1
|
Li W, Li K, He X, Jiang Y, Lan R, Hong Q, Liu Y, Chu M. ALAS1 associated with goat kidding number trait was regulated by the transcription factor ASCL2 to affect granulosa cell proliferation. Anim Genet 2023; 54:189-198. [PMID: 36632647 DOI: 10.1111/age.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kunyu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Kent TC, Thompson KSJ, Naylor LH. Development of a Generic Dual-Reporter Gene Assay for Screening G-Protein-Coupled Receptors. ACTA ACUST UNITED AC 2016; 10:437-46. [PMID: 16093553 DOI: 10.1177/1087057105275033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple assay formats have been developed for the pharmacological characterization of G-protein-coupled receptors (GPCRs) and for screening orphan receptors. However, the increased pace of target identification and the rapid expansion of compound libraries present the need to develop novel assay formats capable of screeningmultipleGPCRs simultaneously. To address this need, the authors have developed a generic dual-reporter gene assay that can detect ligand activity at 2 GPCRs within the same assay. Two stableHEK293 cell lineswere generated expressing either a firefly ( Photinus) luciferase gene under the control ofmultiple cAMP-response elements (CREs) or a Renillaluciferase gene under the control ofmultiple 12-Otetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs). Coseeded reporter cells were used to assess ligandbinding activity at bothGβ s-and Gβ q-coupled receptors. By selectively coexpressing receptors with a chimeric G-protein, agonist activitywas assessed atGβ i/o-coupled receptors in combinationwith eitherGβ s-or Gβ q-coupled receptors. The dual-reporter gene assaywas shown to be capable of simultaneously performing duplexed screens for a variety of agonist and/or antagonist combinations. The data generated from the duplexed reporter assays were pharmacologically relevant, and Zβ factor analysis indicated the suitability of both agonist and antagonist screens for use in high-throughput screening.
Collapse
Affiliation(s)
- Toby C Kent
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | |
Collapse
|
3
|
Yoon JW, Lamm M, Iannaccone S, Higashiyama N, Leong KF, Iannaccone P, Walterhouse D. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair (Amst) 2015; 34:9-17. [PMID: 26282181 DOI: 10.1016/j.dnarep.2015.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/11/2015] [Indexed: 01/20/2023]
Abstract
The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer.
Collapse
Affiliation(s)
- Joon Won Yoon
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Marilyn Lamm
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Stephen Iannaccone
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Nicole Higashiyama
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - King Fu Leong
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Philip Iannaccone
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - David Walterhouse
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Lee YJ, Lee SW. Regression of hepatocarcinoma cells using RNA aptamer specific to alpha-fetoprotein. Biochem Biophys Res Commun 2011; 417:521-7. [PMID: 22166203 DOI: 10.1016/j.bbrc.2011.11.153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022]
Abstract
Alpha-fetoprotein (AFP) is a cancer-associated fetal protein and has long been utilized as a serum fetal defect/tumor marker to monitor distress/disease progression. In addition, AFP is closely associated with the proliferation of hepatocellular carcinoma. Thus, direct targeting of AFP has been recommended for a therapeutic strategy against hepatocellular carcinoma. In this study, we developed and characterized an RNA aptamer that specifically bound to the alpha-fetoprotein using SELEX technology. The aptamer interacted with the AFP with a K(D) of ∼33 nM. Importantly, the identified aptamer specifically and efficiently inhibited the AFP-mediated proliferation of hepatocarcinoma cells in a dose dependent manner. Moreover, the aptamer efficiently down-regulated AFP-induced expression of oncogenes in the cells. These results indicate that an AFP-specific RNA aptamer could be a useful therapeutic and diagnostic agent against AFP-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Young Ju Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Republic of Korea
| | | |
Collapse
|
5
|
Davies JS, Klein DC, Carter DA. Selective genomic targeting by FRA-2/FOSL2 transcription factor: regulation of the Rgs4 gene is mediated by a variant activator protein 1 (AP-1) promoter sequence/CREB-binding protein (CBP) mechanism. J Biol Chem 2011; 286:15227-39. [PMID: 21367864 PMCID: PMC3083148 DOI: 10.1074/jbc.m110.201996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/12/2011] [Indexed: 01/21/2023] Open
Abstract
