1
|
Maheshwari S, Vilema-Enríquez G, Wade-Martins R. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Transl Neurodegener 2023; 12:45. [PMID: 37726850 PMCID: PMC10510273 DOI: 10.1186/s40035-023-00376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Friedreich ataxia (FRDA) is a rare genetic multisystem disorder caused by a pathological GAA trinucleotide repeat expansion in the FXN gene. The numerous drawbacks of historical cellular and rodent models of FRDA have caused difficulty in performing effective mechanistic and translational studies to investigate the disease. The recent discovery and subsequent development of induced pluripotent stem cell (iPSC) technology provides an exciting platform to enable enhanced disease modelling for studies of rare genetic diseases. Utilising iPSCs, researchers have created phenotypically relevant and previously inaccessible cellular models of FRDA. These models enable studies of the molecular mechanisms underlying GAA-induced pathology, as well as providing an exciting tool for the screening and testing of novel disease-modifying therapies. This review explores how the use of iPSCs to study FRDA has developed over the past decade, as well as discussing the enormous therapeutic potentials of iPSC-derived models, their current limitations and their future direction within the field of FRDA research.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Gabriela Vilema-Enríquez
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Porubiaková O, Havlík J, Indu, Šedý M, Přepechalová V, Bartas M, Bidula S, Šťastný J, Fojta M, Brázda V. Variability of Inverted Repeats in All Available Genomes of Bacteria. Microbiol Spectr 2023; 11:e0164823. [PMID: 37358458 PMCID: PMC10434271 DOI: 10.1128/spectrum.01648-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.
Collapse
Affiliation(s)
- Otília Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Havlík
- Mendel University in Brno, Brno, Czech Republic
| | - Indu
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Šedý
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Veronika Přepechalová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jiří Šťastný
- Mendel University in Brno, Brno, Czech Republic
- Brno University of Technology, Faculty of Mechanical Engineering, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| |
Collapse
|
3
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
4
|
Zhang J, Fakharzadeh A, Pan F, Roland C, Sagui C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Res 2020; 48:9899-9917. [PMID: 32821947 PMCID: PMC7515735 DOI: 10.1093/nar/gkaa665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. We present a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, our results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.,Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
5
|
Dang Z, Huang L, Jia Y, Lockhart PJ, Fong Y, Tian Y. Identification of Genic SSRs Provide a Perspective for Studying Environmental Adaptation in the Endemic Shrub Tetraena mongolica. Genes (Basel) 2020; 11:E322. [PMID: 32197402 PMCID: PMC7140860 DOI: 10.3390/genes11030322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023] Open
Abstract
Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.
Collapse
Affiliation(s)
- Zhenhua Dang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Lei Huang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Yuanyuan Jia
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Peter J. Lockhart
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yang Fong
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
6
|
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proc Natl Acad Sci U S A 2020; 117:1628-1637. [PMID: 31911468 PMCID: PMC6983365 DOI: 10.1073/pnas.1913416117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of GAA repeats cause a severe hereditary neurodegenerative disease, Friedreich’s ataxia. In this study, we characterized the mechanisms of GAA repeat contractions in a yeast experimental system. These mechanisms might, in the long run, aid development of a therapy for this currently incurable disease. We show that GAA repeats contract during DNA replication, which can explain the high level of somatic instability of this repeat in patient tissues. We also provided evidence that a triple-stranded DNA structure is at the heart of GAA repeat instability. This discovery highlights the role of triplex DNA in genome instability and human disease. Friedreich’s ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA)n repeats in the first intron of the FXN gene [V. Campuzano et al., Science 271, 1423–1427 (1996)]. In somatic tissues of FRDA patients, (GAA)n repeat tracts are highly unstable, with contractions more common than expansions [R. Sharma et al., Hum. Mol. Genet. 11, 2175–2187 (2002)]. Here we describe an experimental system to characterize GAA repeat contractions in yeast and to conduct a genetic analysis of this process. We found that large-scale contraction is a one-step process, resulting in a median loss of ∼60 triplet repeats. Our genetic analysis revealed that contractions occur during DNA replication, rather than by various DNA repair pathways. Repeats contract in the course of lagging-strand synthesis: The processivity subunit of DNA polymerase δ, Pol32, and the catalytic domain of Rev1, a translesion polymerase, act together in the same pathway to counteract contractions. Accumulation of single-stranded DNA (ssDNA) in the lagging-strand template greatly increases the probability that (GAA)n repeats contract, which in turn promotes repeat instability in rfa1, rad27, and dna2 mutants. Finally, by comparing contraction rates for homopurine-homopyrimidine repeats differing in their mirror symmetry, we found that contractions depend on a repeat’s triplex-forming ability. We propose that accumulation of ssDNA in the lagging-strand template fosters the formation of a triplex between the nascent and fold-back template strands of the repeat. Occasional jumps of DNA polymerase through this triplex hurdle, result in repeat contractions in the nascent lagging strand.
