 was transformed with DNA from a library of D. radiodurans aspS2 genes with a randomized codon 77 and then subjected to in vivo selection for Asp-tRNA(Asn) formation by growth in minimal medium. Only proline codons were found at position 77 in the aspS2 genes isolated from 21 of the resulting viable colonies. However, when the aspS temperature-sensitive E. coli strain CS89 was transformed with the same DNA library and then screened for Asp-tRNA(Asp) formation in vivo by growth at the non-permissive temperature, codons for seven other amino acids besides proline were identified at position 77 in the isolates examined. Thus, replacement of proline 77 by cysteine, isoleucine, leucine, lysine, phenylalanine, serine, or valine resulted in mutant D. radiodurans AspRS2 enzymes still capable of forming Asp-tRNA(Asp) but unable to recognize tRNA(Asn). This strongly suggests that proline 77 is responsible for the non-discriminatory tRNA recognition properties of this enzyme.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
24
|
Rinehart J, Horn EK, Wei D, Soll D, Schneider A. Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei. J Biol Chem 2004; 279:1161-6. [PMID: 14563839 DOI: 10.1074/jbc.m310100200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl-tRNA synthetase is thought to be absent from organelles. Instead, Gln-tRNA is formed via the transamidation pathway, the other route to this essential compound in protein biosynthesis. However, it was previously shown that glutaminyl-tRNA synthetase activity is present in Leishmania mitochondria. This work identifies genes encoding glutaminyl- and glutamyl-tRNA synthetase in the closely related organism Trypanosoma brucei. Down-regulation of their respective gene products by RNA interference showed that (i) they are essential for the growth of insect stage T. brucei and (ii) they are responsible for essentially all of the glutaminyl- and glutamyl-tRNA synthetase activity detected in both the cytosol and the mitochondria. In vitro aminoacylation experiments with the recombinant T. brucei enzymes and total tRNA confirmed the identity of the two aminoacyl-tRNA synthetases. Interestingly, T. brucei uses the same eukaryotic-type glutaminyl-tRNA synthetase to form mitochondrial and cytosolic Gln-tRNA. The formation of Glu-tRNA in mitochondria and the cytoplasm is catalyzed by a single eukaryotic-type discriminating glutamyl-tRNA synthetase. T. brucei, similar to Leishmania, imports all of its mitochondrial tRNAs from the cytosol. The use of these two eukaryotic-type enzymes in mitochondria may therefore reflect an adaptation to the situation in which the cytosol and mitochondria use the same set of tRNAs.
Collapse
Affiliation(s)
- Jesse Rinehart
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
25
|
Brevet A, Chen J, Commans S, Lazennec C, Blanquet S, Plateau P. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation. J Biol Chem 2003; 278:30927-35. [PMID: 12766171 DOI: 10.1074/jbc.m302618200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases.
Collapse
Affiliation(s)
- Annie Brevet
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Min B, Kitabatake M, Polycarpo C, Pelaschier J, Raczniak G, Ruan B, Kobayashi H, Namgoong S, Söll D. Protein synthesis in Escherichia coli with mischarged tRNA. J Bacteriol 2003; 185:3524-6. [PMID: 12775689 PMCID: PMC156233 DOI: 10.1128/jb.185.12.3524-3526.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two types of aspartyl-tRNA synthetase exist: the discriminating enzyme (D-AspRS) forms only Asp-tRNA(Asp), while the nondiscriminating one (ND-AspRS) also synthesizes Asp-tRNA(Asn), a required intermediate in protein synthesis in many organisms (but not in Escherichia coli). On the basis of the E. coli trpA34 missense mutant transformed with heterologous ND-aspS genes, we developed a system with which to measure the in vivo formation of Asp-tRNA(Asn) and its acceptance by elongation factor EF-Tu. While large amounts of Asp-tRNA(Asn) are detrimental to E. coli, smaller amounts support protein synthesis and allow the formation of up to 38% of the wild-type level of missense-suppressed tryptophan synthetase.
Collapse
Affiliation(s)
- Bokkee Min
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Feng L, Tumbula-Hansen D, Toogood H, Soll D. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Proc Natl Acad Sci U S A 2003; 100:5676-81. [PMID: 12730374 PMCID: PMC156260 DOI: 10.1073/pnas.0631525100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aspartyl-tRNA synthetase (AspRS) occurs in two types: the discriminating enzyme (D-AspRS) forms only Asp-tRNA(Asp), whereas the nondiscriminating enzyme (ND-AspRS) also synthesizes Asp-tRNA(Asn), which is a required intermediate for protein synthesis in many organisms. We attempted to expand the tRNA recognition of the discriminating Thermococcus kodakaraensis AspRS to that of a ND-AspRS by in vitro mutagenesis. An alignment of 26 archaeal AspRS proteins revealed two positions (26 and 85 in the T. kodakaraensis sequence) whose amino acid identity changes according to the enzymes' tRNA specificity. In their anticodon-binding domain, D-AspRS proteins contain W26 (or Q26) and K85, compared with H26 and P85 in the ND-AspRSs. T. kodakaraensis AspRS gained the ability to form Asp-tRNA(Asn) in vitro when the W26H or K85P changes were introduced independently or in combination. In the aminoacylation of tRNA(Asn) or tRNA(Asp) transcripts, the mutant enzymes displayed at least a 100- to 500-fold change in tRNA specificity, as judged by the ratio of the k(cat)K(m) values of Asp-tRNA(Asp) vs. Asp-tRNA(Asn) formation. That T. kodakaraensis mutant AspRSs mischarge tRNA(Asn) was also manifested in the higher level (1.7%) of aspartylation of unfractionated Pyrococcus tRNA compared with that achieved by the wild-type enzyme (0.9%). Northern blot analysis of the Asp-tRNA separated by acidurea gel electrophoresis confirmed the in vitro synthesis of Asp-tRNA(Asn). A structure-based model points to a direct interaction of K85 in T. kodakaraensis AspRS with the anticodon nucleotide C36 of tRNA(Asp). Thus, a switch between D-AspRS and ND-AspRS enzymes could have evolved with only limited amino acid changes.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
29
|
Charron C, Roy H, Blaise M, Giegé R, Kern D. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain. EMBO J 2003; 22:1632-43. [PMID: 12660169 PMCID: PMC152893 DOI: 10.1093/emboj/cdg148] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most organisms, tRNA aminoacylation is ensured by 20 aminoacyl-tRNA synthetases (aaRSs). In eubacteria, however, synthetases can be duplicated as in Thermus thermophilus, which contains two distinct AspRSs. While AspRS-1 is specific, AspRS-2 is non-discriminating and aspartylates tRNA(Asp) and tRNA(Asn). The structure at 2.3 A resolution of AspRS-2, the first of a non-discriminating synthetase, was solved. It differs from that of AspRS-1 but has resemblance to that of discriminating and archaeal AspRS from Pyrococcus kodakaraensis. The protein presents non-conventional features in its OB-fold anticodon-binding domain, namely the absence of a helix inserted between two beta-strands of this fold and a peculiar L1 loop differing from the large loops known to interact with tRNA(Asp) identity determinant C36 in conventional AspRSs. In AspRS-2, this loop is small and structurally homologous to that in AsnRSs, including conservation of a proline. In discriminating Pyrococcus AspRS, the L1 loop, although small, lacks this proline and is not superimposable with that of AspRS-2 or AsnRS. Its particular status is demonstrated by a loop-exchange experiment that renders the Pyrococcus AspRS non-discriminating.
Collapse
Affiliation(s)
- Christophe Charron
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|