FRA-2/FOSL2 is a basic region-leucine zipper motif transcription factor that is widely expressed in mammalian tissues. The functional repertoire of this factor is unclear, partly due to a lack of knowledge of genomic sequences that are targeted. Here, we identified novel, functional FRA-2 targets across the genome through expression profile analysis in a knockdown transgenic rat. In this model, a nocturnal rhythm of pineal gland FRA-2 is suppressed by a genetically encoded, dominant negative mutant protein. Bioinformatic analysis of validated sets of FRA-2-regulated and -nonregulated genes revealed that the FRA-2 regulon is limited by genomic target selection rules that, in general, transcend core cis-sequence identity. However, one variant AP-1-related (AP-1R) sequence was common to a subset of regulated genes. The functional activity and protein binding partners of a candidate AP-1R sequence were determined for a novel FRA-2-repressed gene, Rgs4. FRA-2 protein preferentially associated with a proximal Rgs4 AP-1R sequence as demonstrated by ex vivo ChIP and in vitro EMSA analysis; moreover, transcriptional repression was blocked by mutation of the AP-1R sequence, whereas mutation of an upstream consensus AP-1 family sequence did not affect Rgs4 expression. Nocturnal changes in protein complexes at the Rgs4 AP-1R sequence are associated with FRA-2-dependent dismissal of the co-activator, CBP; this provides a mechanistic basis for Rgs4 gene repression. These studies have also provided functional insight into selective genomic targeting by FRA-2, highlighting discordance between predicted and actual targets. Future studies should address FRA-2-Rgs4 interactions in other systems, including the brain, where FRA-2 function is poorly understood.
Collapse
Affiliation(s)
- Jeff S. Davies
- From the School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, United Kingdom and
| | - David C. Klein
- the Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Carter
- From the School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, United Kingdom and
| |
Collapse
|
6
|
Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:259-69. [PMID: 20716913 PMCID: PMC2835914 DOI: 10.4161/oxim.2.5.9441] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During physiological processes molecules undergo chemical changes involving reducing and oxidizing reactions. A molecule with an unpaired electron can combine with a molecule capable of donating an electron. The donation of an electron is termed as oxidation whereas the gaining of an electron is called reduction. Reduction and oxidation can render the reduced molecule unstable and make it free to react with other molecules to cause damage to cellular and sub-cellular components such as membranes, proteins and DNA. In this paper, we have discussed the formation of reactive oxidant species originating from a variety of sources such as nitric oxide (NO) synthase (NOS), xanthine oxidases (XO), the cyclooxygenases, nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase isoforms and metal-catalysed reactions. In addition, we present a treatise on the physiological defences such as specialized enzymes and antioxidants that maintain reduction-oxidation (redox) balance. We have also given an account of how enzymes and antioxidants can be exhausted by the excessive production of reactive oxidant species (ROS) resulting in oxidative stress/nitrosative stress, a process that is an important mediator of cell damage. Important aspects of redox imbalance that triggers the activity of a number of signalling pathways including transcription factors activity, a process that is ubiquitous in cardiovascular disease related to ischemia/reperfusion injury have also been presented.
Collapse
Affiliation(s)
- Maqsood M Elahi
- Wessex Cardiothoracic Centre, BUPA Hospital, Southampton, UK
| | | | | |
Collapse
|
7
|
Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL. Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2009; 71:569-83. [PMID: 19690965 DOI: 10.1007/s11103-009-9540-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/09/2009] [Indexed: 05/02/2023]
Abstract
When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides.Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sakaino M, Ishigaki M, Ohgari Y, Kitajima S, Masaki R, Yamamoto A, Taketani S. Dual mitochondrial localization and different roles of the reversible reaction of mammalian ferrochelatase. FEBS J 2009; 276:5559-70. [PMID: 19691493 DOI: 10.1111/j.1742-4658.2009.07248.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferrochelatase catalyzes the insertion of ferrous ions into protoporphyrin IX to produce heme. Previously, it was found that this enzyme also participates in the reverse reaction of iron removal from heme. To clarify the role of the reverse reaction of ferrochelatase in cells, mouse liver mitochondria were fractionated to examine the localization of ferrochelatase, and it was found that the enzyme localizes not only to the inner membrane, but also to the outer membrane. Observations by immunoelectron microscopy confirmed the dual localization of ferrochelatase in ferrochelatase-expressing human embryonic kidney cells and mouse liver mitochondria. The conventional (zinc-insertion) activities of the enzyme in the inner and outer membranes were similar, whereas the iron-removal activity was high in the outer membrane. 2D gel analysis revealed that two types of the enzyme with different isoelectric points were present in mitochondria, and the acidic form, which was enriched in the outer membrane, was found to be phosphorylated. Mutation of human ferrochelatase showed that serine residues at positions 130 and 303 were phosphorylated, and serine at position 130 may be involved in the balance of the reversible catalytic reaction. When mouse erythroleukemia cells were treated with 12-O-tetradecanoyl-phorbol 13-acetate, an activator of protein kinase C, or hemin, phospho-ferrochelatase levels increased, with a concomitant decrease in zinc-insertion activity and a slight increase in iron-removal activity. These results suggest that ferrochelatase localizes to both the mitochondrial outer and inner membranes and that the change in the equilibrium position of the forward and reverse activities may be regulated by the phosphorylation of ferrochelatase.
