1
|
Tan Y, Wang J, Liu C, Wu S, Zhou M, Zhang Y, Yin T, Yang J. KLF4 regulates trophoblast function and associates with unexplained recurrent spontaneous abortion. J Transl Med 2024; 22:922. [PMID: 39390495 PMCID: PMC11465507 DOI: 10.1186/s12967-024-05707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is defined as two or more consecutive spontaneous abortions before 20 weeks with the same spouse [1]. However, approximately 50% of RSA cases of unknown cause are classified as unexplained recurrent spontaneous abortion (URSA). Potential factors include decreased trophoblast cell migration and invasion, leading to impaired placental implantation and maintenance of the normal maternal-fetal interface. However, the mechanism of this pathogenesis remains unknown. In this study, we investigated the potential role and mechanism of KLF4 in regulating URSA by influencing the invasion and migration ability of trophoblast cells. METHODS We firstly identified 817 differentially expressed genes by performing a difference analysis of the dataset GSE121950 [2] related to recurrent abortion, and intersected the top 10 genes obtained respectively by the three algorithms: DMNC, MNC, and EPC using Venn Diagram.To detect the expression levels of core genes, villi samples were obtained from normal pregnant women and patients with URSA. RT-qPCR analysis revealed a significant difference in KLF4 mRNA expression and KLF4 was then analyzed. Trophoblast cell lines HTR8 and JEG3 were used to investigate the effect of KLF4 on trophoblastic function. Wound healing and transwell assays was performed to detect the invasion and migration of trophoblast cells. The expression of epithelial-mesenchymal transition(EMT) molecules were detected by RT-qPCR and western blot. Promoter detection and epigenetic modification were detected by chromatin immunoprecipitation (ChIP) assay. Molecular nuclear localization was detected by immunofluorescence and subcellular fractionation. Miscarried mice model was used to study the effects of KLF4 on URSA induced by reduced trophoblast invasion and migration. RESULTS KLF4 is highly expressed in the villi of patients with URSA. KLF4 inhibits the expression level of H3R2ME2a in trophoblast cells by regulating the transcriptional level and nuclear translocation of PRMT6, thereby inhibiting the possible regulatory mechanism of trophoblastic invasion and providing a potential treatment strategy for URSA in vivo. CONCLUSIONS The KLF4/PRMT6/H3R2ME2a axis regulates mechanisms associated with unexplained recurrent spontaneous abortion by regulating trophoblast function.
Collapse
Affiliation(s)
- Yiling Tan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunming Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujuan Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Mengqi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Ferdous AS, Lynch TR, Costa Dos Santos SJ, Kapadia DH, Crittenden SL, Kimble J. LST-1 is a bifunctional regulator that feeds back on Notch-dependent transcription to regulate C. elegans germline stem cells. Proc Natl Acad Sci U S A 2023; 120:e2309964120. [PMID: 37729202 PMCID: PMC10523584 DOI: 10.1073/pnas.2309964120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Notch signaling regulates stem cells across animal phylogeny. C. elegans Notch signaling activates transcription of two genes, lst-1 and sygl-1, that encode potent regulators of germline stem cells. The LST-1 protein regulates stem cells in two distinct ways: It promotes self-renewal posttranscriptionally and also restricts self-renewal by a poorly understood mechanism. Its self-renewal promoting activity resides in its N-terminal region, while its self-renewal restricting activity resides in its C-terminal region and requires the Zn finger. Here, we report that LST-1 limits self-renewal by down-regulating Notch-dependent transcription. We detect LST-1 in the nucleus, in addition to its previously known cytoplasmic localization. LST-1 lowers nascent transcript levels at both lst-1 and sygl-1 loci but not at let-858, a Notch-independent locus. LST-1 also lowers levels of two key components of the Notch activation complex, the LAG-1 DNA binding protein and Notch intracellular domain (NICD). Genetically, an LST-1 Zn finger mutant increases Notch signaling strength in both gain- and loss-of-function GLP-1/Notch receptor mutants. Biochemically, LST-1 co-immunoprecipitates with LAG-1 from nematode extracts, suggesting a direct effect. LST-1 is thus a bifunctional regulator that coordinates posttranscriptional and transcriptional mechanisms in a single protein. This LST-1 bifunctionality relies on its bipartite protein architecture and is bolstered by generation of two LST-1 isoforms, one specialized for Notch downregulation. A conserved theme from worms to human is the coupling of PUF-mediated RNA repression together with Notch feedback in the same protein.
Collapse
Affiliation(s)
- Ahlan S. Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | | | - Deep H. Kapadia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Sarah L. Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
4
|
Akash MSH, Rasheed S, Rehman K, Ibrahim M, Imran M, Assiri MA. Biochemical Activation and Regulatory Functions of Trans-Regulatory KLF14 and Its Association with Genetic Polymorphisms. Metabolites 2023; 13:metabo13020199. [PMID: 36837818 PMCID: PMC9962810 DOI: 10.3390/metabo13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Krüpple-Like family of transcription factor-14 (KLF14) is a master trans-regulatory gene that has multiple biological regulatory functions and is involved in many pathological mechanisms. It controls the expressions of several other genes which are involved in multiple regulatory functions. KLF14 plays a significant role in lipid metabolism, glucose regulation and insulin sensitivity. Cell apoptosis, proliferation, and differentiation are regulated by the KLF14 gene, and up-regulation of KLF14 prevents cancer progression. KLF14 has been used as an epigenetic biomarker for the estimation of chronological age due to the presence of different age-related CpG sites on genes that become methylated with age. Different genome-wide association studies have identified several KLF14 variants in adipose tissues. These single nucleotide polymorphisms in KLF14 have been associated with dyslipidemia, insulin resistance, and glucose intolerance. Moreover, the prevalence of genetic polymorphism is different in different populations due to ethnic differences and epigenetic modifications. In addition, environmental and physiological factors such as diet, age, gender, and obesity are also responsible for genetic mutations in KLF14.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.S.H.A.); (K.R.)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
- Correspondence: (M.S.H.A.); (K.R.)