Collapse
|
7
|
Bergquist H, Rocha CSJ, Álvarez-Asencio R, Nguyen CH, Rutland MW, Smith CIE, Good L, Nielsen PE, Zain R. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting. PLoS One 2016; 11:e0165788. [PMID: 27846236 PMCID: PMC5112992 DOI: 10.1371/journal.pone.0165788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023] Open
Abstract
Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression.
Collapse
Affiliation(s)
- Helen Bergquist
- Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Cristina S. J. Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Rubén Álvarez-Asencio
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Stockholm, Sweden
| | - Chi-Hung Nguyen
- Laboratoire de Pharmacochimie, Institut Curie, PSL Research University, UMR 9187 – U 1196 CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Mark. W. Rutland
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
| | - Liam Good
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, United Kingdom
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Sweden
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 2013; 20:486-94. [DOI: 10.1038/nsmb.2520] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
9
|
Timsit Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 2011; 39:8665-76. [PMID: 21764774 PMCID: PMC3203592 DOI: 10.1093/nar/gkr556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that control the topology and higher order structures of DNA. Type IIA enzymes have the remarkable property to sense locally the global DNA topology. Although many theoretical models have been proposed, the molecular mechanism of chiral discrimination is still unclear. While experimental studies have established that topoisomerases IIA discriminate topology on the basis of crossover geometry, a recent single-molecule experiment has shown that the enzyme has a different processivity on supercoiled DNA of opposite sign. Understanding how cross-over geometry influences enzyme processivity is, therefore, the key to elucidate the mechanism of chiral discrimination. Analysing this question from the DNA side reveals first, that the different stability of chiral DNA cross-overs provides a way to locally sense the global DNA topology. Second, it shows that these enzymes have evolved to recognize the G- and T-segments stably assembled into a right-handed cross-over. Third, it demonstrates how binding right-handed cross-overs across their large angle imposes a different topological link between the topoIIA rings and the plectonemes of opposite sign thus directly affecting the enzyme freedom of motion and processivity. In bridging geometry and kinetic data, this study brings a simple solution for type IIA topoisomerase chiral discrimination.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
10
|
Holloway TP, Rowley SM, Delatycki MB, Sarsero JP. Detection of interruptions in the GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. Biotechniques 2011; 50:182-6. [PMID: 21486239 DOI: 10.2144/000113615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/06/2011] [Indexed: 11/23/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disorder caused by the expansion of a GAA trinucleotide repeat sequence within the first intron of the FXN gene. Interruptions in the GAA repeat may serve to alleviate the inhibitory effects of the GAA expansion on FXN gene expression and to decrease pathogenicity. We have developed a simple and rapid PCR- and restriction enzyme-based assay to assess the purity of GAA repeat sequences.
Collapse
Affiliation(s)
- Timothy P Holloway
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Timsit Y, Várnai P. Helical chirality: a link between local interactions and global topology in DNA. PLoS One 2010; 5:e9326. [PMID: 20174470 PMCID: PMC2824830 DOI: 10.1371/journal.pone.0009326] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/29/2010] [Indexed: 01/03/2023] Open
Abstract
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg(2+) sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS-UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy, Marseille, France.