Collapse
|
9
|
Chernova T, Higginson FM, Davies R, Smith AG. B2 SINE retrotransposon causes polymorphic expression of mouse 5-aminolevulinic acid synthase 1 gene. Biochem Biophys Res Commun 2008; 377:515-520. [PMID: 18929534 DOI: 10.1016/j.bbrc.2008.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022]
Abstract
5-Aminolevulinic acid synthase 1 (ALAS1) is the key enzyme in the homeostasis of nonerythroid heme and of fundamental importance in respiration, the metabolism of drugs, chemicals and steroids and cell signalling. The regulation of ALAS1 in response to stimuli occurs at transcriptional, translational and post-translational levels which could depend on inter-individual variation in basal expression. A genetic difference in hepatic ALAS1 mRNA levels between C57BL/6J and DBA/2 mice was detected by microarray and was >5-fold in whole liver or hepatocytes when estimated by qRT-PCR. Analysis of the ALAS1 promoter showed a 210 nt insert in the DBA/2 containing a B2 SINE retrotransposon causing a marked repression of expression by intracellular reporter systems. Deletions across the B2 SINE demonstrated that the full sequence was required for transcriptional inhibition. The findings show that a B2 SINE can contribute to the regulation of ALAS1 and SINEs in 5'-UTR regions contribute to inter-individual differences in gene expression.
Collapse
Affiliation(s)
| | | | | | - Andrew G Smith
- MRC Toxicology Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
10
|
Niittynen M, Tuomisto JT, Pohjanvirta R. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on heme oxygenase-1, biliverdin IXα reductase and δ-aminolevulinic acid synthetase 1 in rats with wild-type or variant AH receptor. Toxicology 2008; 250:132-42. [DOI: 10.1016/j.tox.2008.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/26/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
|
11
|
Granillo AR, Boffi JC, Barañao L, Kordon E, Pecci A, Guberman A. STAT5 transcriptional activity is impaired by LIF in a mammary epithelial cell line. Biochem Biophys Res Commun 2007; 356:727-32. [PMID: 17382296 DOI: 10.1016/j.bbrc.2007.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 11/29/2022]
Abstract
Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.
Collapse
Affiliation(s)
- Agustina Rodriguez Granillo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Piso 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
Ghosh S, Wu Y, Li R, Hu Y. Jun proteins modulate the ovary-specific promoter of aromatase gene in ovarian granulosa cells via a cAMP-responsive element. Oncogene 2005; 24:2236-46. [PMID: 15688015 DOI: 10.1038/sj.onc.1208415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen is critical to both normal mammary gland and breast cancer development. Circulating levels of estrogen in premenopausal women are primarily determined by the action of aromatase in ovarian granulosa cells that converts testosterone to estradiol. In the current study, we unraveled an important role of Jun proteins in modulating ovary-specific aromatase expression. Ectopic expression of the Jun proteins in a human granulosa cell line significantly inhibited an ovary-specific promoter (PII) of the aromatase gene, whereas expression of dominant-negative mutants of Jun led to increased promoter activity. The Jun-mediated repression was specific to the aromatase promoter, as Jun proteins stimulated known AP1-responsive promoters in the same cellular context. Both the activation and basic leucine zipper domains of Jun were required for the transcriptional repression. Electrophoretic gel mobility assay showed that endogenous Jun proteins bound to a functionally important cAMP-responsive element (CRE) in the PII promoter-proximal region. Alteration of the CRE-like site impaired both the cAMP-responsive transcriptional activation and Jun-mediated repression. Furthermore, chromatin immunoprecipitation indicated the presence of cJun at the proximal region of the native PII promoter. Taken together, our work suggests that Jun proteins may attenuate estrogen biosynthesis by directly downregulating transcription of the aromatase gene in ovarian granulosa cells.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