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62413, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62413, Saudi Arabia
| |
Collapse
|
5
|
Wang XP, Huang Z, Li YL, Jin KY, Dong DJ, Wang JX, Zhao XF. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet 2022; 18:e1010229. [PMID: 35696369 PMCID: PMC9191741 DOI: 10.1371/journal.pgen.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression. Glucose is the direct substrate for energy production in animal and humans. Autophagy and gluconeogenesis are known to help organisms maintaining energy substrates; however, the mechanism of integration of autophagy and gluconeogenesis is unclear. Holometabolous insects stop feeding during metamorphosis under steroid hormone 20-hydroxyecdysone (20E) regulation, providing a good model for the study. Using lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that Krüppel-like factor 15 (KLF15) integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20E regulation. 20E increased Klf15 expression, and KLF15 in turn promoted autophagy-related and gluconeogenesis-related genes expression during metamorphosis. Autophagy and apoptosis of the fat body provided substrates for gluconeogenesis. This work clarified the important functions and mechanisms of KLF15 in autophagy and glycometabolism reprogramming for glucose homeostasis after feeding stop during insect metamorphosis.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhen Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
6
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
7
|
Chen L, Huang R, Li Y, Li Y, Li Y, Liao L, He L, Zhu Z, Wang Y. Genome-wide identification, evolution of Krüppel-like factors (klfs) and their expressions during GCRV challenge in grass carp (Ctenopharyngodonidella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104062. [PMID: 33667530 DOI: 10.1016/j.dci.2021.104062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The Krüppel-like factors (KLFs) are a family of transcription factors containing three highly conserved tandem zinc finger structures, and each member participates in multiple physiological and pathological processes. The publication of genome sequences and the application of bioinformatics tools have led to the discovery of numerous gene families in fishes. Here, 24 klf genes were re-annotated in grass carp. Subsequently, the number of klf family members were investigated in some representative vertebrate species. Then, a series of bioinformatics analysis showed that grass carp klfs in the same subfamily had similar genome structure patterns and conserved distribution patterns of motifs, which supported their molecular evolutionary relationships. Furthermore, the mRNA expression profiles showed that 24 grass carp klfs were ubiquitously expressed in 11 different tissues, and some of them displayed tissue-enriched expression patterns. Finally, the expressions of the evolutionarily expanded klf members (klf2a, 2b, 2l, 5a, 5b, 5l, 6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 15 and 15l) during GCRV infection were also analyzed. The results suggested that grass carp klf genes with common evolutionary sources may share functional diversity and conservation. In conclusion, this study provides preliminary clues for further researches on grass carp klf members and their underlying transcriptional regulatory mechanisms during GCRV infection.
Collapse
Affiliation(s)
- Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
8
|
Xu L, Zhu D, Zhang Y, Liang G, Liang M, Wei X, Feng X, Wu X, Shang X. Compound Heterozygosity for KLF1 Mutations Causing Hemolytic Anemia in Children: A Case Report and Literature Review. Front Genet 2021; 12:691461. [PMID: 34249106 PMCID: PMC8267787 DOI: 10.3389/fgene.2021.691461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Anemia is one of the most common diseases affecting children worldwide. Hereditary forms of anemia due to gene mutations are difficult to diagnose because they only rely on clinical manifestations. In regions with high prevalence of thalassemia such as southern China, pediatric patients with a hereditary hemolytic anemia (HHA) phenotype are often diagnosed with β-thalassemia. However, HHA can be caused by other gene defects. Here, a case previously diagnosed with thalassemia in a local hospital was sent to our laboratory for further genetic diagnosis. Preliminary molecular testing did not identify any mutations in globin genes. Methods All blood samples were collected after informed consent had been obtain from the proband’s parents. Both clinical and genetic analyses were conducted for the patient and her family members, including clinical data collection and sequencing of the KLF1 gene. Relevant literature was reviewed, including genetically confirmed cases with well-documented clinical summaries. Results Based on the detailed clinical data for this case, we diagnosed the patient with severe HHA. Sanger sequencing confirmed that there was a mutation on each KLF1 allele in the proband, which is missense mutation c.892G > C (p.Ala298Pro) inherited from father and frameshift mutation c.525_526insCGGCGCC (p.Gly176Argfs∗179) from the mother, respectively. A summary of the KLF1 mutation spectrum and a clarification of genotype–phenotype correlation were performed through a combined analysis of the case and literature studies. Conclusion This study corrected the misdiagnosis and identified the etiology in a Chinese patient with HHA. Identification of the disease-causing gene is important for the treatment and care of the patient and prevention of another affected childbirth in her family. In addition, this study provided insight to better distinguish HHA patients with β-thalassemia mutations from those with KLF1 mutations.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dina Zhu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanxia Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaofeng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoqing Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yang Q, Civelek M. Transcription Factor KLF14 and Metabolic Syndrome. Front Cardiovasc Med 2020; 7:91. [PMID: 32548128 PMCID: PMC7274157 DOI: 10.3389/fcvm.2020.00091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetSyn) is a combination of metabolic abnormalities that lead to the development of cardiovascular disease (CVD) and Type 2 Diabetes (T2D). Although various criteria for defining MetSyn exist, common abnormalities include abdominal obesity, elevated serum triglyceride, insulin resistance, and blood glucose, decreased high-density lipoprotein cholesterol (HDL-C), and hypertension. MetSyn prevalence has been increasing with the rise of obesity worldwide, with significantly higher prevalence in women compared with men and in Hispanics compared with Whites. Affected individuals are at a higher risk of developing T2D (5-fold) and CVD (2-fold). Heritability estimates for individual components of MetSyn vary between 40 and 70%, suggesting a strong contribution of an individual's genetic makeup to disease pathology. The advent of next-generation sequencing technologies has enabled large-scale genome-wide association studies (GWAS) into the genetics underlying MetSyn pathogenesis. Several such studies have implicated the transcription factor KLF14, a member of the Krüpple-like factor family (KLF), in the development of metabolic diseases, including obesity, insulin resistance, and T2D. How KLF14 regulates these metabolic traits and increases the risk of developing T2D, atherosclerosis, and liver dysfunction is still unknown. There have been some debate and controversial results with regards to its expression profile and functionality in various tissues, and a systematic review of current knowledge on KLF14 is lacking. Here, we summarize the research progress made in understanding the function of KLF14 and describe common attributes of its biochemical, physiological, and pathophysiological roles. We also discuss the current challenges in understanding the role of KLF14 in metabolism and provide suggestions for future directions.
Collapse
Affiliation(s)
- Qianyi Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
A Krüppel-like factor 1 ( KLF1) Mutation Associated with Severe Congenital Dyserythropoietic Anemia Alters Its DNA-Binding Specificity. Mol Cell Biol 2020; 40:MCB.00444-19. [PMID: 31818881 DOI: 10.1128/mcb.00444-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Krüppel-like factor 1 (KLF1/EKLF) is a transcription factor that globally activates genes involved in erythroid cell development. Various mutations are identified in the human KLF1 gene. The E325K mutation causes congenital dyserythropoietic anemia (CDA) type IV, characterized by severe anemia and non-erythroid-cell-related symptoms. The CDA mutation is in the second zinc finger of KLF1 at a position functionally involved in its interactions with DNA. The molecular parameters of how CDA-KLF1 exerts its biological effects have not been addressed. Here, using an in vitro selection strategy, we determined the preferred DNA-binding site for CDA-KLF1. Binding to the deduced consensus sequence is supported by in vitro gel shifts and by in vivo functional reporter gene studies. Two significant changes compared to wild-type (WT) binding are observed: G is selected as the middle nucleotide, and the 3' portion of the consensus sequence is more degenerate. As a consequence, CDA-KLF1 did not bind the WT consensus sequence. However, activation of ectopic sites is promoted. Continuous activation of WT target genes occurs if they fortuitously contain the novel CDA site nearby. Our findings provide a molecular understanding of how a single mutation in the KLF1 zinc finger exerts effects on erythroid physiology in CDA type IV.