| | | |
Collapse
|
12
|
Bergquist H, Nikravesh A, Fernández RD, Larsson V, Nguyen CH, Good L, Zain R. Structure-specific recognition of Friedreich's ataxia (GAA)n repeats by benzoquinoquinoxaline derivatives. Chembiochem 2010; 10:2629-37. [PMID: 19746387 DOI: 10.1002/cbic.200900263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expansion of GAA triplet repeats in intron 1 of the FXN gene reduces frataxin expression and causes Friedreich's ataxia. (GAA)n repeats form non-B-DNA structures, including triple helix H-DNA and higher-order structures (sticky DNA). In the proposed mechanisms of frataxin gene silencing, central unanswered questions involve the characterization of non-B-DNA structure(s) that are strongly suggested to play a role in frataxin expression. Here we examined (GAA)n binding by triplex-stabilizing benzoquinoquinoxaline (BQQ) and the corresponding triplex-DNA-cleaving BQQ-1,10-phenanthroline (BQQ-OP) compounds. We also examined the ability of these compounds to act as structural probes for H-DNA formation within higher-order structures at pathological frataxin sequences in plasmids. DNA-complex-formation analyses with a gel-mobility-shift assay and sequence-specific probing of H-DNA-forming (GAA)n sequences by single-strand oligonucleotides and triplex-directed cleavage demonstrated that a parallel pyrimidine (rather than purine) triplex is the more stable motif formed at (GAA)n repeats under physiologically relevant conditions.
Collapse
Affiliation(s)
- Helen Bergquist
- Department of Molecular Biology and Functional Genomics, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Bourn RL, Rindler PM, Pollard LM, Bidichandani SI. E. coli mismatch repair acts downstream of replication fork stalling to stabilize the expanded (GAA.TTC)(n) sequence. Mutat Res 2009; 661:71-7. [PMID: 19046977 PMCID: PMC2637364 DOI: 10.1016/j.mrfmmm.2008.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 05/27/2023]
Abstract
Expanded triplet repeat sequences are known to cause at least 16 inherited neuromuscular diseases. In addition to short-length changes, expanded triplet repeat tracts frequently undergo large changes, often amounting to hundreds of base-pairs. Such changes might occur when template or primer slipping creates insertion/deletion loops (IDLs), which are normally repaired by the mismatch repair system (MMR). However, in prokaryotes and eukaryotes, MMR promotes large changes in the length of (CTG.CAG)(n) sequences, the motif most commonly associated with human disease. We tested the effect of MMR on instability of the expanded (GAA.TTC)(n) sequence, which causes Friedreich ataxia, by comparing repeat instability in wild-type and MMR-deficient strains of Escherichia coli. As expected, the prevalence of small mutations increased in the MMR-deficient strains. However, the prevalence of large contractions increased in the MMR mutants specifically when GAA was the lagging strand template, the orientation in which replication fork stalling is known to occur. After hydroxyurea-induced stalling, both orientations of replication showed significantly more large contractions in MMR mutants than in the wild-type, suggesting that fork stalling may be responsible for the large contractions. Deficiency of MMR promoted large contractions independently of RecA status, a known determinant of (GAA.TTC)(n) instability. These data suggest that two independent mechanisms act in response to replication stalling to prevent instability of the (GAA.TTC)(n) sequence in E. coli, when GAA serves as the lagging strand template: one that is dependent on RecA-mediated restart of stalled forks, and another that is dependent on MMR-mediated repair of IDLs. While MMR destabilizes the (CTG.CAG)(n) sequence, it is involved in stabilization of the (GAA.TTC)(n) sequence. The role of MMR in triplet repeat instability therefore depends on the repeat sequence and the orientation of replication.
Collapse
Affiliation(s)
- Rebecka L. Bourn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul M. Rindler
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Laura M. Pollard
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Soragni E, Herman D, Dent SYR, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008; 36:6056-65. [PMID: 18820300 PMCID: PMC2577344 DOI: 10.1093/nar/gkn604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 12/25/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.