13
|
Guberman AS, Scassa ME, Cánepa ET. Repression of 5-aminolevulinate synthase gene by the potent tumor promoter, TPA, involves multiple signal transduction pathways. Arch Biochem Biophys 2005; 436:285-96. [PMID: 15797241 DOI: 10.1016/j.abb.2005.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/04/2005] [Indexed: 12/21/2022]
Abstract
The potent tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) induces activator protein-1 (AP-1) transcription factors, early response genes involved in a diverse set of transcriptional regulatory processes, and protein kinase C (PKC) activity. This work was designed to explore the signal transduction pathways involved in TPA regulation of 5-aminolevulinate synthase (ALAS) gene expression, the mitochondrial matrix enzyme that catalyzes the first and rate-limiting step of heme biosynthesis. We have previously reported that TPA causes repression of ALAS gene, but the signaling pathways mediating this effect remain elusive. The present study investigates the role of different cascades often implicated in the propagation of phorbol ester signaling. To explore this, we combined the transient overexpression of regulatory proteins involved in these pathways and the use of small cell permeant inhibitors in human hepatoma HepG2 cells. In these experimental conditions, we analyzed TPA action upon endogenous ALAS mRNA levels, as well as the promoter activity of a fusion reporter construct, harboring the TPA-responsive region of ALAS gene driving chloramphenicol acetyl transferase gene expression. We demonstrated that the participation of alpha isoform of PKC, phosphatidylinositol 3-kinase (PI3K), extracellular-signal regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK) is crucial for the end point response. Remarkably, in this case, ERK activation is achieved in a Ras/Raf/MEK-independent manner. We also propose that p90RSK would be a convergent point between PI3K and ERK pathways. Furthermore, we elucidated the crosstalk among the components of the cascades taking part in TPA-mediated ALAS repression. Finally, by overexpression of a constitutively active p90RSK and the coactivator, cAMP-response element protein (CREB)-binding protein (CBP), we reinforced our previous model, that implies competition between AP-1 and CREB for CBP.
Collapse
Affiliation(s)
- Alejandra S Guberman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Piso 4, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
14
|
Zaragoza DB, Wilson R, Eyster K, Olson DM. Cloning and characterization of the promoter region of the human prostaglandin F2alpha receptor gene. ACTA ACUST UNITED AC 2004; 1676:193-202. [PMID: 14746914 DOI: 10.1016/j.bbaexp.2003.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The promoter region of the human prostaglandin F2alpha receptor (FP) gene was isolated, sequenced, and characterized. The 5'-flanking region has minimal homology to the bovine, mouse, and rat FP promoters with the exception of a 100-bp region. The human promoter similarly lacks a canonical TATA-box and a CAAT-box. Potential binding sites for SP-1, GATA-1, STAT-1, and AP-1 are present in the 5'-flanking region. One major transcription start site was identified using 5' RLM-RACE analysis and mapped to an adenine residue 262 nucleotides upstream from the initiator codon in exon 2. Transfection of HeLa cells with FP promoter-GFP deletion constructs indicates that the -2437/-1946 region contains repressor activity. DNase I footprinting analysis of this region identifies a footprint over the GATA-like site at -2400. This suggests repression of basal FP transcription may be mediated by a GATA binding site.