Collapse
|
11
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Lin CY, Lin LY. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. PLoS One 2018; 13:e0191971. [PMID: 29381770 PMCID: PMC5790263 DOI: 10.1371/journal.pone.0191971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.
Collapse
Affiliation(s)
- Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
13
|
Krüppel-Like Factor 8 Overexpression Correlates with Poor Prognosis in Non-Small Cell Lung Cancer. Pathol Oncol Res 2017; 25:115-121. [DOI: 10.1007/s12253-017-0321-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
|
14
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
15
|
Shao M, Ge GZ, Liu WJ, Xiao J, Xia HJ, Fan Y, Zhao F, He BL, Chen C. Characterization and phylogenetic analysis of Krüppel-like transcription factor (KLF) gene family in tree shrews (Tupaia belangeri chinensis). Oncotarget 2017; 8:16325-16339. [PMID: 28032601 PMCID: PMC5369966 DOI: 10.18632/oncotarget.13883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc finger transcription factors regulating embryonic development and diseases. The phylogenetics of KLFs has not been studied in tree shrews, an animal lineage with a closer relationship to primates than rodents. Here, we identified 17 KLFs from Chinese tree shrew (Tupaia belangeri chinensis). KLF proteins are highly conserved among humans, monkeys, rats, mice and tree shrews compared to zebrafish and chickens. The CtBP binding site, Sin3A binding site and nuclear localization signals are largely conserved between tree shrews and human beings. Tupaia belangeri (Tb) KLF5 contains several conserved post-transcriptional modification motifs. Moreover, the mRNA and protein expression patterns of multiple tbKLFs are tissue-specific. TbKLF5, like hKLF5, significantly promotes NIH3T3 cell proliferation in vitro. These results provide insight for future studies regarding the structure and function of the tbKLF gene family.
Collapse
Affiliation(s)
- Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guang-Zhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wen-Jing Liu
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ji Xiao
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hou-Jun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Li He
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
16
|
Laitman BM, Mariani JN, Zhang C, Sawai S, John GR. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation. PLoS One 2017; 12:e0170477. [PMID: 28107514 PMCID: PMC5249183 DOI: 10.1371/journal.pone.0170477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL) differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna) proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1) display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
- * E-mail:
| | - John N. Mariani
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Chi Zhang
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Setsu Sawai
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Gareth R. John
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| |
Collapse
|
17
|
Qiu J, Tang Z, Yuan M, Wu W, Yang K. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication. Virus Res 2016; 228:79-89. [PMID: 27894868 DOI: 10.1016/j.virusres.2016.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
Abstract
During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.
Collapse
Affiliation(s)
- Jianxiang Qiu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhimin Tang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Yien YY, Gnanapragasam MN, Gupta R, Rivella S, Bieker JJ. Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues. Exp Hematol 2015; 43:65-70. [PMID: 25283745 PMCID: PMC4268327 DOI: 10.1016/j.exphem.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/16/2022]
Abstract
Alternative splicing has emerged as a vital way to expand the functional repertoire of a set number of mammalian genes. For example, such changes can dramatically alter the function and cellular localization of transcription factors. With this in mind, we addressed whether EKLF/KLF1 mRNA, coding for a transcription factor that plays a critical role in erythropoietic gene regulation, is alternatively spliced. We find that EKLF mRNA undergoes exon skipping only in primary tissues and that this splice variant (SV) remains at a very low level in both embryonic and adult erythroid cells, as well as during terminal differentiation. The resultant protein is truncated and partially encodes a non-erythroid Krüppel-like factor amino acid sequence. Its overexpression can alter full-length erythroid Krüppel-like factor function at selected promoters. We discuss these results in the context of stress and with respect to recent global studies on the role of alternative splicing during terminal erythroid differentiation.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Merlin Nithya Gnanapragasam
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Ritama Gupta
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Stefano Rivella
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - James J Bieker
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States; Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
19
|
Shyu YC, Lee TL, Chen X, Hsu PH, Wen SC, Liaw YW, Lu CH, Hsu PY, Lu MJ, Hwang J, Tsai MD, Hwang MJ, Chen JR, Shen CKJ. Tight regulation of a timed nuclear import wave of EKLF by PKCθ and FOE during Pro-E to Baso-E transition. Dev Cell 2014; 28:409-22. [PMID: 24576425 DOI: 10.1016/j.devcel.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 11/24/2013] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
Erythropoiesis is a highly regulated process during which BFU-E are differentiated into RBCs through CFU-E, Pro-E, PolyCh-E, OrthoCh-E, and reticulocyte stages. Uniquely, most erythroid-specific genes are activated during the Pro-E to Baso-E transition. We show that a wave of nuclear import of the erythroid-specific transcription factor EKLF occurs during the Pro-E to Baso-E transition. We further demonstrate that this wave results from a series of finely tuned events, including timed activation of PKCθ, phosphorylation of EKLF at S68 by P-PKCθ(S676), and sumoylation of EKLF at K74. The latter EKLF modifications modulate its interactions with a cytoplasmic ankyrin-repeat-protein FOE and importinβ1, respectively. The role of FOE in the control of EKLF nuclear import is further supported by analysis of the subcellular distribution patterns of EKLF in FOE-knockout mice. This study reveals the regulatory mechanisms of the nuclear import of EKLF, which may also be utilized in the nuclear import of other factors.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Beitou, Taipei 112, Taiwan, ROC; Department of Education and Research, Taipei City Hospital, Da'an, Taipei 103, Taiwan, ROC; Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC.
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Xin Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Pang-Hung Hsu
- The Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Shau-Ching Wen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Yi-Wei Liaw
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Po-Yen Hsu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Mu-Jie Lu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - JauLang Hwang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Jim-Ray Chen
- Department of Pathology, Keelung Chang Gung Memorial Hospital, Anle, Keelung 204, Taiwan, ROC; College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 259, Taiwan, ROC
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC.
| |
Collapse
|
20
|
Choi S, Yamashita E, Yasuhara N, Song J, Son SY, Won YH, Hong HR, Shin YS, Sekimoto T, Park IY, Yoneda Y, Lee SJ. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin β. ACTA ACUST UNITED AC 2014; 70:1050-60. [PMID: 24699649 DOI: 10.1107/s1399004714000972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin β directly and as a DNA-binding domain. Here, a 2.5 Å resolution structure of four ZF domains of Snail1 complexed with importin β is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin β in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin β is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.