Collapse
Affiliation(s)
- E. Soragni
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - D. Herman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - S. Y. R. Dent
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - J. M. Gottesfeld
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R. D. Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - M. Napierala
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
15
|
Ruan H, Wang YH. Friedreich's Ataxia GAA·TTC Duplex and GAA·GAA·TTC Triplex Structures Exclude Nucleosome Assembly. J Mol Biol 2008; 383:292-300. [DOI: 10.1016/j.jmb.2008.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022]
|
16
|
Usdin K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 2008; 18:1011-9. [PMID: 18593815 DOI: 10.1101/gr.070409.107] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tandem repeats are common features of both prokaryote and eukaryote genomes, where they can be found not only in intergenic regions but also in both the noncoding and coding regions of a variety of different genes. The repeat expansion diseases are a group of human genetic disorders caused by long and highly polymorphic tandem repeats. These disorders provide many examples of the effects that such repeats can have on many biological processes. While repeats in the coding sequence can result in the generation of toxic or malfunctioning proteins, noncoding repeats can also have significant effects including the generation of chromosome fragility, the silencing of the genes in which they are located, the modulation of transcription and translation, and the sequestering of proteins involved in processes such as splicing and cell architecture.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
17
|
Abstract
Friedreich ataxia, the most common inherited ataxia, is caused by the transcriptional silencing of the FXN gene, which codes for the 210 amino acid frataxin, a mitochondrial protein involved in iron-sulfur cluster biosynthesis. The expansion of the GAA x TTC tract in intron 1 to as many as 1700 repeats elicits the transcriptional silencing by the formation of non-B DNA structures (triplexes or sticky DNA), the formation of a persistent DNA x RNA hybrid, or heterochromatin formation. The triplex (sticky DNA) adopted by the long repeat sequence also elicits profound mutagenic, genetic instability, and recombination behaviors. Early stage therapeutic investigations involving polyamides or histone deacetylase inhibitors are being pursued. Friedreich ataxia may be one of the most thoroughly studied hereditary neurological disease from a pathophysiological standpoint.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, The Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| |
Collapse
|
18
|
Wojciechowska M, Napierala M, Larson JE, Wells RD. Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in flanking regions. J Biol Chem 2006; 281:24531-43. [PMID: 16793772 DOI: 10.1074/jbc.m603888200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expansions of long repeating tracts of CTG.CAG, CCTG.CAGG, and GAA.TTC are integral to the etiology of myotonic dystrophy type 1 (DM1), myotonic dystrophy type 2 (DM2), and Friedreich's ataxia (FRDA). Essentially all studies on the molecular mechanisms of this expansion process invoke an important role for non-B DNA conformations which may be adopted by these repeat sequences. We have directly evaluated the role(s) of the repeating sequences per se, or of the non-B DNA conformations formed by these sequences, in the mutagenic process. Studies in Escherichia coli and three types of mammalian (COS-7, CV-1, and HEK-293) fibroblast-like cells revealed that conditions which promoted the formation of the non-B DNA structures enhanced the genetic instabilities, both within the repeat sequences and in the flanking sequences of up to approximately 4 kbp. The three strategies utilized included: the in vivo modulation of global negative supercoil density using topA and gyrB mutant E. coli strains; the in vivo cleavage of hairpin loops, which are an obligate consequence of slipped-strand structures, cruciforms, and intramolecular triplexes, by inactivation of the SbcC protein; and by genetic instability studies with plasmids containing long repeating sequence inserts that do, and do not, adopt non-B DNA structures in vitro. Hence, non-B DNA conformations are critical for these mutagenesis mechanisms.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
19
|
Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci U S A 2006; 103:11497-502. [PMID: 16857735 PMCID: PMC1544198 DOI: 10.1073/pnas.0604939103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA abnormality found in 98% of Friedreich's ataxia (FRDA) patients is the unstable hyperexpansion of a GAA.TTC triplet repeat in the first intron of the frataxin gene. Expanded GAA.TTC repeats result in decreased transcription and reduced levels of frataxin protein in affected individuals. Beta-alanine-linked pyrrole-imidazole polyamides bind GAA.TTC tracts with high affinity and disrupt the intramolecular DNA.DNA-associated region of the sticky-DNA conformation formed by long GAA.TTC repeats. Fluorescent polyamide-Bodipy conjugates localize in the nucleus of a lymphoid cell line derived from a FRDA patient. The synthetic ligands increase transcription of the frataxin gene in cell culture, resulting in increased levels of frataxin protein. DNA microarray analyses indicate that a limited number of genes are significantly affected in FRDA cells. Polyamides may increase transcription by altering the DNA conformation of genes harboring long GAA.TTC repeats or by chromatin opening.
Collapse
Affiliation(s)
- Ryan Burnett
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Christian Melander
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - James W. Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Leslie S. Son
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Robert D. Wells
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Joel M. Gottesfeld
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
20
|
Mandell KE, Vallone PM, Owczarzy R, Riccelli PV, Benight AS. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Biopolymers 2006; 82:199-221. [PMID: 16345003 DOI: 10.1002/bip.20425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.