Collapse
Affiliation(s)
- Dean B Zaragoza
- Perinatal Research Centre, CIHR Group in Perinatal Health and Disease, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | | | | | | |
Collapse
|
15
|
Scassa ME, Guberman AS, Ceruti JM, Cánepa ET. Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression. J Biol Chem 2004; 279:28082-92. [PMID: 15123725 DOI: 10.1074/jbc.m401792200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the negative regulation of gene expression by insulin has been widely studied, the transcription factors responsible for the insulin effect are still unknown. The purpose of this work was to explore the molecular mechanisms involved in the insulin repression of the 5-aminolevulinate synthase (ALAS) gene. Deletion analysis of the 5'-regulatory region allowed us to identify an insulin-responsive region located at -459 to -354 bp. This fragment contains a highly homologous insulin-responsive (IRE) sequence. By transient transfection assays, we determined that hepatic nuclear factor 3 (HNF3) and nuclear factor 1 (NF1) are necessary for an appropriate expression of the ALAS gene. Insulin overrides the HNF3beta or HNF3beta plus NF1-mediated stimulation of ALAS transcriptional activity. Electrophoretic mobility shift assay and Southwestern blotting indicate that HNF3 binds to the ALAS promoter. Mutational analysis of this region revealed that IRE disruption abrogates insulin action, whereas mutation of the HNF3 element maintains hormone responsiveness. This dissociation between HNF3 binding and insulin action suggests that HNF3beta is not the sole physiologic mediator of insulin-induced transcriptional repression. Furthermore, Southwestern blotting assay shows that at least two polypeptides other than HNF3beta can bind to ALAS promoter and that this binding is dependent on the integrity of the IRE. We propose a model in which insulin exerts its negative effect through the disturbance of HNF3beta binding or transactivation potential, probably due to specific phosphorylation of this transcription factor by Akt. In this regard, results obtained from transfection experiments using kinase inhibitors support this hypothesis. Due to this event, NF1 would lose accessibility to the promoter. The posttranslational modification of HNF3 would allow the binding of a protein complex that recognizes the core IRE. These results provide a potential mechanism for the insulin-mediated repression of IRE-containing promoters.
Collapse
Affiliation(s)
- María E Scassa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Piso 4, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Li MS, Li PF, Chen Q, Du GG, Li G. Alpha-fetoprotein stimulated the expression of some oncogenes in human hepatocellular carcinoma Bel 7402 cells. World J Gastroenterol 2004; 10:819-824. [PMID: 15040024 PMCID: PMC4726995 DOI: 10.3748/wjg.v10.i6.819] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 09/23/2003] [Accepted: 11/15/2003] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the molecular mechanism of alpha-fetoprotein (AFP) on regulating the proliferation of human hepatocellular carcinoma cells. METHODS Alpha-fetoprotein purified from human umbilical blood was added to cultured human hepatocellular carcinoma Bel 7402 cells in vitro for various treatment periods. The expression of c-fos, c-jun, and N-ras mRNA involved in proliferation and differentiation of cells was analyzed by Northern blot, and the expression of mutative p53 and p21(ras) proteins was determined by Western blot. RESULTS The results showed that AFP (20 mg/L) stimulated mRNA expression of these oncogenes in Bel 7402 cells. The expression of c-fos mRNA increased by 51.1%, 60.9%, 96.0%, and 25.5% at 2, 6, 12, and 24 h, respectively. The expression of c-jun and N-ras mRNA reached to the maximum which increased by 81.3% and 59.9% as compared with the control after 6 h and 24 h incubation with AFP, respectively. Western blot assay also demonstrated that AFP promoted the expression of mutative p53 and p21(ras) proteins, and the increased rate of those proteins was 13.0%, 39.9%, and 70.9%, as well as 35.2%, 102.6%, and 46.8% at 6, 12, and 24 h, respectively, as compared with the control. Both human serum albumin (the same dosage as AFP) and monoclonal anti-AFP antibody failed to stimulate the expression of these oncogenes, but anti-AFP antibody could block the functions of AFP. CONCLUSION The data indicate that AFP can stimulate the expression of some oncogenes to enhance the proliferation of human hepatocellular carcinoma Bel 7402 cells.
Collapse
Affiliation(s)
- Meng-Sen Li
- Department of Biochemistry, Hainan Medical College, Haikou 571101, China.
| | | | | | | | | |
Collapse
|
17
|
Shah S, Hecht A, Pestell R, Byers SW. Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem 2003; 278:48137-45. [PMID: 12972427 DOI: 10.1074/jbc.m307154200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The signaling/oncogenic activity of beta-catenin can be repressed by the activation of nuclear receptors such as the vitamin A, vitamin D, and androgen receptors. Although these receptors directly interact with beta-catenin and can sequester it away from its transcription factor partner T-cell factor, it is not known if this is the mechanism of trans-repression. Using several different promoter constructs and nuclear receptors and mammalian two-hybrid and mutation analyses we now show that interaction with the co-activator, p300, underlies the trans-repression of beta-catenin signaling by nuclear receptors and their ligands.
Collapse
Affiliation(s)
- Salimuddin Shah
- The Lombardi Cancer Center and the Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | |
Collapse
|