Collapse
Affiliation(s)
- Saehae Choi
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Noriko Yasuhara
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jinsue Song
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Se-Young Son
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Young Han Won
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hye Rim Hong
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoon Sik Shin
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Seungbong 410, Heungduk, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
21
|
Li JZ, Chen X, Gong XL, Hu HY, Shi D, Lu YM, Qiu L, Lu F, Hu ZL, Zhang JP. Identification of a functional nuclear localization signal mediating nuclear import of the zinc finger transcription factor ZNF24. PLoS One 2013; 8:e79910. [PMID: 24224020 PMCID: PMC3815127 DOI: 10.1371/journal.pone.0079910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
ZNF24 is a member of the SCAN domain family of Krüppel-like zinc finger (ZF) transcription factors, which plays a critical role in cell proliferation and differentiation. However, how ZNF24 enters the nucleus in order to exert its function remains unclear since its nuclear localization signal(s) (NLS) has not been identified. Here, we generated a series of GFP-tagged deletion and point mutants and assessed their subcellular localization. Our results delimit the NLS to ZF1-2. Deletion of ZF1-2 caused cytoplasmic accumulation of ZNF24. Fusion of the ZF1-2 to green fluorescent protein (GFP) targeted GFP to the nucleus, demonstrating that the ZF1-2 is both necessary and sufficient for nuclear localization. ZNF24 containing histidine to leucine mutations that disrupt the structure of ZF1 or/and ZF2 retains appropriate nuclear localization, indicating that neither the tertiary structure of the zinc fingers nor specific DNA binding are necessary for nuclear localization. K286A and R290A mutation led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that ZNF24 interacted with importin-β and this interaction required the ZF motifs. The β-Catenin (CTNNB1) luciferase assays showed that the ZNF24 mutants defective in nuclear localization could not promote CTNNB1promoter activation as the wild-type ZNF24 did. Taken together, these results suggest that consecutive ZF1-2 is critical for the regulation of ZNF24 nuclear localization and its transactivation function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| | - Xia Chen
- Cancer Institute, Second Military Medical University, Shanghai, China
| | - Xue-Lian Gong
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- Department of Health Toxicology, Second Military Medical University, Shanghai, China
| | - Hong-Yuan Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Duo Shi
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi-Ming Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Fa Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen-Lin Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun-Ping Zhang
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| |
Collapse
|
22
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Heard ME, Pabona JMP, Clayberger C, Krensky AM, Simmen FA, Simmen RCM. The reproductive phenotype of mice null for transcription factor Krüppel-like factor 13 suggests compensatory function of family member Krüppel-like factor 9 in the peri-implantation uterus. Biol Reprod 2012; 87:115. [PMID: 22993382 DOI: 10.1095/biolreprod.112.102251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ovarian hormones estrogen and progesterone promote uterine receptivity and successful pregnancy through their cognate receptors functioning in concert with context-dependent nuclear coregulators. Previously, we showed that the transcription factor Krüppel-like factor (KLF) 9 is a progesterone receptor (PGR) coactivator in the uterus and that mice null for Klf9 exhibit subfertility and reduced progesterone sensitivity. The highly related family member KLF13 displays increased expression in uteri of pregnant and nonpregnant Klf9 null mice and similarly regulates PGR-mediated transactivation in endometrial stromal cells. However, a uterine phenotype with loss of Klf13 has not been reported. In the present study, we demonstrate that Klf13 deficiency in mice did not compromise female fertility and pregnancy outcome. Klf13 null females had litter sizes, numbers of implanting embryos, uterine morphology, and ovarian steroid hormone production comparable to those of wild-type (WT) counterparts. Further, pregnant WT and Klf13 null females at Day Postcoitum (DPC) 3.5 had similar uterine Pgr, estrogen receptor, and Wnt-signaling component transcript levels. Nuclear levels of KLF9 were higher in Klf13 null than in WT uteri at DPC 3.5, albeit whole-tissue KLF9 protein and transcript levels did not differ between genotypes. The lack of a similar induction of nuclear KLF9 levels in uteri of virgin Klf13((-/-)) mice relative to WT uteri was associated with lower stromal PGR expression. In differentiating human endometrial stromal cells, coincident KLF9/KLF13 knockdown by small interfering RNA targeting reduced decidualization-associated PRL expression, whereas KLF9 and KLF13 knockdowns alone reduced transcript levels of WNT4 and BMP2, respectively. Results suggest that KLF9 and KLF13 functionally compensate in peri-implantation uterus for pregnancy success.
Collapse
Affiliation(s)
- Melissa E Heard
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | |
Collapse
|
24
|
Southwood CM, Lipovich L, Gow A. Tissue-restricted transcription from a conserved intragenic CpG island in the Klf1 gene in mice. Biol Reprod 2012; 87:108. [PMID: 22933519 DOI: 10.1095/biolreprod.112.099879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beyond Mendelian inheritance, an understanding of the complexities and consequences of the transfer of nonhereditary information to successive generations is at an early stage. Such epigenetic functionality is exemplified by DNA methylation and, as genome-wide high-throughput methodologies emerge, is increasingly being considered in the context of conserved intragenic and intergenic CpG islands that function as alternate sites of transcription initiation. Here we characterize an intragenic CpG island in exon 2 of the protein-coding mouse Klf1 gene, from which clustered transcription initiation sites yield positive-strand, severely truncated, capped and spliced RNAs. Expression from this CpG island in the testis begins between Postnatal Days 14-20, increases during development, and is temporally correlated with the maturation of secondary spermatocytes as they become the dominant cell population in the seminiferous epithelium. Only full-length KLF1-encoding mRNAs are detected in the hematopoietic tissue, spleen; thus, expression from the exon 2 CpG island is both developmentally regulated and tissue restricted. DNA methylation analysis indicates that spatiotemporal expression from the Klf1 CpG island is not associated with hypermethylation. Finally, our computational analysis from multiple species confirms intragenic transcription initiation and indicates that the KLF1 CpG island is evolutionarily conserved. Currently we have no evidence that these truncated RNAs can be translated via nonconventional mechanisms such as in-frame, conserved non-AUG-dependent Kozak consensus sequences; however, high-quality carboxyl-terminal antibodies will more effectively address this issue.
Collapse
Affiliation(s)
- Cherie M Southwood
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
25
|
Matsuo T, Kuramoto H, Kumazaki T, Mitsui Y, Takahashi T. LIN54 harboring a mutation in CHC domain is localized to the cytoplasm and inhibits cell cycle progression. Cell Cycle 2012; 11:3227-36. [PMID: 22895175 DOI: 10.4161/cc.21569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian LIN complex (LINC) plays important roles in regulation of cell cycle genes. LIN54 is an essential core subunit of the LINC and has a DNA binding region (CHC domain), which consists of two cysteine-rich (CXC) domains separated by a short spacer. We generated various LIN54 mutants, such as CHC deletion mutant, and investigated their subcellular localizations and effects on cell cycle. Wild-type LIN54 was predominantly localized in the nucleus. We identified two nuclear localization signals (NLSs), both of which were required for nuclear localization of LIN54. Interestingly, deletion of one CXC domain resulted in an increased cytoplasmic localization. The cytoplasmic LIN54 mutant accumulated in the nucleus after leptomycin B treatment, suggesting CRM1-mediated nuclear export of LIN54. Point mutations (C525Y and C611Y) in conserved cysteine residues of CXC domain that abolish DNA binding activity also increased cytoplasmic localization. These data suggest that DNA binding activity of LIN54 is required for its nuclear retention. We also found that LIN54 (C525Y) and LIN54 (C611Y) inhibited cell cycle progression and led to abnormal nuclear morphology. Other CXC mutants also induced similar abnormalities in cell cycle progression. LIN54 (C525Y) led to a decreased expression of some G2/M genes, whose expressions are regulated by LINC. This cell cycle inhibition was partially restored by overexpression of wild-type LIN54. These results suggest that abnormal cellular localization of LIN54 may have effects on LINC activity.