Collapse
Affiliation(s)
- Kathleen E Mandell
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, 60607, USA
| | | | | | | | | |
Collapse
|
21
|
Son LS, Bacolla A, Wells RD. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J Mol Biol 2006; 360:267-84. [PMID: 16764889 DOI: 10.1016/j.jmb.2006.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
The expanded GAA*TTC repeat sequence associated with Friedreich's ataxia (FRDA) adopts non-B DNA structures, (triplexes and sticky DNA). Sticky DNA is formed in plasmids by the association of two long GAA*TTC tracts at lengths that are found in the sequence of the frataxin gene in patients. Most FRDA patients have expanded GAA*TTC repeats (up to 1700 triplets), which inhibit the transcription of the gene, thus diminishing the synthesis of frataxin, a mitochondrial protein involved in iron-sulfur cluster biogenesis. Negative supercoiling and MgCl(2) (or MnCl(2)) are required to stabilize sticky DNA (a dumbbell-shaped structure) in plasmids with a pair of repeat tracts where n> or =60 in the direct repeat orientation in vitro. Since the triplet repeat sequences (TRS) were symmetrically positioned in the plasmids and because a number of unique restriction sites were present in the vector, studies were conducted to evaluate the influence of selectively linearizing one or the other supercoiled domains created by the DNA*DNA associated region, i.e. the stable complex at the pair of TRS's. The two domains behave independently, thus confirming the association of the two tracts and the dumbbell-shaped plasmid in our model for sticky DNA. Linking number investigations were performed on a family of plasmids harboring different lengths (30, 60, or 176 repeats), orientations and number of tracts (one or two) of a GAA*TTC repeat in Escherichia coli to evaluate the in vivo role, if any, of sticky DNA. Unexpectedly, this non-B DNA conformation elicited the formation of a TRS-length dependent change in the global topology of the plasmids, indicative of an apparent compression of the primary helices. Thus, linking number determinations confirm that sticky DNA has an important consequence in vivo.
Collapse
Affiliation(s)
- Leslie S Son
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
22
|
Napierala M, Bacolla A, Wells RD. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J Biol Chem 2005; 280:37366-76. [PMID: 16166072 DOI: 10.1074/jbc.m508065200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of negative superhelical density on the genetic instabilities of long GAA.TTC, CGG.CCG, and CTG.CAG repeat sequences was studied in vivo in topologically constrained plasmids in Escherichia coli. These repeat tracts are involved in the etiologies of Friedreich ataxia, fragile X syndrome, and myotonic dystrophy type 1, respectively. The capacity of these DNA tracts to undergo deletions-expansions was explored with three genetic-biochemical approaches including first, the utilization of topoisomerase I and/or DNA gyrase mutants, second, the specific inhibition of DNA gyrase by novobiocin, and third, the genetic removal of the HU protein, thus lowering the negative supercoil density (-sigma). All three strategies revealed that higher -sigma in vivo enhanced the formation of deleted repeat sequences. The effects were most pronounced for the Friedreich ataxia and the fragile X triplet repeat sequences. Higher levels of -sigma stabilize non-B DNA conformations (i.e. triplexes, sticky DNA, flexible and writhed DNA, slipped structures) at appropriate repeat tracts; also, numerous prior genetic instability investigations invoke a role for these structures in promoting the slippage of the DNA complementary strands. Thus, we propose that the in vivo modulation of the DNA structure, localized to the repeat tracts, is responsible for these behaviors. Presuming that these interrelationships are also found in humans, dynamic alterations in the chromosomal nuclear matrix may modulate the -sigma of certain DNA regions and, thus, stabilize/destabilize certain non-B conformations which regulate the genetic expansions-deletions responsible for the diseases.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | |
Collapse
|
23
|
Wells RD, Dere R, Hebert ML, Napierala M, Son LS. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 2005; 33:3785-98. [PMID: 16006624 PMCID: PMC1174910 DOI: 10.1093/nar/gki697] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Substantial progress has been realized in the past several years in our understanding of the molecular mechanisms responsible for the expansions and deletions (genetic instabilities) of repeating tri-, tetra- and pentanucleotide repeating sequences associated with a number of hereditary neurological diseases. These instabilities occur by replication, recombination and repair processes, probably acting in concert, due to slippage of the DNA complementary strands relative to each other. The biophysical properties of the folded-back repeating sequence strands play a critical role in these instabilities. Non-B DNA structural elements (hairpins and slipped structures, DNA unwinding elements, tetraplexes, triplexes and sticky DNA) are described. The replication mechanisms are influenced by pausing of the replication fork, orientation of the repeat strands, location of the repeat sequences relative to replication origins and the flap endonuclease. Methyl-directed mismatch repair, nucleotide excision repair, and repair of damage caused by mutagens are discussed. Genetic recombination and double-strand break repair advances in Escherichia coli, yeast and mammalian models are reviewed. Furthermore, the newly discovered capacities of certain triplet repeat sequences to cause gross chromosomal rearrangements are discussed.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Nucleic acids are characterized by a vast structural variability. Secondary structural conformations include the main polymorphs A, B, and Z, cruciforms, intrinsic curvature, and multistranded motifs. DNA secondary motifs are stabilized and regulated by the primary base sequence, contextual effects, environmental factors, as well as by high-order DNA packaging modes. The high-order modes are, in turn, affected by secondary structures and by the environment. This review is concerned with the flow of structural information among the hierarchical structural levels of DNA molecules, the intricate interplay between the various factors that affect these levels, and the regulation and physiological significance of DNA high-order structures.