Collapse
Affiliation(s)
- Taira Matsuo
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
26
|
Yien YY, Bieker JJ. Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2Cβ. J Biol Chem 2012; 287:15193-204. [PMID: 22393050 DOI: 10.1074/jbc.m112.350496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF; KLF1) is an erythroid-specific transcription factor required for the transcription of genes that regulate erythropoiesis. In this paper, we describe the identification of a novel EKLF interactor, Ppm1b, a serine-threonine protein phosphatase that has been implicated in the attenuation of NFκB signaling and the regulation of Cdk9 phosphorylation status. We show that Ppm1b interacts with EKLF via its PEST1 sequence. However, its genetic regulatory role is complex. Using a promoter-reporter assay in an erythroid cell line, we show that Ppm1b superactivates EKLF at the β-globin and BKLF promoters, dependent on intact Ppm1b phosphatase activity. Conversely, depletion of Ppm1b in CD34(+) cells leads to a higher level of endogenous β-globin gene activation after differentiation. We also observe that Ppm1b likely has an indirect role in regulating EKLF turnover via its zinc finger domain. Together, these studies show that Ppm1b plays a multilayered role in regulating the availability and optimal activity of the EKLF protein in erythroid cells.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental and Regenerative Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
27
|
Belacortu Y, Weiss R, Kadener S, Paricio N. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG) proteins. PLoS One 2012; 7:e32004. [PMID: 22359651 PMCID: PMC3281117 DOI: 10.1371/journal.pone.0032004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/17/2012] [Indexed: 01/26/2023] Open
Abstract
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | - Ron Weiss
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Sebastian Kadener
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
- * E-mail:
| |
Collapse
|
28
|
Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood 2011; 118:e139-48. [PMID: 21900194 DOI: 10.1182/blood-2011-05-355107] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1.
Collapse
|
29
|
He S, Huang K, Zhang X, Yu X, Huang P, An C. The LSD1-type zinc finger motifs of Pisum sativa LSD1 are a novel nuclear localization signal and interact with importin alpha. PLoS One 2011; 6:e22131. [PMID: 21811563 PMCID: PMC3139611 DOI: 10.1371/journal.pone.0022131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog of AtLSD1. Subcellular localization analysis of green fluorescent protein (GFP)-tagged PsLSD1 indicates that PsLSD1 is localized in the nucleus. Using a series of GFP-tagged PsLSD1 deletion mutants, we found that the three LSD1-type zinc finger motifs of PsLSD1 alone can target GFP to the nucleus, whereas deletion of the three zinc finger motifs or any individual zinc finger motif causes PsLSD1 to lose its nuclear localization, indicating that the three zinc finger motifs are necessary and sufficient for its nuclear localization. Moreover, site-directed mutagenesis analysis of GFP-tagged PsLSD1 indicates that tertiary structure and basic amino acids of each zinc finger motif are necessary for PsLSD1 nuclear localization. In addition, yeast two-hybrid, pull-down, and BiFC assays demonstrate that the three zinc finger motifs of PsLSD1 directly bind to importin α in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that the LSD1-type zinc finger motifs of PsLSD1 are a novel nuclear localization signal and directly bind to importin α, and suggest that the nuclear import of LSD1 may rely on the interaction between its zinc finger motifs and importin α. Moreover, the nuclear localization of PsLSD1 suggests that LSD1 may function as a transcription regulator involved in negatively regulating PCD.
Collapse
Affiliation(s)
- Shanping He
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Kuowei Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xiangchun Yu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ping Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
30
|
Sekimoto T, Miyamoto Y, Arai S, Yoneda Y. Importin alpha protein acts as a negative regulator for Snail protein nuclear import. J Biol Chem 2011; 286:15126-31. [PMID: 21454664 DOI: 10.1074/jbc.m110.213579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snail, a zinc finger-containing transcriptional regulator, migrates into the nucleus where it controls gene expression. We demonstrated previously that importin β1 directly recognizes the zinc finger domain of Snail and transports it into the nucleus. Here, using in vitro and in vivo assays, we show that importin α, an adaptor protein for importin β1, negatively regulates the nuclear import of Snail mediated by importin β1. In vitro binding assays indicated that importin α interacted with the zinc finger domain of Snail to compete with the binding of importin β1 and that Snail did not form a ternary complex with importin α/importin β1. Overexpression of importin α in A549 cells reduced the endogenous Snail protein level, which was restored by inhibitors of the proteasome and glycogen synthase kinase 3β. Furthermore, knockdown of importin α by siRNA treatment increased the endogenous Snail protein level in several cancer cell lines. This study provides a novel regulatory mechanism of the nuclear protein import process by importin α and gives an implication to control Snail activity by inhibiting its nuclear localization.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
31
|
Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One 2010; 5. [PMID: 20844588 PMCID: PMC2936564 DOI: 10.1371/journal.pone.0012639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background The tumor suppressor KLF6 and its oncogenic cytoplasmic splice variant KLF6-SV1 represent a paradigm in cancer biology in that their antagonistic cancer functions are encoded within the same gene. As a consequence of splicing, KLF6-SV1 loses both the C-terminus C2H2 three zinc finger (ZF) domain, which characterizes all KLF proteins, as well as the adjacent 5′ basic region (5BR), a putative nuclear localization signal (NLS). It has been hypothesized that this NLS is a functional domain critical to direct the distinct subcellular localization of the tumor suppressor and its splice variant. Methodology/Principal Findings In this study, we demonstrate using EGFP fusion constructs that KLF6/KLF6-SV1 nucleo-cytoplasmic transport is not regulated by the 5′ basic region but activated by a novel NLS encoded within the ZF domain, and a nuclear export signal (NES) located in the first 16 amino acids of the shared N-terminus sequence. We demonstrate KLF6 nuclear export to be Crm1-dependent. The dysregulation of nucleo-cytoplasmic transport when disrupting the KLF6 NLS using site-directed mutagenesis showed that its integrity is necessary for appropriate protein stability. Moreover, these mutations impaired transcriptional induction of two KLF6 well-characterized target genes, E-cadherin and p21, as shown by RT-PCR and luciferase promoter assays. The addition of the ZF domain to KLF6-SV1 results in its nuclear localization and a markedly decreased half-life similar to wild type KLF6. Conclusions/Significance We describe the domains that control KLF6 nucleo-cytoplasmic shuttling and how these domains play a role in KLF6 protein half-life and tumor suppressor function. The results begin to mechanistically explain, at least in part, the opposing functions of KLF6 and KLF6-SV1 in cancer.