Collapse
Affiliation(s)
- Abraham Minsky
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Napierala M, Dere R, Vetcher A, Wells RD. Structure-dependent Recombination Hot Spot Activity of GAA·TTC Sequences from Intron 1 of the Friedreich's Ataxia Gene. J Biol Chem 2004; 279:6444-54. [PMID: 14625270 DOI: 10.1074/jbc.m309596200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The recombinational properties of long GAA.TTC repeating sequences were analyzed in Escherichia coli to gain further insights into the molecular mechanisms of the genetic instability of this tract as possibly related to the etiology of Friedreich's ataxia. Intramolecular and intermolecular recombination studies showed that the frequency of recombination between the GAA.TTC tracts was as much as 15 times higher than the non-repeating control sequences. Homologous, intramolecular recombination between GAA.TTC tracts and GAAGGA.TCCTTC repeats also occurred with a very high frequency (approximately 0.8%). Biochemical analyses of the recombination products demonstrated the expansions and deletions of the GAA.TTC repeats. These results, together with our previous studies on the CTG.CAG sequences, suggest that the recombinational hot spot characteristics may be a common feature of all triplet repeat sequences. Unexpectedly, we found that the recombination properties of the GAA.TTC tracts were unique, compared with CTG.CAG repeats, because they depended on the DNA secondary structure polymorphism. Increasing the length of the GAA.TTC repeats decreased the intramolecular recombination frequency between these tracts. Also, a correlation was found between the propensity of the GAA.TTC tracts to adopt the sticky DNA conformation and the inhibition of intramolecular recombination. The use of novobiocin to modulate the intracellular DNA topology, i.e. the lowering of the negative superhelical density, repressed the formation of the sticky DNA structure, thereby restoring the expected positive correlation between the length of the GAA.TTC tracts and the frequency of intramolecular recombination. Hence, our results demonstrate that sticky DNA exists and functions in E. coli.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
26
|
Seznec H, Wilson RB, Puccio H. 2003 International Friedreich's Ataxia Research Conference, 14-16 February 2003, Bethesda, MD, USA. Neuromuscul Disord 2004; 14:70-82. [PMID: 14659415 DOI: 10.1016/j.nmd.2003.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hervé Seznec
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, 1 rue Laurent Fries BP 10142, Illkirch cedex 67404, CU de Strasbourg, France
| | | | | |
Collapse
|
27
|
Abstract
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|
28
|
Vetcher AA, Napierala M, Iyer RR, Chastain PD, Griffith JD, Wells RD. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J Biol Chem 2002; 277:39217-27. [PMID: 12161437 DOI: 10.1074/jbc.m205209200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Friedreich's ataxia is caused by the massive expansion of GAA.TTC repeats in intron 1 of the frataxin (X25) gene. Our prior investigations showed that long GAA.TTC repeats formed very stable triplex structures which caused two repeat tracts to adhere to each other (sticky DNA). This process was dependent on negative supercoiling and the presence of divalent metal ions. Herein, we have investigated the formation of sticky DNA from plasmid monomers and dimers; sticky DNA is formed only when two tracts of sufficiently long (GAA.TTC)(n) (n = 59-270) are present in a single plasmid DNA and are in the direct repeat orientation. If the inserts are in the indirect (inverted) repeat orientation, no sticky DNA was observed. Furthermore, kinetic studies support the intramolecular nature of sticky DNA formation. Electron microscopy investigations also provide strong data for sticky DNA as a single long triplex. Hence, these results give new insights into our understanding of the capacity of sticky DNA to inhibit transcription and thereby reduce the level of frataxin protein as related to the etiology of Friedreich's ataxia.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|