Collapse
|
32
|
Porcine KLF gene family: Structure, mapping, and phylogenetic analysis. Genomics 2010; 95:111-9. [DOI: 10.1016/j.ygeno.2009.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 11/20/2022]
|
33
|
Mehta TS, Monzur F, Zhao J. Determination of nuclear localization signal sequences for Krüppel-like factor 8. Methods Mol Biol 2010; 647:171-86. [PMID: 20694667 DOI: 10.1007/978-1-60761-738-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factor proteins function in the nucleus to regulate gene expression. Many transcription factors are critical regulators of tumor progression. Conversely, many oncogenic and tumor suppressor proteins are transcription factors or other types of nuclear proteins. Because of their critical physiological and pathological roles, these tumor regulators are tightly regulated not only in the protein expression but also in their subcellular localization. This chapter is focused on experimental strategies and method details for the identification and characterization of nuclear localization signal sequences for nuclear proteins using the Krüppel-like transcription factor 8 as an example.
Collapse
Affiliation(s)
- Tina S Mehta
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | |
Collapse
|
34
|
The Krüppel traffic report: cooperative signals direct KLF8 nuclear transport. Cell Res 2009; 19:1041-3. [PMID: 19727130 DOI: 10.1038/cr.2009.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
35
|
Mingot JM, Vega S, Maestro B, Sanz JM, Nieto MA. Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J Cell Sci 2009; 122:1452-60. [PMID: 19386897 DOI: 10.1242/jcs.041749] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Snail proteins are C(2)H(2) class zinc finger transcription factors involved in different processes during embryonic development, as well as in several adult pathologies including cancer and organ fibrosis. The expression of Snail transcription factors is tightly regulated at the transcriptional level and their activity is modulated by their subcellular localization. Given the importance of this gene family in physiology and pathology, it is essential to understand the mechanisms by which Snail proteins are imported into or exported out of the nucleus. Here we show that several importins mediate the nuclear import of the human Snail proteins and we identify a unique nuclear localization signal (NLS), recognized by all the importins, that has been conserved during the evolution of the Snail family. This NLS is characterized by the presence of basic residues at defined positions in at least three consecutive zinc fingers. Interestingly, the consensus residues for importin-binding are also involved in DNA binding, suggesting that importins could prevent non-specific binding of these transcription factors to cytoplasmic polyanions. Importantly, the identified basic residues are also conserved in other families of C(2)H(2) transcription factors whose nuclear localization requires the zinc finger region.
Collapse
Affiliation(s)
- José-Manuel Mingot
- Instituto de Neurociencias, CSIC-UMH, Avda. Ramón y Cajal s/n, San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
36
|
A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Res 2009; 19:1098-109. [PMID: 19488069 DOI: 10.1038/cr.2009.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) transcription factor plays a critical role in cell cycle progression, oncogenic transformation, epithelial to mesenchymal transition and invasion. However, its nuclear localization signal(s) (NLS) has not been identified. KLF8 shares with other KLFs monopartite NLSs (mNLS) and C(2)H(2) zinc fingers (ZFs), both of which have been shown to be the NLSs for some other KLFs. In this report, using PCR-directed mutagenesis and immunofluorescent microscopy, we show that disruption of the mNLSs, deletion of any single ZF, or mutation of the Zn(2+)-binding or DNA-contacting motifs did not affect the nuclear localization of KLF8. Deletion of >1.5 ZFs from C-terminus, however, caused cytoplasmic accumulation of KLF8. Surprisingly, deletion of amino acid (aa) 151-200 region almost eliminated KLF8 from the nucleus. S165A, K171E or K171R mutation, or treatment with PKC inhibitor led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that KLF8 interacted with importin-beta and this interaction required the ZF motif. Deletion of aa 1-150 or 201-261 region alone did not alter the nuclear localization. BrdU incorporation and cyclin D1 promoter luciferase assays showed that the KLF8 mutants defective in nuclear localization could not promote DNA synthesis or cyclin D1 promoter activation as the wild-type KLF8 did. Taken together, these results suggest that KLF8 has two NLSs, one surrounding S165 and K171 and the other being two tandem ZFs, which are critical for the regulation of KLF8 nuclear localization and its cellular functions.
Collapse
|
37
|
Alekseev OM, Richardson RT, Alekseev O, O'Rand MG. Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP. Reprod Biol Endocrinol 2009; 7:45. [PMID: 19439102 PMCID: PMC2686705 DOI: 10.1186/1477-7827-7-45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/13/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA. METHODS Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA). RESULTS From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFkappaB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFkappaB, TRAF6). CONCLUSION This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks.
Collapse
Affiliation(s)
- Oleg M Alekseev
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| | - Richard T Richardson
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| | - Oleg Alekseev
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| | - Michael G O'Rand
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| |
Collapse
|
38
|
Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J. Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 2009; 380:28-32. [DOI: 10.1016/j.bbrc.2008.12.165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022]
|
39
|
Hatayama M, Tomizawa T, Sakai-Kato K, Bouvagnet P, Kose S, Imamoto N, Yokoyama S, Utsunomiya-Tate N, Mikoshiba K, Kigawa T, Aruga J. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 2008; 17:3459-73. [PMID: 18716025 PMCID: PMC2572694 DOI: 10.1093/hmg/ddn239] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left–right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1–4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin α1/α6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS.
Collapse
Affiliation(s)
- Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol 2008; 28:6160-70. [PMID: 18710946 DOI: 10.1128/mcb.00919-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of transcription factors provide alternate protein interaction platforms that lead to varied downstream effects. We have investigated how the acetylation of EKLF plays a role in its ability to alter the beta-like globin locus chromatin structure and activate transcription of the adult beta-globin gene. By establishing an EKLF-null erythroid line whose closed beta-locus chromatin structure and silent beta-globin gene status can be rescued by retroviral infection of EKLF, we demonstrate the importance of EKLF acetylation at lysine 288 in the recruitment of CBP to the locus, modification of histone H3, occupancy by EKLF, opening of the chromatin structure, and transcription of adult beta-globin. We also find that EKLF helps to coordinate this process by the specific association of its zinc finger domain with the histone H3 amino terminus. Although EKLF interacts equally well with H3.1 and H3.3, we find that only H3.3 is enriched at the adult beta-globin promoter. These data emphasize the critical nature of lysine acetylation in transcription factor activity and enable us to propose a model of how modified EKLF integrates coactivators, chromatin remodelers, and nucleosomal components to alter epigenetic chromatin structure and stimulate transcription.
Collapse
|
41
|
Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
|
42
|
Saijou E, Itoh T, Kim KW, Iemura SI, Natsume T, Miyajima A. Nucleocytoplasmic Shuttling of the Zinc Finger Protein EZI Is Mediated by Importin-7-dependent Nuclear Import and CRM1-independent Export Mechanisms. J Biol Chem 2007; 282:32327-37. [PMID: 17848547 DOI: 10.1074/jbc.m706793200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleocytoplasmic translocation constitutes a foundation for nuclear proteins to exert their proper functions and hence for various biological reactions to occur normally in eukaryotic cells. We reported previously that EZI/Zfp467, a 12 zinc finger motif-containing protein, localizes predominantly in the nucleus, yet the underlying mechanism still remains elusive. Here we constructed a series of mutant forms of EZI and examined their subcellular localization. The results delineated a non-canonical nuclear localization signal in the region covering the 9th to the 12th zinc fingers, which was necessary for nuclear accumulation of EZI as well as sufficient to confer nuclear localizing ability to a heterologous protein. We also found that the N-terminal domain of EZI is necessary for its nuclear export, the process of which was not sensitive to the CRM1 inhibitor leptomycin B. An interaction proteomics approach and the following co-immunoprecipitation experiments identified the nuclear import receptor importin-7 as a molecule that associated with EZI and, importantly, short interfering RNA-mediated knockdown of importin-7 expression completely abrogated nuclear accumulation of EZI. Taken together, these results identify EZI as a novel cargo protein for importin-7 and demonstrate a nucleocytoplasmic shuttling mechanism that is mediated by importin-7-dependent nuclear localization and CRM1-independent nuclear export.
Collapse
Affiliation(s)
- Eiko Saijou
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Philips AS, Kwok JC, Chong BH. Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem 2007; 282:24915-27. [PMID: 17548362 DOI: 10.1074/jbc.m701789200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocytoplasmic transport of GATA-4 is important in maintaining and regulating normal cardiogenesis and heart function. This report investigates the detailed mechanisms of GATA-4 nuclear transport. We characterized a nonclassical nuclear localization signal between amino acids 270 and 324 that actively transports GATA-4 into the nucleus of both HeLa cells and cardiac myocytes. Fine mapping studies revealed four crucial arginine residues within this region that mediate active transport predominantly through the nonclassical pathway via interaction with importin beta. These four residues were also essential for the DNA binding activity of GATA-4 and transcriptional activation of cardiac-specific genes. Interestingly, mutation of these residues not only inhibited DNA binding and gene transcription but also resulted in a preferential accumulation of the GATA-4 protein in distinct subnuclear speckles. A cardiac myocyte-specific, chromosome maintenance region 1-dependent nuclear export signal consisting of three essential leucine residues was also identified. The current study provides detailed information on the nuclear shuttling pathways of GATA-4 that represents an additional mechanism of gene regulation.
Collapse
Affiliation(s)
- Alana S Philips
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
44
|
Donaldson NS, Daniel Y, Kelly KF, Graham M, Daniel JM. Nuclear trafficking of the POZ-ZF protein Znf131. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:546-55. [PMID: 17306895 DOI: 10.1016/j.bbamcr.2006.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/06/2006] [Accepted: 12/08/2006] [Indexed: 01/21/2023]
Abstract
Znf131 is a member of the BTB/POZ family of transcription factors with roles in development and carcinogenesis. Like many members of this protein family, Znf131 displays robust nuclear localization in cultured cells, but the mechanism(s) of Znf131 nuclear trafficking is unknown. Here, we report the mechanism of Znf131 nuclear localization. Visual inspection of the Znf131 amino acid sequence revealed three basic regions (BR-1, -2 and -3) with the potential to serve as nuclear localization signals (NLS). Of the three basic regions, only BR-1 functioned independently to efficiently target heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. However, a Znf131 truncation mutant containing BR-2 and BR-3 efficiently targeted heterologous beta-gal-GFP fusion proteins to HeLa cell nuclei. Mutational analysis of full-length GFP-tagged Znf131 revealed that loss of any one BR alone did not prevent Znf131 nuclear localization. This apparent redundancy in NLS activity was due to the fact that intact BR-1 or BR-2 alone could target full-length Znf131 to nuclei. Consequently, simultaneous mutation of BR-1 and BR-2 abolished full-length Znf131 nuclear localization. Therefore, BR-1 and BR-2 are functional NLSs for Znf131 and as such are designated NLS-1 and NLS-2. Finally, wild type Znf131, and not a Znf131 NLS-defective mutant (NLS-1m/NLS-2m) interacted preferentially with the nuclear import receptor Importin-alpha3 in vitro.
Collapse
Affiliation(s)
- Nickett S Donaldson
- Department of Biology, LSB-331 McMaster University, 1280 Main Street West Hamilton, Canada ON L8S 4K1
| | | | | | | | | |
Collapse
|
45
|
Huang SM, Huang SP, Wang SL, Liu PY. Importin alpha1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1. Biochem J 2007; 402:359-66. [PMID: 17109628 PMCID: PMC1798434 DOI: 10.1042/bj20061295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zac1, a novel seven-zinc-finger transcription factor, preferentially binds GC-rich DNA elements and has intrinsic transactivation activity. To date, the NLS (nuclear localization signal) of Zac1 has not been empirically determined. We generated a series of EGFP (enhanced green fluorescence protein)-tagged deletion mutants of Zac1 and examined their subcellular localization, from which we defined two NLSs within the DNA-binding (or zinc-finger) domain. Fusion proteins consisting of the two EGFP-tagged zinc-finger clusters (zinc finger motifs 1-3 and 4-7) were located exclusively in the nucleus, demonstrating that each of the zinc-finger clusters is sufficient for nuclear localization. Physical interactions between these two zinc-finger clusters and importin alpha1 were demonstrated using an in vitro glutathione S-transferase pull-down assay. Finally, our results indicate that the association of Zac1 with importin alpha1 is also involved in regulating the transactivation activity of Zac1 on the p21WAF1/CIP1 gene and protein expression.
Collapse
Affiliation(s)
- Shih-Ming Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
- To whom correspondence should be addressed (email )
| | - Sheng-Ping Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Sung-Ling Wang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Pei-Yao Liu
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| |
Collapse
|
46
|
Shyu YC, Lee TL, Wen SC, Chen H, Hsiao WY, Chen X, Hwang J, Shen CKJ. Subcellular transport of EKLF and switch-on of murine adult beta maj globin gene transcription. Mol Cell Biol 2007; 27:2309-23. [PMID: 17242208 PMCID: PMC1820495 DOI: 10.1128/mcb.01875-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an essential transcription factor for mammalian beta-like globin gene switching, and it specifically activates transcription of the adult beta globin gene through binding of its zinc fingers to the promoter. It has been a puzzle that in the mouse, despite its expression throughout the erythroid development, EKLF activates the adult beta(maj) globin promoter only in erythroid cells beyond the stage of embryonic day 10.5 (E10.5) but not before. We show here that expression of the mouse beta(maj) globin gene in the aorta-gonad-mesonephros region of E10.5 embryos and in the E14.5 fetal liver is accompanied by predominantly nuclear localization of EKLF. In contrast, EKLF is mainly cytoplasmic in the erythroid cells of E9.5 blood islands in which beta(maj) is silenced. Remarkably, in a cultured mouse adult erythroleukemic (MEL) cell line, the activation of the beta(maj) globin gene by dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) induction is also paralleled by a shift of the subcellular location of EKLF from the cytoplasm to the nucleus. Blockage of the nuclear import of EKLF in DMSO-induced MEL cells with a nuclear export inhibitor repressed the transcription of the beta(maj) globin gene. Transient transfection experiments further indicated that the full-sequence context of EKLF was required for the regulation of its subcellular locations in MEL cells during DMSO induction. Finally, in both the E14.5 fetal liver cells and induced MEL cells, the beta-like globin locus is colocalized the PML oncogene domain nuclear body, and concentrated with EKLF, RNA polymerase II, and the splicing factor SC35. These data together provide the first evidence that developmental stage- and differentiation state-specific regulation of the nuclear transport of EKLF might be one of the steps necessary for the switch-on of the mammalian adult beta globin gene transcription.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Spittau B, Wang Z, Boinska D, Krieglstein K. Functional domains of the TGF-β-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain. J Cell Biochem 2007; 101:712-22. [PMID: 17252542 DOI: 10.1002/jcb.21228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recently identified TGF-beta-inducible early gene 3 (Tieg3) belongs to the gene family of Sp1/Klf-like transcription factors and is upregulated immediately after TGF-beta treatment. To explore the molecular mechanisms of Tieg3-mediated transcriptional control, GAL4-based luciferase assays were performed in order to determine regulatory domains within the Tieg3 protein. Using EGFP-fusion proteins, we monitored the intracellular localization and mapped putative nuclear localization signals (NLS). We provide evidence that the amino-terminus of Tieg3 is essential to repress the transcription and that the loss of the mSin3A interacting domain (SID) disrupts the repressive effects of Tieg3 in the oligodendroglial cell line OLI-neu. Herein we also demonstrate that the zinc finger containing DNA-binding domain (DBD) alone is able to activate the transcription of a reporter gene. Sequence analysis of the zinc finger region revealed no similarities to known activation domains. Analysis of the subcellular localization disclosed Tieg3 as a nuclear protein. Further, we identified the DBD as being essential for the nuclear localization of Tieg3. We detected two closely located putative bipartite NLS within the second and third zinc finger, which are conserved among the members of the Tieg family of proteins. Together these results may help to increase the understanding of Tieg3-mediated transcriptional control and to characterize this TGF-beta-induced Sp1/Klf-like transcription factor.
Collapse
Affiliation(s)
- Björn Spittau
- Center of Anatomy, Department of Neuroanatomy, University of Göttingen, Kreuzbergring, Germany.
| | | | | | | |
Collapse
|
48
|
Bradley KJ, Bowl MR, Williams SE, Ahmad BN, Partridge CJ, Patmanidi AL, Kennedy AM, Loh NY, Thakker RV. Parafibromin is a nuclear protein with a functional monopartite nuclear localization signal. Oncogene 2006; 26:1213-21. [PMID: 16964291 DOI: 10.1038/sj.onc.1209893] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parafibromin is a nuclear protein with a tumour suppressor role in the development of non-hereditary and hereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour (HPT-JT) syndrome, which is associated with renal and uterine tumours. Nuclear localization signal(s), (NLS(s)), of the 61 kDa parafibromin remain to be defined. Utilization of computer-prediction programmes, identified five NLSs (three bipartite (BP) and two monopartite (MP)). To investigate their functionality, wild-type (WT) and mutant parafibromin constructs tagged with enhanced green fluorescent protein or cMyc were transiently expressed in COS-7 cells, or human embryonic kidney 293 (HEK293) cells, and their subcellular locations determined by confocal fluorescence microscopy. Western blot analyses of nuclear and cytoplasmic fractions from the transfected cells were also performed. WT parafibromin localized to the nucleus and deletions or mutations of the three predicted BP and one of the predicted MP NLSs did not affect this localization. In contrast, deletions or mutations of a MP NLS, at residues 136-139, resulted in loss of nuclear localization. Furthermore, the critical basic residues, KKXR, of this MP NLS were found to be evolutionarily conserved, and over 60% of all parafibromin mutations lead to a loss of this NLS. Thus, an important functional domain of parafibromin, consisting of an evolutionarily conserved MP NLS, has been identified.
Collapse
Affiliation(s)
- K J Bradley
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shyu YC, Wen SC, Lee TL, Chen X, Hsu CT, Chen H, Chen RL, Hwang JL, Shen CKJ. Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci. Cell Res 2006; 16:347-55. [PMID: 16617330 DOI: 10.1038/sj.cr.7310045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
EKLF is an erythroid-specific, zinc finger-containing transcription factor essential for the activation of the mammalian beta globin gene in erythroid cells of definitive lineage. We have prepared a polyclonal anti-mouse EKLF antibody suitable for Western blotting and immunoprecipitation (IP) qualities, and used it to define the expression patterns of the EKLF protein during mouse erythroid development. We have also used this antibody for the chromatin-immunoprecipitation (ChIP) assay. EKLF was found to bind in vivo at both the mouse beta-major-globin promoter and the HS2 site of beta-LCR in the mouse erythroleukemia cells (MEL) in a DMSO-inducible manner. The DMSO-induced bindings of EKLF as well as three other proteins, namely, RNA polymerase II, acetylated histone H3, and methylated histone H3, were not abolished but significantly lowered in CB3, a MEL-derived cell line with null-expression of p45/NF-E2, an erythroid-enriched factor needed for activation of the mammalian globin loci. Interestingly, binding of EKLF in vivo was also detected in the mouse alpha-like globin locus, at the adult alpha globin promoter and its far upstream regulatory element alpha-MRE (HS26). This study provides direct evidence for EKLF-binding in vivo at the major regulatory elements of the mouse beta-like globin gene clusters the data also have interesting implications with respect to the role of EKLF-chromatin interaction in mammalian globin gene regulation.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Quadrini KJ, Bieker JJ. EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett 2006; 580:2285-93. [PMID: 16579989 DOI: 10.1016/j.febslet.2006.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/15/2006] [Accepted: 03/10/2006] [Indexed: 01/30/2023]
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) is an erythroid specific, C(2)H(2) zinc finger transcription factor that is essential for the proper chromatin structure and expression of the adult beta-globin gene. Herein, we determine that 26S proteasome inhibitors lead to an accumulation of EKLF protein in murine erythroleukemia (MEL) cells. In addition, EKLF half-life in both MEL cells (<3h) and fetal liver cells (between 6 and 9h) is stabilized in the presence of these inhibitors. EKLF is ubiquitinated in vivo, however its modification does not rely on a particular internal lysine. Finally, EKLF contains two PEST sequences within its N-terminus that have no effect on the ability of EKLF to be ubiquitinated but contribute to its destabilization.
Collapse
Affiliation(s)
- Karen J Quadrini
- The Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|